

1．甲部各題全答，乙部選答四题。
2．除特別指明外，須詳細列出所有算式。
3．除特別指明外，數値答案可用突確値表示，亦可用近似値表示，惟須準確至三位有效數字。

4．本試卷的附圖不一定依比例緭成。

考公式

| 球 | 體 | 表 | 面 | 積 | $=4 \pi r^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 體 |  | 積 | $=\frac{4}{3} \pi r^{3}$ |
| 圓 | 柱 | 側 | 面 | 積 | $=2 \pi r h$ |
|  |  | 體 |  | 積 | $=\pi r^{2} h$ |
| 圆 | 錐 | 側 | 面 | 積 | $=\pi r l$ |
|  |  | 體 |  | 積 | $=\frac{1}{3} \pi r^{2} h$ |
| 角 | 柱 | 體 |  | 積 | ＝底面樻 $\times$ 嵩 |
| 角 | 錐 | 體 |  | 積 | $=\frac{1}{3} \times$ 底面積 $\times$ 高 |

甲部（51 分）
本部各題全答。
本部每題開始作答時，無需另用新頁。

1．因式分解
（a）$x^{2}-9$ ，
（b）$a c+b c-a d-b d$ 。
（4分）

2．化簡
（a）$\sqrt{27}-\sqrt{12}$ ，
（b）$\frac{1}{2 \sqrt{3}+\sqrt{2}}$ ．

3．（a）化簡 $\frac{x^{3} y^{2}}{x^{-3} y}$ ，並以正指數表示答案。
（b）化簡 $\frac{\log 8+\log 4}{\log 16}$ 。

4．解（i） $2 x-17>0$ ，
（ii）$x^{2}-16 x+63>0$ 。
由此寫出使（i）及（ii），中不等式同時成立的 $x$ 値的範圍。

5．圆1中，$A B C$ 爲一直角三角形。
$A B=3, ~ B C=4, ~ C D=6$ ， $\angle A B C=90^{\circ}$ 及 $\angle A C D=60^{\circ}$ 。求
（a）$A C$ ，
（b）$A D$ ，
（c）$\triangle A C D$ 的面積。


固 1
（5 分）

6．㯖2中，從燈塔 $L$ 測得船 $A$ 及 $B$ 的方位分別爲 $020^{\circ}$ 及 $110^{\circ}$ 。從 $A$ 測得 $B$ 的方位爲 $140^{\circ}$ ，且 $A$ 至 $B$ 的距離爲 20 km 。求
（a）$B$ 至 $L$ 的距離，
（b）由 $B$ 測 $L$ 的方位。
（a）求小圓錐體與大圓錐骾的高的比。
（b）如果替圓錐骼唋上油漆的費用與其總表面積成正比，且替小圆錐體洤上油漆的費用爲 $\$ 32$ ，求替大圓錐體塗上油漆的費用。

8．方程 $2 x^{2}-7 x+4=0$ 的根爲 $\alpha$ 及 $\beta$ 。
（a）寫出 $\alpha+\beta$ 及 $\alpha \beta$ 的値。
（b）求以 $\alpha+2$ 及 $\beta+2$ 鷍根的二次方程。

9．圖 3 中，$A C$ 爲圓的直徑， $A C=4 \mathrm{~cm}$ 及 $\angle B A C=30^{\circ}$ 。求
（a）$\angle B D C$ 及 $\angle A D B$ ，
（b）$\widehat{A B}: \overparen{B C}$ ，
（c）$A B: B C$ 。
（洘生無須列出理由 。）


国 3
（6 分）

乙部（48 分）
本部選答四題。
每題 12 分。
11．某班共有學生 35 人，以下是他們在一次數學測驗中所得的積分：

| 0 | 0 | 5 | 8 | 11 | 12 | 41 | 42 | 45 | 48 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 50 | 62 | 70 | 73 | 73 | 73 | 77 | 78 | 80 | 80 |
| 82 | 82 | 82 | 83 | 83 | 85 | 85 | 87 | 90 | 90 |
| 95 | 95 | 95 | 95 | 98 |  |  |  |  |  |

