Marking Schemes

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its content with care.

Chemistry

Paper 1

SECTION A

Question No. Part I	Key	Question No Part II	Key
1.	B (56\%)	25.	D (76\%)
2.	C (70\%)	26.	B (71\%)
3.	D (78\%)	27.	A (57\%)
4.	D (60\%)	28.	B (69\%)
5.	C (80\%)	29.	B (48\%)
6.	B (65\%)	30.	D (83\%)
7.	B (68\%)	31.	B (43\%)
8.	C (82\%)	32.	D (45\%)
9.	A (59\%)	33.	A (58\%)
10.	A (63\%)	34.	C (55\%)
11.	D (50\%)	35.	A (59\%)
12.	B (79\%)	36.	C (65\%)
13.	B (75\%)		
14	C (49\%)		
15.	C (83\%)		
16.	A (65\%)		
17.	D (42\%)		
18.	A (66\%)		
19.	D (68\%)		
20.	A (63\%)		
21.	B (41\%)		
22.	A (72\%)		
23.	C (47\%)		
24.	C (48\%)		

Note: Figures in brackets indicate the percentages of candidates choosing the correst answers.

機密（只限閲卷員使用） CONFIDENTIAL（FOR MARKER＇S USE ONLY）

香港考試及評核局
HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
2018年香港中學文憑
HONG KONG DIPLOMA OF SECONDARY EDUCATION 2018

CHEMISTRY
 PAPER 1 \＆COMBINED SCIENCE（CHEMISTRY） SECTION B

MARKING SCHEME

本評卷參考乃香港考試及評核局專為今年本科考試而編寫，供閱卷員參考之用。本評卷參考之使用，均受制於閱卷員有關之委任條款及閱卷員指引。特別是：
－本局擁有並保留本評卷參考的所有財產權利（包括知識產權）。在未獲本局之書面批准下，閱卷員均不得複製，發表，透露，提供，使用或經營本評卷參考之全部或其部份。在遵守上述條款之情況下，本局有限地容許閱卷員可在應屆香港中學文憑考試的考試成績公布後，將本評卷參考提供任教本科的教師參閱。
－在任何情況下，均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各閱卷員／教師通力合作，堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers．The use of this marking scheme is subject to the relevant appointment terms and Instructions to Markers．In particular：
－The Authority retains all proprietary rights（including intellectual property rights）in this marking scheme．This marking scheme，whether in whole or in part，must not be copied，published，disclosed，made available，used or dealt in without the prior written approval of the Authority．Subject to compliance with the foregoing，a limited permission is granted to markers to share this marking scheme，after release of examination results of the current HKDSE examination，with teachers who are teaching the same subject．
－Under no circumstances should students be given access to this marking scheme or any part of it．The Authority is counting on the co－operation of markers／teachers in this regard．

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

INSTRUCTIONS TO MARKERS

1．In order to maintain a uniform standard in marking，markers should adhere to the marking scheme agreed at the markers＇meeting．

2．The marking scheme may not exhaust all possible answers for each question．Markers should exercise their professional discretion and judgment in accepting alternative answers that are not in the marking scheme but are correct and well reasoned．

3．The following symbols are used：
／A single slash indicates an acceptable alternative within an answer．
＊\quad Step－mark（for questions involving calculations）
$\dagger \quad$ Correct spelling required

4．In questions asking for a specified number of reasons or examples etc．and a candidate gives more than the required number，the extra answers should not be marked．For instance，in a question asking candidates to provide two examples，and if a candidate gives three answers，only the first two should be marked．

5．In cases where a candidate answers more questions than required，the answers to all questions should be marked．However，the excess answer（s）receiving the lowest score（s）will be disregarded in the calculation of the final mark．

6．Award zero marks for answers which are contradictory．

7．Chemical equations should be balanced except those in reaction schemes for organic synthesis．For energetics，the chemical equations given should include the correct state symbols of the chemical species involved．

8．In the question paper，questions which assess candidates＇communication skills are marked with an asterisk（＊）．For these questions，the mark for effective communication（1 mark per question）will be awarded if candidates can produce answers which are easily understandable．No marks for effective communication will be awarded if the answers produced by candidates contain a lot of irrelevant materials and／or wrong concepts in chemistry．

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Part I

Marks

1．（a）（i） $6.0 x+7.0(1-x)=6.9$
$\mathrm{x}=0.1=10.0 \%$（Accept answer without unit）（Accept 0．1，10，10．0）
（ii）

