Marking Scheme

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

Chemistry

Paper 1

SECTION A

Question No. Part I	Key	Question No. Part II	Key
1.	C (70\%)	25.	D (79\%)
2.	C (92\%)	26.	C (72\%)
3.	D (64\%)	27.	D (61\%)
4.	B (62\%)	28.	A (79\%)
5.	A (71\%)	29.	B (56\%)
6.	B (51\%)	30.	D (65\%)
7.	A (66\%)	31.	B (70\%)
8.	C (41\%)	32.	A (41\%)
9.	A (64\%)	33.	B (81\%)
10.	C (75\%)	34.	C (56\%)
11.	A (62\%)	35.	A (31\%)
12.	D (80\%)	36.	C (62\%)
13.	D (74\%)		
14.	B (81\%)		
15.	B (46\%)		
16.	C (65\%)		
17.	A (59\%)		
18.	A (58\%)		
19.	B (65\%)		
20.	D (58\%)		
21.	D (72\%)		
22.	D (49\%)		
23.	B (61\%)		
24.	C (54\%)		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.

SECTION B

Part I

Marks

1. (a)

(b) (i) Water boils at about $100^{\circ} \mathrm{C}$, but the salts in sea water are non-volatile.

The steam formed condenses on the cold surface of the condenser / cool down to give liquid water.
(ii) To prevent bumping / to prevent frothing / splash / overflow due to overheating of water
(c) The attraction between water molecules is predominately hydrogen bond.

Hydrogen bond is directional. In ice, the water molecules have a tetrahedral arrangement / are packed in an open structure.
In liquid water, the water molecules have relative motion and this leads to the collapse of the open structure. The molecules become more closely packed. So liquid water has higher density than ice.
2. (a)

(Accept other correct representations of the trigonal planar structure.)

(Showing the lone pair is NOT a must.)
(b) BF_{3} is a non-polar molecule. The three polar $\mathrm{B}-\mathrm{F}$ bonds are symmetrically arranged on the same plane.
NH_{3} is a polar molecule. The central atom has a lone pair in its outermost shell and thus the three polar $\mathrm{N}-\mathrm{H}$ bonds are not on the same plane.
(c) In BF_{3}, there are three bonding electron pairs / there is a vacant site in the outermost shell of the B atom.
By accepting the lone pair of electrons from the N atom of NH_{3} / forming dative bond with N , the B atom attains the stable electronic configuration of neon (a noble gas).
3. (a)

	C	H	O
	2.64	1.08	0.48
Atom ratio	44	18	16
$=$	2	4	1

Empirical formula is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
Molecular formula is $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{\mathrm{n}}$
$\mathrm{n} \times(12 \times 2+1 \times 4+16 \times 1)=88.0$ $\mathrm{n}=2$
Molecular formula of \mathbf{W} is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
(b) Any two of the following structures. 1 mark for each structure.

4. (a) Ethanedioic acid
(b) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is a weak acid. It undergoes incomplete ionisation in water. As $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]$, its pH is thus greater than 1 .
(c) $\mathrm{NaOH}(\mathrm{s})$ is deliquescent / absorbs water from the atmosphere.

Or, $\mathrm{NaOH}(\mathrm{s})$ reacts with $\mathrm{CO}_{2}(\mathrm{~g})$ in the atmosphere.
So the mass of NaOH (s) cannot be accurately determined by weighing.
(d) (i) From colourless to pink
(ii) concentration of $\mathrm{NaOH}(\mathrm{aq})$
$=\frac{0.05 \times 25 \times 2}{17.20}$
$=0.145 \mathrm{~mol} \mathrm{dm}^{-3}$
(e) (i) Rinsing the conical flask with $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$: Some $\mathrm{H}^{+}(\mathrm{aq})$ ions remain in the flask, and more alkali (as revealed from the burette reading) than actually required is used to reach the titration end point.
(ii) $\mathrm{NaOH}(\mathrm{aq})$ clinging onto the stem of funnel may fall into the burette. The volume of alkali used (as revealed from the burette yeading) is smakler than what is expected.
8. (a) $2 \mathrm{Cs}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{CsCl}$
(b) (i)

(ii) In CsCl , ions are strongly held by ionic bond.