（a）求以上積分的平均値，眾數，中位數，標準差。 （考生無須列出算式。）
（b）簡穋爲什麼平均値不一定適合用作量度這數學測驗積分分佈的集中趨勢。
（c）同一班學生在某次英文測驗所得積分的平均値及標準差分別鶏 63 及 15 。
（i）某學生在這英文測驗的標準分是 0.4 。求他在適測驗所得的積分。
（ii）設這英文測驗的積分箒一正態分佈，且驚葉在上逝的數學測驗及這英文䀘驗中所得的積分均爲 78 。
（I）有百分之幾的同學在上述的數學測驗中所得的皘分少於麗華的積分？
（II）相對於她的同學，麌華在這英文測驗中的表現是否較其在上述的數學潗驗中爲佳？
（iii）稍後英文老師發現在這英文測驗中少給 10 分予其中一名學生。 求將錯誤積分更正後這英交測驗積分的平均値。

12．圖 4.1 所示爲一個直立角錐形的溫室 $V A B C D$ ，其底絚一個邊長 6 m 的正方形。 $M$ 爲 $B C$ 的中點，$V N$ 爲角錐體的高，每一個三角形側面與正方形底的夾角爲 $\theta$ 。


固 4.1
图 4.2
（a）（i）以 $\theta$ 表 $V N$ 及 $V M$ 。
（ii）求該溫室的容量及總表面積（不包括底部），答案以 $\theta$ 表示。
（b）圖4．2所示爲另一個溫室，它的形狀是一直立围柱體－其底半徍爲 $r \mathrm{~m}$ ，高爲 $h \mathrm{~m}$ 。已知該兩個溫室的底面栍及容量均相等。
（i）以 $\pi$ 表r。
（ii）以 $\theta$ 表h。
（iii）若該兩佃溫室的總表面㭠（不包括底部）相等，證明

$$
3+\sqrt{\pi} \tan \theta=\frac{3}{\cos \theta}
$$

$\qquad$ （＊）
（iv）證明方程（＊）在 $61^{\circ}$ 與 $62^{\circ}$ 之間有根。

13．李小姐製造及售賣手製的皮檠及手袋。 她發現若製造一批共 $x$ 條的皮帶，其中 $1 \leq x \leq 11$ ，則每條皮帶的成本 $\$ B$ 可用 $B=x^{2}-20 x+120$ 求得。第8頁顯示函數 $y=x^{2}-20 x+120$ 的圖像。
（a）利用所給的圆像，求一批皮帶的製造數量使每佟皮帶的成本
（i）爲最小；
（ii）少於 $\$ 90$ 。
（b）李小姐亦發現若製造一批共 $x$ 個的手袋，其中 $1 \leq x \leq 8$ ，則每個手袋的成本 $\$ H$ 可用 $H=x^{2}-17 x+c$（ $c$ 爲一常數）求得。當製造一批共 3 個的手袋時，每個手袋的成本爲 $\$ 144$ 。
（i）求 $c$ 。
（ii）在所給的回像上加上適當的直線，求一批手袋的製造數量使每個手袋的成本爲 \＄120。
（iii）李小姐製造了一批共 10 條的皮檠及一批共 6 個的手袋。她以每條 $\$ 100$ 售出 6 條皮帶及每個 $\$ 300$ 售出 4 個手袋，其餘全以各自成本的一半售出。求她的盈利或劇蝕。


13．（續）考生若選答第 13 题，须填窵上列三空格，並將本貢縺於答题簿

## 內，一併交回。



## 此夏空白

14．一小池塘中，恰好有 40 條細魚及 10 條大魚。牠們的重量 $W \mathrm{~g}$ 的範畋列於下表：

|  | 重量 $(W \mathrm{~g})$ |
| :---: | :---: |
| 細色 | $0<W \leq 100$ |
| 大魚， | $500 \leq W \leq 600$ |

一天的早上，某人在該池塘垂釣。他釣了兩保魚，而牠們的總重量嘓 $T \mathrm{~g}$ 。設每條魚被釣到的機會均等。
（a）求以下情況的概率：
（i） $0<T \leq 200$ ，
（ii） $500 \leq T \leq 700$ ，
（iii） $1000 \leq T \leq 1200$ ，
（iv）$T>1200$ 。
（b）設在早上釣到的兩條魚已活生生的放回該池塘中。下午他評到䠹池塘垂釣，同樣釣了兩條魚。
（i）若他在早上釣到的魚的總重量爲 650 g ，求早上鿕到的魚的總重量和下午釣到的魚的總重量相差超過 200 g 的概率。
（ii）求他在早上釣到的魚的總重量和下午釣到的魚的總重量相差超過 200 g 的概率。