（The electron diagram should have brackets）
（b）（i） $6 \mathrm{Li}+\mathrm{N}_{2} \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$
（State symbols not required）（Ignore incorrect state symbols）
（ii） $\mathrm{y} / 6.9=3 \mathrm{x}(1.25 / 34.7)$
$\mathrm{y}=0.746 \mathrm{~g}$（Also accept $0.745,0.75$ ；Not accept 0.750 ）（Correct unit is required） （Accept max． 4 decimal places）
（c）Lithium oxide／Lithium peroxide \dagger

2．（a）Set－up for preparation－boiling tube with reagents and HEAT（with stopper）
（Accept heating the reagents in a flask）
Upward delivery of ammonia gas（without stopper）
（Accept collecting the gas with a gas syringe）

（b）（i）Ammonia is soluble in water／Ammonia reacts with water to form aqueous ammonia
As all ammonia dissolves，the atmospheric pressure forces the water in the trough to inject into the flask through the glass tubing／the pressure inside the flask is reduced．
（ii）The water in the flask turns from colourless to pink．
It is because aqueous ammonia is alkaline．

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

3．（a）The electrostatic attraction between Ba^{2+} and Cl^{-}in BaCl_{2} is ionic bond while intermolecular attraction between $\underline{\mathrm{OCl}}_{2}$ molecules are van der Waals＇forces．／
$\mathrm{BaCl}_{\underline{2}}$ is an ionic compound while $\underline{\mathrm{OCl}}_{2}$ has a simple molecular structure．
As ionic bond is much stronger than van der Waals＇forces／intermolecular forces between
OCl_{2} molecules， BaCl_{2} would have a higher melting point than OCl_{2} ．
（b） $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{CH}_{4}$
－Both molecules of PH_{3} and CH_{4} are held by van der Waals＇forces／intermolecular forces．
－The van der Waals＇forces between PH_{3} are stronger that those between CH_{4} because of the larger molecular size of PH_{3} than CH_{4} ．
（Accept： PH_{3} molecule has more electrons than CH_{4} ；
Not Accept： PH_{3} has a higher molecular mass than CH_{4} ）
OR－Intermolecular forces between PH_{3} molecules are stronger than that between CH_{4} molecules as PH_{3} is polar while CH_{4} is non－polar．
－Hydrogen bond exists among NH_{3} molecules that is stronger than van der Waals＇forces．
（c）

For CS：
（b）（i）carboxylic acid／carboxyl $\dagger \quad 1$
ester \dagger 1
（ii）-COOH group of aspirin reacts with hydrogencarbonate ions in water $\quad 1$
$\begin{array}{ll}\text { to give a soluble sodium salt／soluble ions／soluble }-\mathrm{COO}^{-} & 1\end{array}$
（Not accept soluble substance／soluble compound）
（Accept： $\mathrm{RCOOH} \xrightarrow{\mathrm{HCO}_{3}{ }^{-}}$soluble $\mathrm{RCOO}^{-} / \mathrm{RCOO}^{-}(\mathrm{aq})$ ）

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Marks

4．（a）－Petroleum is formed when large quantities of dead marine organisms（，such as planktons and algaes），
－that are buried underneath sedimentary rock and subjected to intense heat and pressure for a long time．
（b）（i）

（ii）but－1－ene or 2－methylpropene／methylpropene \dagger
For CS：
（b）Any two：

or $\mathrm{H}_{3} \mathrm{C}^{\prime} \mathrm{CH}_{3}$ or

or

Accept ：

（c）（i）Pass excess H_{2} to ethene in the presence of $\mathrm{Pt} / \mathrm{Pd} / \mathrm{Ni}$／
Catalytic hydrogenation
（For CS：Need not to mention catalysis）
（ii）Ethene turns $\mathrm{Br}_{2}\left(\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CCl}_{3}\right)$ ，
from brown／orange to colourless while ethane does not．（Not accept yellow）
1
（Aceept $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$－purple to colourless／
KMnO_{4}－purple to brown（precipitate）
$\mathrm{KMnO}_{4} / \mathrm{OH}^{-}$－purple to brown（precipitate））
（Accept：Combustion test（1）；ethene gives more sooty flame，while ethane gives less sooty flame（1））