In CsCl , ions are strongly held by ionic bond.
Relative movement of the ions can bring ions of the same charge close to each other, and
So $\mathrm{CsCl}(\mathrm{s})$ is brittle. will result in repulsion. So $\mathrm{CsCl}(\mathrm{s})$ is brittle.
(c) $\mathrm{Cs}(\mathrm{s})$ is more reactive than $\mathrm{Na}(\mathrm{s})$. The reactivity of Group 1 metals increases down the group. I The electron in the outermost shell of Cs is weakly bounded by the nucleus as compared with that of Na .
9. (a) Brown colour is observed.
Due to the high concentration of KI in the solution, I^{-}ions are preferentially discharged to give I_{2} which dissolves in $\mathrm{KI}(\mathrm{aq})$ to give brown I_{3}^{-}ions.
(b) (i) H^{+}ions is discharged and reduced to H_{2} at electrode \mathbb{B}.

The amount of OH^{-}ions increases at electrode \mathbf{B} as H^{+}is being consumed. So universal indicator turns blue under alkaline conditions.
(ii) Accept both 'yes' and 'no' answers.
'No': \mathbf{B} is the negative electrode. Copper will not lose electrons to give Cu^{2+} at the negative electrode / Copper cannot undergo reduction at the negative electrode.
'Yes': Copper and carbon have different electrical conductivity. Therefore the solution near electrode \mathbb{B} turns blue more quickly. / The current in the external circuit changes.
10. (a)

(b) electrode $\mathbf{D}: \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-}$
(c) (i) Accept both 'agree' and 'disagree' answers.

Agree: The hydrogen gas can be obtained from renewable source (with one proper example)
Disagree: The hydrogen gas used is produced from fossil fuel such as steam reforming of natural gas. / Electrical energy is consumed in the production of hydrgoen from water.
(ii) Agree: Only water is produced from the hydrogen-oxygen fuel cells. Or: No $\mathrm{CO}_{2} / \mathrm{SO}_{2} /$ $\mathrm{NO}_{\mathrm{x}} / \mathrm{CO} /$ unburnt hydrocarbon in the exhaust.

Part III

Marks

11. (a) The airbag has to be inflated instantly when a car crash occurs. Fine powder can greatly increase the reaction rate by providing a large surface area for a reaction involving solid reactants.
(b) No. of mole of N_{2} produced from the decomposition of NaN_{3} (reaction 1)
$=\frac{100}{65} \times \frac{3}{2}=2.31$
No. of mole of N_{2} produced from the reaction of Na with KNO_{3} (reaction 2):
No. of mole of Na produced $=\frac{100}{65}=1.54$
(No. of mole of $\mathrm{KNO}_{3}=\frac{200}{101.1}=1.98$
Since 5 mol of Na react with 1 mol of $\mathrm{KNO}_{3}, \mathrm{KNO}_{3}$ is in excess.)
No. of mole of N_{2} produced from reaction $2=\frac{100}{65} \times \frac{1}{10}=0.154$
Volume of gas produced $=(2.31+0.154) \times 24=59.1 \mathrm{dm}^{3}$
(c) KNO_{3} is added to react with sodium which is highly reactive / corrosive / flammable / strongly reducing.
(d) (i) $\frac{0.01-0.005}{10}$

$$
=0.0005 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\left(5.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)
$$

(ii) Determine the slope of the tangent of curve at $\mathrm{t}=10 \mathrm{~s}$.
12. (a) Reaction quotient $=\frac{(0.04)}{(0.05)(0.02)} \mathrm{mol}^{-1} \mathrm{dm}^{3}$

$$
=40 \mathrm{~mol}^{-1} \mathrm{dm}^{3}
$$

As reaction quotient $>K_{\mathrm{c}}$, so backward reaction rate is greater than the forward reaction rate.
(b) At equilibrium, the concentrations are:
$\left[\mathrm{PCl}_{3}(\mathrm{~g})\right]=(0.05+\mathrm{y}) \mathrm{mol} \mathrm{dm}^{-3}$
$\left[\mathrm{Cl}_{2}(\mathrm{~g})\right]=(0.02+\mathrm{y}) \mathrm{mol} \mathrm{dm}^{-3}$
$\frac{(0.04-y)}{(0.05+y)(0.02+y)}=25$
$y=0.0052$
At equilibrium, $\left[\mathrm{Cl}_{2}(\mathrm{~g})\right]=(0.02+0.0052) \mathrm{mol} \mathrm{dm}^{-3}=0.0252 \mathrm{~mol} \mathrm{dm}^{-3}$
(c)