15．第 12 頁中，吅形 $A_{1}$ 是一䢬長爲 $\ell$ 的正方形。在䛛形 $A_{1}$ 三邊的中央各加上一個逿長虞 $\frac{\ell}{3}$ 的正方形得出圖形 $A_{2}$ 。依循相同的規律，在圖形 $A_{2}$ 中加上遑長䖚 $\frac{\ell}{9}$ 的正方形得出圖形 $A_{3}$ 。相同的步際不断重複得出圆形 $A_{4}, A_{5}, \ldots, A_{n}, \ldots$ 。
（a）（i）第 12 頁的表1顯示由 $A_{1}$ 得出 $A_{2}, A_{2}$ 得出 $A_{3}, A_{3}$ 得出 $A_{4}$ 所加正方形的數目及其遥長。完成表1。
（ii）求 $A_{4}$ 中所有正方形的總面積。
（iii）當 $n$ 不断增大，$A_{n}$ 中所有正方形的總面積㒹向一常數 $k$ 。以 $\ell$ 表 $k$ 。
（b）移去圆形 $A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots$ 中重熅的線段，得出第 12 頁中所示的圆形 $B_{1}, B_{2}, B_{3}, \ldots, B_{n}, \ldots$ 。
（i）完成第 12 頁中的表2。
（ii）寫出 $B_{n}$ 的周界。

$$
\text { 若 } n \text { 不断增大, } B_{n} \text { 的周界會繁成怎様? }
$$



15．（績）考生若選答第 15 题，须填寫上列三空格，並將本页綀於答題稼内，一供交回。


| 表 1 | 4.3 4 | $A_{2} \rightarrow A_{1}$ | 4． A $_{4}$ |
| :---: | :---: | :---: | :---: |
| Finn | 3 | 9 |  |
|  | $\frac{\ell}{3}$ | $\frac{\ell}{9}$ |  |

此頁空白


| 表2 |  | B！ | ${ }_{\text {P }}$ | P3 | A． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 挂 | 共 | $4 \ell$ |  |  |  |

16. 


（a）圆 5.1 中，$D$ 爲圓上一點，圓的蒖心爲 $C, A B$ 爲直徑。回在 $A$ 的切線與 $B D$ 的延線交於 $E$ 。 該切線過 $E$ 的垂線與 $C D$ 的延線交於 $F$ 。
（i）證明 $A B / / E F$ 。
（ii）證明 $F D=F E$ 。
（iii）解釋爲什麼 $F$ 是過 $D$ 並與 $A E$ 相切於 $E$ 的回的莪心。 （8 分）
（b）在圖 5.1 中引入一直角坐標系使 $A$ 和 $B$ 的坐標分別鷍 $(-2,-1)$及 $(6,3)$ ，並發現 $D$ 和 $E$ 的坐標分別爲 $(-2,3)$ 及 $(-4,3)$ ，如圖 5.2 所示。求 $F$ 的坐標。
(4 分)
－試卷完－

## 解法概要（1997－2001）

## 注意：下゙列解法概要僅供參考，不宜視作標準答案。

1997

## Mathematics I

（b）$(a+b)(c-d)$

2．（a）$\sqrt{3}$
（b）$\frac{2 \sqrt{3}-\sqrt{2}}{10}$

3．（a）$x^{6} y$
（b）$\frac{5}{4}$

4．（i）$x>\frac{17}{2}$
（ii）$x<7$ or $x>9$

5．（a） 5
（b）$\sqrt{31}$
（c）$\frac{15}{2} \sqrt{3}$
6．（a） $10 \sqrt{3} \mathrm{~km}$
（b） $290^{\circ}$

7．（a） $2: 3$
（b）$\$ 72$
8．（a）$\frac{7}{2}, 2$
（b） $2 x^{2}-15 x+26=0$
9.
（a） $30^{\circ}, 60^{\circ}$
（b） $2: 1$
（c）$\sqrt{3}: 1$
10．（a） 312120
（b） 2001