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Marks

5．（a）

－All 3 labels correct： 2 marks
－Any 1 label correct： 1 mark
（Accept drawing of battery with correct poles／only + and - signs at the correct positions ／electron flows in correct direction in the external circuit．）
（b）－Connect zinc／magnesium blocks（through connecting wires）to the surface of the pipelines．／Sacrificial protection．
－Zinc／Magnesium can release electrons more readily than iron．／Zinc／Magnesium is more reactive than iron．／Zinc／Magnesium has greater reducing power than iron．／ Zinc／Magnesium is higher than iron in the ECS．
OR
－Connect the negative electrode of a D．C．source（through connecting wires）to the surface of the pipelines（and the positive electrode to a platinum electrode）／Cathodic protection
－The electrons provided by the D．C．source prevent iron from releasing electrons．
（Do not accept wrapping with plastics／alloying／use stainless steel pipelines）

6．（a）（i） $6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})$（Ignore state symbols）
（ii）$\Delta H=-\underline{1274-6 \times(-394-286)}=-1274-6 \times(-680)=-1274-(-4080)$
$=+2806 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad\left(\right.$ Do not accept $\left.+2800,+2810 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
（iii）Light／solar energy changes to chemical energy．
（b）（i）Let C be the heat capacity of the calorimeter，
$-715 \times(1.58 / 32.0)=-\mathrm{C} \times 18.5 \ldots$（1）
$\Delta H \times(1.02 / 100.0)=-\mathrm{C} \times 25.8 \ldots$（2）
$\Delta H=-4826.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$（Accept -4823 to -4831.1 ）
Accept $\Delta H \times \mathrm{m} / \mathrm{M}=\mathrm{C} \times \Delta \mathrm{T}$ as an alternative to（1）．
（ii）Incomplete combustion．／Some methanol or heptane evaporates．

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Marks

7．（a）conical flask \dagger
（b）yellow to orange（Do not accept red）
（c）Number of moles of $\mathrm{B}_{4} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})=\underline{0.125 \times 0.01898 \times 1 / 2}=1.187 \times 10^{-3}$
$(201.2+18 \mathrm{n})=0.452 / 1.187 \times 10^{-3}$
1＊
$\mathrm{n}=10$
（d）（i）Solutions with accurately known concentrations．
（ii）It can be used to determine the concentration of another reagent／number of water of crystallization／molar mass，etc．via titration／to prepare a calibration curve．

8．（a）An acid which can（almost）completely ionize／ionise／highly ionise／dissociate to H^{+}ions in water．
（b）（i）chlorine $/ \mathrm{Cl}_{2}(\mathrm{~g})$
（ii）It is a redox reaction： $\mathrm{O} . \mathrm{N}$ ．of Cl changes from -1 to $0 /$ of Mn changes from +7 to +2 ／ Cl^{-}transfers electrons to $\mathrm{MnO}_{4}^{-} / \mathrm{O} . \mathrm{N}$ ．of Mn and Cl change at the same time／ MnO_{4}^{-}is reduced and Cl^{-}is oxidised．
（c）The filter paper turns yellowish brown．（Do not accept yellow／orange）
$2 \mathrm{I}^{-}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$（Ignore state symbols）
（d）The experiment should be performed in a fume cupboard as chlorine gas is toxic／toxic gas is released．
（Do not accept well－ventilated benches，etc．）

9．Five knowledge points（1 mark for each point），a maximum of 4 marks：
－Unsaturated compounds／Compounds with $\mathrm{C}=\mathrm{C}$ bonds can undergo addition polymerisation．
－No small molecules will be eliminated during addition polymerisation．
－High temp／High Pressure／Catalyst is used．（Any 2 conditions）
－Structure of the monomer ： $\mathrm{CF}_{2}=\mathrm{CF}_{2}$
－Structure of the repeating unit ：$-\mathrm{CF}_{2}-\mathrm{CF}_{2}-$ OR the polymer ：$-\left[\mathrm{CF}_{2}-\mathrm{CF}_{2}\right]_{\mathrm{n}}-$
Communication mark
（Chemical knowledge $=0$ to 2，communication mark $=0$ ，
Chemical knowledge $=3$ to 4 ，communication mark $=0$ or 1 ）

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Marks

```
10. (1) LiAlH1
```

$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ 1
$\mathrm{PCl}_{3} / \mathrm{PCl}_{5} / \mathrm{HCl} / \mathrm{SOCl}_{2}$ 1

```（Intermediate： 1 mark；reagent for each step： 1 mark）
```