13. Nitrogen < Lithium < Beryllium < Carbon (graphite)

- $\quad \mathrm{N}_{2}$ has the lowest melting point as it has a simple molecular structure, only weak van der Waals' forces / intermolecular forces need to be overcome in melting.
- Both Li and Be have metallic structure, metallic bond in Li is weaker than that in Be . $\mathrm{So} \mathrm{Li}<$ Be in melting points.
- \quad C has the highest melting point as it has a giant covalent structure, large amount of energy is needed to break millions of strong covalent bonds between atoms in melting.
- Communication mark

1

Marks

14. (a) $\mathrm{H}_{2}, \mathrm{Ni} / \mathrm{Pd} / \mathrm{Pt}$
(b) (i)

(c) G has a smaller relative molecular mass than \mathbf{F}, so G can be vaporised more easily than \mathbf{F}. $/$ \mathbf{G} has a smaller relative molecular mass than \mathbf{F}, so \mathbf{G} has a lower boiling point than \mathbf{F}./ \mathbf{G} has a smaller relative molecular mass than \mathbf{F}, and so the molecular size of \mathbf{G} is smaller than that of \mathbf{F}. The intermolecular attraction / van der Waals' forces between \mathbf{G} are weaker than that between \mathbf{F}, \mathbf{G} can be vaporised more easily than \mathbf{F}.
\mathbf{G} burns more completely than \mathbf{F}.
15. (a) Correct chemical reagent

Correct observations with comparison between the tests on \mathbf{X} and \mathbf{Y}
Possible chemical tests and the corresponding observations:
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$
Observations: \mathbf{X} - no change; \mathbf{Y} - from orange to green
$\mathrm{MnO}_{4}^{-} / \mathrm{H}^{+} \quad$ Observations: \mathbf{X} - no change; \mathbf{Y} - from purple to colourless
$\mathrm{MnO}_{4}^{-} / \mathrm{OH}^{-} \quad$ Observations: \mathbf{X} - no change; \mathbf{Y} - brown precipitate formed
2,4-DNP
$\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{H}^{+} /$heat
Observations: \mathbf{X} - formation of orange precipitate.; \mathbf{Y} - no change
Observations: \mathbf{X} - no change; \mathbf{Y} - fruity smell substance formed
(2,4-DNP $=2,4$-dinitrophenylhydrazine $)$
(b) $\mathrm{LiAlH}_{4} / \mathrm{NaBH}_{4}$
(c)

Geometrical isomerism / cis/trans-isomerism
(d)

Paper 2

Marks

1. (a) (i) (1) x--- molecular kinetic energy 1
y --- fraction / percentage of molecules
(2) An increase in temperature from T_{1} to T_{2} will increase the average kinetic energy of the molecules.
This will increase the collision frequency and result in greater effective collisions among molecules.
There is a larger portion of molecules will have kinetic energy greater than E_{a}.
(ii)

$$
\begin{aligned}
& \begin{array}{l}
\log k=\text { constant }
\end{array}-\frac{\mathrm{E}_{\mathrm{a}}}{2.3 \mathrm{RT}} \\
& \text { Slope of curve }=-\frac{\mathrm{E}_{\mathrm{a}}}{2.3 \mathrm{R}} \\
& = \\
& =-1.73 \times 10^{3} \\
& \mathrm{E}_{\mathrm{a}}=1.73 \times 10^{3} \times\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times 2.3 \\
& =33.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(b) (i) A catalyst provides an alternative pathway with lower activation energy.
(ii) Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$

Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains a lot of $\mathrm{H}_{2} \mathrm{O}$. Water can shift the equilibrium position to the left / cause hydrolysis of eugenol benzoate, and thus lowers the yield of the product.
Or: conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a dehydrating agent / removes water from the product side of the reaction, and will shift the equilibrium position to the right.
(iii) Homogeneous catalyst $--\mathrm{H}_{2} \mathrm{SO}_{4}$ is readily available