11．（a）（i）Mean $=64.4$
（ii） Mode $=95$
（iii） Median $=78$
（iv）Standard deviation $=30.6$
（b）This is because the distribution of marks in the Mathematics test is biased to the high end．
（c）（i）Let the student scored $x$ marks in the English test．

$$
\begin{aligned}
& \frac{x-63}{15}=0.4 \\
& x=69
\end{aligned}
$$

（ii）（I）Percentage of classmates scorcd fewer marks than Lai Wah in the Mathmatics test

$$
\begin{aligned}
& =\frac{17}{35} \times 100 \% \\
& \approx 48.6 \%
\end{aligned}
$$

（II）The standard score of Lai Wah in the English test
$=\frac{78-63}{15}$
$=1$
$\because$ The marks of the English test is normally distributed
$\therefore$ More than half（or about $84 \%$ ）of her classmates scored less than her．
Hence Lai Wah performed better in the English test than in the Mathematics test relative to her classmates．
（iii）The mean of the marks in the English test after the wrong mark has been corrected
$=63+\frac{10}{35}$
$\approx 63.3$
12. (a) (i) $V N=3 \tan \theta \mathrm{~m}$

$$
V M=\frac{3}{\cos \theta} \mathrm{~m}
$$

(ii) Capacity $=\frac{1}{3} \cdot 6^{2} \cdot 3 \tan \theta \mathrm{~m}^{3}$

$$
=36 \tan \theta \mathrm{~m}^{3}
$$

Total surface area $=4 \cdot \frac{6}{2} \cdot \frac{3}{\cos \theta} \mathrm{~m}^{2}$

$$
=\frac{36}{\cos \theta} \mathrm{~m}^{2}
$$

(b) (i) $\because$ The base areas of the greenhouses are the same

$$
\therefore \quad \pi r^{2}=36
$$

$$
r=\frac{6 \sqrt{\pi}}{\pi}
$$

(ii) $\because$ The capacities of the greenhouses are the same
$\therefore \quad 36 h=36 \tan \theta$
$h=\tan \theta$
(iii) If the total surface areas of the greenhouses are equal, then

$$
\begin{aligned}
& \pi r^{2}+2 \pi r h=\frac{36}{\cos \theta} \\
& 36+2 \pi \cdot \frac{6}{\sqrt{\pi}} \cdot \tan \theta=\frac{36}{\cos \theta} \\
& 36+12 \sqrt{\pi} \tan \theta=\frac{36}{\cos \theta} \\
& 3+\sqrt{\pi} \tan \theta=\frac{3}{\cos \theta}
\end{aligned}
$$

(iv) $\because \quad 3+\sqrt{\pi} \tan 61^{\circ}-\frac{3}{\cos 61^{\circ}} \approx 0.00960>0$

$$
3+\sqrt{\pi} \tan 62^{\circ}-\frac{3}{\cos 62^{\circ}} \approx-0.0567<0
$$


13. (a) (i) From the graph, $y$ is minimum when $x=10$
$\therefore$ Number of belts in a batch $=10$
(ii) From the graph, $y<90$ when $x \geq 2$
i.e. $\quad x=2,3, \ldots, 11$
$\therefore$ Number of belts in a batch $=2,3,4, \ldots, 11$
(b) (i) $144=3^{2}-17(3)+c, c=186$
(ii) If $H=120$, then $x^{2}-17 x+186=120$

$$
x^{2}-17 x+66=0
$$

$$
x^{2}-20 x+120=-3 x+54
$$

By adding the line $y=-3 x+54$ on the graph,

$$
x=6 \text { or } 11 \text { (rej.) }
$$

$\therefore \quad$ The required number of handbags is 6 .
(iii) Total cost of 10 belts and 6 handbags
$=\$\left[10 \times\left(10^{2}-20 \times 10+120\right)+6\left(6^{2}-17 \times 6+186\right)\right]$ $=\$ 920$

Total income for selling the belts and handbags
$=\$[6 \times 100+4 \times 300+4 \times 10+2 \times 60]$
$=\$ 1960$
$\therefore$ She gained $\$ 1040$.
14. (a) (i) $\mathrm{P}(0<T \leq 200)=\frac{40}{50} \cdot \frac{39}{49}$

$$
=\frac{156}{245}
$$

(ii) $\mathrm{P}(500 \leq T \leq 700)=\frac{10}{50} \cdot \frac{40}{49}+\frac{40}{50} \cdot \frac{10}{49}$

$$
\begin{aligned}
& =2 \cdot \frac{10 \times 40}{50 \times 49} \\
& =\frac{16}{49}
\end{aligned}
$$