For $1^{\text {st }}$ step：
1．Not accept LiAlH_{4} in acidic／aqueous medium．Not accept NaBH_{4} for reducing -COOH
2．Acidification is required after reduction with $\mathrm{LiAlH}_{4} . \quad \mathrm{LiAlH}_{4}$ and acidification should be expressed clearly as two steps．
3．Accept＂dry ether＂is omitted in the LiAlH_{4} step．
For conversion of -OH to -Cl ，also accept：

11．（a）（i）colour intensity／absorbance（Not accept transmittance）
（ii）（On the graph）Plot a tangent（a straight line）at time $=0$ on the curve．
The initial rate equals to the slope of the tangent／straight line．
（iii）The absorbance is（directly）proportional to $\left[\mathrm{Br}_{2}(\mathrm{aq})\right] /$ number of Br_{2} molecules in the reaction mixture．／
The $\left[\mathrm{Br}_{2}(\mathrm{aq})\right]$／number of Br_{2} molecules in the reaction mixture at A is higher than that at B，
therefore the frequency of（effective）collisions between molecules at A is higher than that at B．
（b）Measure the volume of CO_{2} gas formed（at different time）．／Measure the（total）pressure of the system（at different time）．（the reaction proceeds in a closed system）／Measure the mass of the reaction mixture（at different time）．（Not accept measuring the pH of the reaction mixture）

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

12．（a）Reduce fever／inflammation／risk of heart attack／Rheumatoid arthritis
（Not accept hypertension）
（b）-COOH group of aspirin reacts with hydrogencarbonate ions in water
to give a soluble sodium salt／soluble ions／soluble $-\mathrm{COO}^{-}$．
（Not accept soluble substance／soluble compound）
（Accept： $\mathrm{RCOOH} \xrightarrow{\mathrm{HCO}_{3}{ }^{-}}$soluble $\mathrm{RCOO}^{-} / \mathrm{RCOO}^{-}(\mathrm{aq})$ ）
（c）（i）

（ii）Hydrolysis of ester in acidic medium is a reversible reaction／
and if the reaction mixture is heated under reflux for a long time，it attains equilibrium position and reactants and products co－exist in the system．
（d）

Note：
1 mark for the correct spatial arrangements of the chiral centers of the two enantiomers．
1 mark for the correct structures of the four substituents connected to the chiral center．

13．（a）None of the final concentrations of $\mathrm{X}(\mathrm{g}), \mathrm{Y}(\mathrm{g})$ and $\mathrm{Z}(\mathrm{g})$ is equal to zero．／
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ co－exist in the system，and their concentrations remain unchanged after a long period of time．／
The concentration of the reactant， Y ，is still not equal to zero after a long period of time．
（b）

$$
\begin{array}{rlrc}
2 \mathrm{Y}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{X}(\mathrm{~g})+\mathrm{Z}(\mathrm{~g}) & \text { (1 mark for correct equation or } K \mathrm{c} \text { expression) } & 1^{*} \\
K \mathrm{c} & =[\mathrm{X}(\mathrm{~g})]^{3}[\mathrm{Z}(\mathrm{~g})] /[\mathrm{Y}(\mathrm{~g})]^{2} & & \left(1^{*}\right) \tag{I}\\
& =(0.60)^{3}(0.20) /(0.30)^{2} & \begin{array}{c}
\text { (1 mark for correct final concentrations of } \mathrm{X}, \mathrm{Y} \text { and } \mathrm{Z}, \\
\text { and substituting the numbers into the expression) }
\end{array} & 1^{*} \\
& =0.48 \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\text { Correct unit is required) (Not accept M }{ }^{2}\right) & 1
\end{array}
$$

（c）The statement is INCORRECT．
At the $25^{\text {th }}$ minute after the reaction has started，the reaction attained dynamic equilibrium．／
The rate of forward reaction is equal to the rate of backward reaction（，and both of the rates are not equal to zero）．