Heterogeneous catalyst --- can be reused / easily be regenerated / easily be separated
(c) (i) Chlorine can be produced by electrolysis of brine / concentrated sodium chloride solution using flowing mercury cell / diaphragm cell / membrane cell.
$\mathrm{Cl}^{-}(\mathrm{aq})$ ions are discharged at the anode to give $\mathrm{Cl}_{2}(\mathrm{~g})$.
Diaphragm cell / membrane cell:
$\mathrm{H}^{+}(\mathrm{aq})$ ions are discharged at the cathode. With the removal of $\mathrm{Cl}^{-}(\mathrm{aq})$ ions and $\mathrm{H}^{+}(\mathrm{aq})$ ions, the resultant electrolytic solution contains $\mathrm{NaOH}(\mathrm{aq})$ in high concentration.
OR Flowing mercury cell:
Sodium amalgam produced at cathode reacts with water forming $\mathrm{NaOH}(\mathrm{aq})$.
(ii) Method 2:

Atom economy $=\frac{58}{76}=76.32 \%$

Any two of the following:
--- It has a higher atom economy.
--- It produces less waste (less side products) and less treatment is required.
--- Less hazardous chemicals are used (method 1 uses more toxic Cl_{2}).
(iv) The calculation of atom economy is based on a 100% completed reaction. Most reactions do not go to completion and the yield is related to the extent of reaction. Thus a reaction with high atom economy does not necessarily have a high yield.
3. (a) Use separating funnel to remove water (the lower liquid layer) from the mixture.

The upper layer remaining in the funnel is hex-1-ene and octane.

Carry out fractional distillation on the upper layer.
The first distillate collected is hex-1-ene. The second distillate collected is octane.
(b) (i) Any one of the following:
--- a significant observable change can easily be detected with the complete consumption of the reagent in the conical flask, i.e. availability of suitable indicator
--- the reaction must be significantly complete
--- the rate of reaction must be fast enough to be practical
(ii) SO_{2} easily escapes from solution $/ \mathrm{I}_{2}$ is volatile.
(iii) from colourless to dark blue
(iv) No. of mole of I_{2} used $=0.00412 \times 10.50 \times 10^{-3}$

$$
=4.33 \times 10^{-5}
$$

No. of mole of $\mathrm{SO}_{2}=$ No. of mole of I_{2}

$$
=4.33 \times 10^{-5}
$$

Mass of SO_{2} in the wine sample $=4.33 \times 10^{-5} \times 64.1$

$$
\begin{aligned}
& =2.77 \times 10^{-3} \mathrm{~g} \\
& =2.77 \mathrm{mg}
\end{aligned}
$$

Concentration of SO_{2} in the wine sample $=\frac{2.77}{0.025}=111 \mathrm{mg} \mathrm{dm}^{-3}$
(v) This method cannot be used as the intense red colour of red wine may mask the colour of iodine / iodine-starch complex which leads to a difficulty in the end point detection. Or
This method can be used if the colour of red wine can be removed.
(c) (i)
$\frac{2.3}{2.3+1.9+2.9}=\frac{2.3}{7.1}=0.32$
(ii) $\quad \beta$-carotene because
lycopene has a smaller R_{f} value / lycopene moves slower / lycopene takes a longer time to reach the bottom of the column.
(iii) Method: colorimetry / use of colorimeter

Measurement: absorbance / colour intensity
(iv) Compound \mathbf{W} is lycopene.

The absence of absorption peaks at around $2070-2250 \mathrm{~cm}^{-1}$ suggesting it does not contain $\mathrm{C} \equiv \mathrm{C}$ groups, ruling out the possibility of compound \mathbf{X}.
The absence of absorption peaks at around $2200-2280 \mathrm{~cm}^{-1}$ suggesting it does not contain $\mathrm{C} \equiv \mathrm{N}$ groups, ruling out the possibility of compound \mathbf{Y}.
OR
The presence of absorption peaks at around $1630 \mathrm{~cm}^{-1}$ shows the presence of $\mathrm{C}=\mathrm{C}$, ruling out the possibility of compound \mathbf{Y}.
The absence of sharp absorption peaks at around $3350-3500 \mathrm{~cm}^{-1}$ suggesting it does

Compound \mathbf{W} is a hydrocarbon which contains only $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ bonds. This agrees with the feature of the spectrum as there are small peaks at around $1630 \mathrm{~cm}^{-1}$, showing the presence of $\mathrm{C}=\mathrm{C}$.