(iii) $\mathrm{P}(1000 \leq T \leq 1200)=\frac{10}{50} \cdot \frac{9}{49}$

$$
=\frac{9}{245}
$$

(iv) $\mathrm{P}(T>1200)=0$
(b) Let the total weight obtained in the afternoon be $T^{\prime \prime}$.
(i) $\mathrm{P}\left(T^{\prime}<450\right.$ or $\left.T^{\prime}>850\right)$
$=\frac{156}{245}+\frac{9}{245}$
$=\frac{33}{49}$
(ii) $\quad \mathrm{P}\left(\left|T-T^{\prime}\right|>200\right)$
$=1-\left(\frac{156}{245}\right)^{2}-\left(\frac{16}{49}\right)^{2}-\left(\frac{9}{245}\right)^{2}$
$=\frac{29208}{60025}$
15. (a) (i)

| Table 1 | $A_{1} \rightarrow A_{2}$ | $A_{2} \rightarrow A_{3}$ | $A_{3} \rightarrow A_{4}$ |
| :--- | :---: | :---: | :---: |
| Number of squares added <br> Length of sides of the <br> squares added | 3 | 9 | 27 |

(ii) Total area of all the squares in $A_{4}$
$=\ell^{2}+3\left(\frac{\ell}{3}\right)^{2}+9\left(\frac{\ell}{9}\right)^{2}+27\left(\frac{\ell}{27}\right)^{2}$
$=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right) \ell^{2}$
$=\frac{40}{27} \ell^{2}$
(iii) $k=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots\right) \ell^{2}$
$=\frac{1}{1-\frac{1}{3}} \ell^{2}$
$=\frac{3}{2} \ell^{2}$
(b) (i)

| Table 2 | $\cdots B_{1}$ | $B_{2}$ | $B_{3}$ | $B_{4}$ |
| :--- | :---: | :---: | :---: | :---: |
| Perimeter | $4 \ell$ | $6 \ell$ | $8 \ell$ | $10 \ell$ |

(ii) Perimeter of $B_{n}$
$=4 \ell+(n-1)(2 \ell)$
$=2(n+1) \ell$

The perimeter of $B_{n}$ would tend to infinity if $n$ increases indefinitely.
16. (a) (i) $\because \angle C A E=90^{\circ}$
$\therefore \quad \angle C A E+\angle F E A=180^{\circ}$
Hence $A B / / E F$ (int. $\angle \mathrm{s}$ supp.)
(ii) $\because \quad \angle F D E=\angle C D B \quad$ (vert. opp. $\angle \mathrm{s}$ )

$$
\angle C D B=\angle C B D \quad(\text { base } \angle \mathrm{s}, \text { isos. } \triangle)
$$

$$
\angle C B D=\angle F E D
$$

Hence $\quad F D=F E$
(alt. $\angle \mathrm{s}, A B / / E F$ )

$$
\therefore \quad \angle F D E=\angle F E D
$$

(sides opp. equal $\angle$ s)
(iii) Let $\mathcal{C}$ be the circle passing through $D$ and touching $A E$ at $E$.
$\because \mathcal{e}$ touches $A E$ at $E$ and $E F \perp A E$.
$\therefore \quad$ the centre of $\mathcal{C}$ lies on the line $E F$.
$\because \quad E D$ is a chord of $\mathcal{C}$ and $F D=F E$.
$\therefore \quad$ the centre of $\mathcal{C}$ lies on the perpendicular of $D E$ through $F$
$F$ is the intersection of the lines which is the centre of $\mathcal{C}$.
(b) Mid-point of $D E=(-3,3)$
$\because E D$ is horizontal
$\therefore x$-coordinate of $F=-3$

Slope of $A E=-2$

$$
\text { Equation of } E F: \begin{aligned}
& \frac{y-3}{x+4}=\frac{1}{2} \\
& x-2 y+10=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sub. } x=-3 \text { into } E F, \\
& -3-2 y+10=0 \\
& y=\frac{7}{2} \\
& \therefore \quad F=\left(-3, \frac{7}{2}\right)
\end{aligned}
$$