機密（只限閲卷員使用） CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Marks

14．－ $\mathrm{Na}_{2} \mathrm{O}$（s）dissolves in water to give $\mathrm{NaOH}(\mathrm{aq})$／
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ reacts with $\mathrm{HCl}(\mathrm{aq})$ to give $\mathrm{NaCl}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}$（or similar reactions）／
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq}) /$
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{l}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
－$\quad \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ reacts with $\mathrm{HCl}(\mathrm{aq})$ to give $\mathrm{AlCl}_{3}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}$（or similar reactions）／
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
－$\quad \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ reacts with $\mathrm{NaOH}(\mathrm{aq})$ to give $\mathrm{NaAl}(\mathrm{OH})_{4}(\mathrm{aq})$（or similar reactions）／
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}(\mathrm{aq}) /$
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}\left[\mathrm{AlO}_{2}\right](\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
（At the reactant side，accept $\mathrm{NaOH}(\mathrm{aq}) / \mathrm{NaOH}$ solution without explicitly mentioning water）
－$\quad \mathrm{SO}_{2}(\mathrm{~g})$ dissolves in water to give $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) /$
$\mathrm{SO}_{2}(\mathrm{~g})$ reacts with $\mathrm{NaOH}(\mathrm{aq})$ to give $\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}$（or similar reactions）／
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \quad \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) /$
$\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{NaOH}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
－Able to mention $\mathrm{Na}_{2} \mathrm{O}$ is a basic（alkaline）oxide， $\mathrm{Al}_{2} \mathrm{O}_{3}$ is an amphoteric oxide，and SO_{2} is an
acidic oxide．
－Communication mark
（Chemical knowledge $=0$ to 3，communication mark $=0$
Chemical knowledge $=4$ to 5 ，communication mark $=0$ or 1
Incomplete answer or difficult to understand，communication mark $=0$ ）

Note：

1．If the candidate gives the answer in the form of a chemical equation，it is not necessary to have the chemical equation correctly balanced．
2．The answer should state the reagents and products correctly（including the water formed in the neutralization reaction）．
3．If the candidate gives the answer in the form of a correct ionic equation，or state the reagents and the products in correct ionic forms，the answer is considered to have correct chemical concept，but failed to state the reagents and products completely．（Maximum）Deduct 1 mark for the whole question． Example：If the candidate only stated 4 correct ionic equations，but in each of the entries the reagents and the products were not stated explicitly，maximum 3 marks will be awarded for the chemical knowledge．
4．The following answers are considered to have the products stated correctly．
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{l}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

香港考試及評核局
HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
2018年香港中學文憑
HONG KONG DIPLOMA OF SECONDARY EDUCATION 2018

CHEMISTRY PAPER 2

MARKING SCHEME

本評卷參考乃香港考試及評核局專為今年本科考試而編寫，供閱卷員參考之用。本評卷參考之使用，均受制於閱卷員有關之委任條款及閱卷員指引。特別是：
－本局擁有並保留本評卷參考的所有財產權利（包括知識產權）。在未獲本局之書面批准下，閱卷員均不得複製，發表，透露，提供，使用或經營本評卷參考之全部或其部份。在遵守上述條款之情況下，本局有限地容許閱卷員可在應屆香港中學文憑考試的考試成績公布後，將本評卷參考提供任教本科的教師參閱。
－在任何情況下，均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各閱卷員（教師通力合作，堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers．The use of this marking scheme is subject to the relevant appointment terms and Instructions to Markers．In particular：
－The Authority retains all proprietary rights（including intellectual property rights）in this marking scheme．This marking scheme，whether in whole or in part，must not be copied，published，disclosed，made available，used or dealt in without the prior written approval of the Authority．Subject to compliance with the foregoing，a limited permission is granted to markers to share this marking scheme，after release of examination results of the current HKDSE examination，with teachers who are teaching the same subject．
－Under no circumstances should students be given access to this marking scheme or any part of it．The Authority is counting on the co－operation of markers／teachers in this regard．

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

INSTRUCTIONS TO MARKERS

1．In order to maintain a uniform standard in marking，markers should adhere to the marking scheme agreed at the markers＇meeting．

2．The marking scheme may not exhaust all possible answers for each question．Markers should exercise their professional discretion and judgment in accepting alternative answers that are not in the marking scheme but are correct and well reasoned．

3．The following symbols are used：
angle slash indicates an acceptable alternative
＊\quad Step－mark（for questions involving calculations）
$\dagger \quad$ Correct spelling required

4．In questions asking for a specified number of reasons or examples etc．and a candidate gives more than the required number，the extra answers should not be marked．For instance，in a question asking candidates to provide two examples，and if a candidate gives three answers，only the first two should be marked．

5．In cases where a candidate answers more questions than required，the answers to all questions should be marked．However，the excess answer（s）receiving the lowest score（s）will be disregarded in the calculation of the final mark．

6．Award zero marks for answers which are contradictory．

7．Chemical equations should be balanced except those in reaction schemes for organic synthesis．For energetics，the chemical equations given should include the correct state symbols of the chemical species involved．

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Marks

1．（a）（i） $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \quad \mathrm{H}_{2}(\mathrm{~g}) \quad$［Cathode，negative electrode］$]$
Or $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
$2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \quad$［Anode，positive electrode］$\quad 1$
（ii） x －axis：（molecular）kinetic energy／K．E．／velocity of molecules（particles）；；y－axis： fraction／percentage／number of molecules（particles）

Kinetic energy
（iii）Glucose／the fourth one 1
（b）（i）（1） $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}$［Mark the first one］ 1
（2）May be due to higher activation energy／energy barrier． 1
（3）Number of moles of gaseous products is less than that of gaseous reactants． 1 Increasing the pressure will shift the equilibrium position to the right 1 OR increase in collision frequency／effective collisions
make the reaction faster to reach equilibrium．
（ii）（1）This reaction does not involve poisonous reagent／CO but the original one involves poisonous CO．
（2）It reduces the amount of atmospheric carbon dioxide and hence may alleviate global warming／greenhouse effect．
（iii） $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{g})$
（c）（i）Order of reaction is not affected by temperature change．／The order of reaction is the same．
（ii）From line $\boldsymbol{\ell}_{\boldsymbol{1}}$ on the graph，
slope $=[(-1.4)-(-2)] \div[(0)-(-0.6)]=1 \quad 1^{*}$
It is first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ ．$\quad 1$
（iii） $\log \mathrm{k}=-2 \quad 1$
$\mathrm{k}=0.01 \mathrm{~s}^{-1} \quad 1$
（iv）The y－intercepts of $\boldsymbol{\ell}_{\boldsymbol{1}}$ and $\boldsymbol{\ell}_{2}$ are $-1.4 / \log 0.0398 / \log 10^{-14}$ and $\left(-2 / \log 0.01 / \log 10^{-2}\right) \quad 1$ respectively．［OR represented in equation］
Since the y －intercept $=\log \mathrm{k}$
$\log \mathrm{k}=\log \mathrm{A}-\mathrm{Ea} / 2.3 \mathrm{RT} \quad\left[\mathrm{OR} \mathrm{k}=\mathrm{Ae}^{-\mathrm{E} / \mathrm{RT}}\right]$
$\log \mathrm{k}_{2}-\log \mathrm{k}_{1}=\mathrm{Ea}\left(1 / \mathrm{T}_{1}-1 / \mathrm{T}_{2}\right) / 2.3 \mathrm{R}$
$(-2)-(-1.4)=\mathrm{Ea}(1 / 360-1 / 345) / 2.3 \times 8.31$
$\mathrm{Ea}=94.95 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$［Range： $92-98$ ，Accept 0／1／2 decimal places］

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Marks

2．（a）（i）－Catalyst is used．
－High atom economy／atom economy $=172 \div 208=82.7 \%$
－（Water generated possesses little or no toxicity to human health and the environment．）
（ii）（1）chitin \dagger
（2）It can form extensive inter－molecular hydrogen bonds／hydrogen bonds between chains．
（iii） \mathbf{A}
（b）（i）cholesteric liquid crystal \dagger
The molecules are arranged along a long axis／line and in positions such that they are 1 slightly twisted from the molecules next to them giving rise to a helical－like arrangement．
（ii）（1）

Show：With the applied voltage，the molecules arrange in lines／not twisted．
Show：The polarity of the molecules and that of electrodes are opposite．
（2）Polarisers are perpendicular to each other．
The polarised light will pass through the liquid crystal layer without rotating the plane of polarisation／polarised light．The polarised light is completely blocked by the polariser at the right，giving a black pixel．
（iii）When temperature is higher than the upper end of the operation range，the liquid crystal will liquefy／melt．
（c）（i） $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{HOOC}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH} / \mathrm{Cl}-\mathrm{CO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-\mathrm{Cl}$（Show double bond） 1
（ii）（1）

（2）thermosetting／hardening under formation with heating 1
（3）Adjust the relative amounts of \mathbf{X} and $\mathbf{A} \quad 1$
The rigidity depends on its degree／amount of cross－linking． 1
（iii）（1）compression moulding 1
（2） \mathbf{Y} will not corrode／rust easily but iron will．／ \mathbf{Y} is less dense than iron． 1

機密（只限閲卷員使用）
 CONFIDENTIAL（FOR MARKER＇S USE ONLY）

Marks

3．（a）（i）calcium（ion）$/ \mathrm{Ca}^{2+}$
white precipitate forms for $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ whereas no precipitate will form for $\mathrm{K}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ ．
［Accept other answers： 1 mark for the reagent and 1 mark for the observation］ $\left[\mathrm{Cl}_{2}(\mathrm{aq})\right.$ ：reagent -0 mark，observation－ 0 mark
if use $\mathrm{Br}_{2} / \mathrm{Br}_{2}(\mathrm{l})$ ：reagent -0 mark，correct observation -1 mark］

Reagent	Observation
$\mathrm{H}^{+}(\mathrm{aq}) /$ acid	Only $\mathrm{SO}_{3}{ }^{2-}$ gives a gas with pungent smell
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}(\mathrm{aq})$	Only $\mathrm{SO}_{3}{ }^{--}$turns the solution from orange to green
$\mathrm{MnO}_{4}-\mathrm{H}^{+}(\mathrm{aq})$	Only $\mathrm{SO}_{3}{ }^{2-}$ turns the solution from purple to colourless
$\mathrm{Br}_{2}(\mathrm{aq})$	Only $\mathrm{SO}_{3}{ }^{2-}$ turns the solution from orange／brown to colourless
$\mathrm{I}_{2}(\mathrm{aq})$	Only $\mathrm{SO}_{3}{ }^{2-}$ turns the solution from brown to colourless

（iii）＇R_{f} value＇of a substance is the ratio between the migration distance of the substance and the migration distance of the solvent front during chromatography．
［1 mark：indicating ratio； 1 mark：other parts correct］
［Can be represented by labeled diagram indicating 2 distances and correct mathematical expression］
（b）（i）Place the dissolved sample into a $\left(250.0 \mathrm{~cm}^{3}\right)$ volumetric flask．
（Deionised）water should be added to the mark of the volumetric flask．
（ii） $\mathrm{ClO}_{3}^{-}(\mathrm{aq})+6 \mathrm{I}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+3 \mathrm{I}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
（iii）The solution turns from blue to colourless．
（iv） $\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})$ number of moles of $\mathrm{I}_{2}(\mathrm{aq})=0.112 \times 0.02788 \times 1 / 2=0.001561$
number of moles of NaClO_{3} in the sample $=0.001561 \div 3 \times(250.0 / 10.00)=0.01301 \quad 1^{*}$
percentage by mass of NaClO_{3} in the sample
$=0.01301 \times 106.5 \div 1.63 \times 100 \%=85.0 \%$
［Range： $84-86$ ，Accept $0 / 1 / 2$ decimal places］
（c）（i）Boiling points of \mathbf{X} and \mathbf{Y} are too close．
（ii）（1）Absorption peak at wavenumber about $1700 \mathrm{~cm}^{-1}$ corresponds to a $\mathrm{C}=\mathrm{O}$ group．／
Absorption peak at wavenumber about $1650 \mathrm{~cm}^{-1}$ corresponds to a $\mathrm{C}=\mathrm{C}$ group． ［Range： $\mathrm{C}=\mathrm{O}, 1680-1800$ ； $\mathrm{C}=\mathrm{C}, 1610-1680$ one number： $\mathrm{C}=\mathrm{O}: 1680-1720$ ； $\mathrm{C}=\mathrm{C}: 1630-1670$ ］
（2）At m／z $=43: \mathrm{CH}_{3} \mathrm{CO}^{+} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+} \quad\left[\mathrm{CH}_{2} \mathrm{CHO}^{+}\right.$not accepted $]$
At m／z $=55: \mathrm{CH}_{2} \mathrm{CHCO}^{+} / \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}^{+}$
（3） $\mathrm{CH}_{2}=\mathrm{CHCOCH}_{3} \quad$［Must show $\left.\mathrm{C}=\mathrm{C}\right]$
（iii）－positive result for 2，4－dinitrophenylhydrazine test：presence of carbonyl group
－negative result for Tollens＇reagent test：not an aldehyde
［Note：If just have the conclusion，：it is a ketone ： 1 mark］
－Y may be $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$／butanone．

