HKDSE Chemistry Pastpaper Collection

Paper I
By Topic
Section 1-5

HKAL/HKASL Paper 1996-2013
HKCEE Paper 1990-2011
HKDSE Sample Paper 2011
HKDSE Practices Paper 2012
HKDSE Paper 2012-2022
SECTION 0 Laboratory Safety and Precautions 3
Multiple-Choice Questions3
Structural Questions. 10
Marking Scheme17
SECFION I Planet Earth 22
Multiple-Choice Questions 22
Structural Questions. 28
Marking Scheme 34
SECTION 2 Microscopic world..41
Multiple-Choice Questions. 41
Structural Questions.. 71
Marking Scheme94
SECTION 3 Metals 118
Multiple-Choice Questions 118
Structural Questions... 152
Marking Scheme 172
SECTION 4 Acids and Bases 192
Multiple-Choice Questions 192
Structural Questions.. 236
Marking Scheme. 275
SECTION 5 Fossil fuels and Carbon Compounds 311
Multiple-Choice Questions. 311
Structural Questions. 355
Marking Scheme. 388
RemarksDirections: Decide whether each of the two statements is true or false: if both are true, then decide whet theor not the second statement is a correct explanation of the first statement. Then select one option from A toD according to the following table
A. Both statements are true and the 2 md statement is correct explanation of the Misstatement.
B. Both statements are true but the end staternent is NOT a correct explanation of the list statement.
C. The 1 st statement is false but the 2 nd statement is true.
D. Both statements are false.
\qquad

]

SECTION O Laboratory Safety and Precautions
Mutitiple-Choice Question
CE88_39
Which of the following hazard warning labels should be attached to a bottle of liquid bromine?
(1)

A. (1) and (2) only
C. (1), (3) and (4) only
(2)
(4)

B. (1) and (4) only
D. (2), (3) and (4) only

CE89_27
Which of the following combinations would cause "striking back" in a Bunsen flame?

	Alr hole	Gas sumply
A.	Fully closed	Too weak
B.	Fully closed	Too strong
C.	Fully open	Too weak
D.	Fully open	Too strong

CE91_05
Tetrachloromethane is a common solvent in the chemistry laboratory. Which of the following hazard warning labels should be displayed on a boitte of tetrachlowmethane?
(1)

(2)

(3)

B. (2) only
A. (1) only
C. (1) and (3) only

CE94_32
Which of the following label(s) should be placed on a bottle containing tetrachloromethane
(1)

(2)

(3)
B. (2) only
A. (1) only

D. (2) and (3) only

CE97 10
Which of the following combinations is INCORRECT?

	Chenical	Method of storage
A.	Catium	Under water
B.	Potassium	Under paraffin oil
C.	Ethanol	In a cool place
D.	Solution	In a brown botle

CE99 35
The label below is displayed on a container for chemical \mathbf{X} :

Which of the following clemicals may X be?
(1) Bromochlorodifthoromethane
(2) Ethanol
(3) Potassium
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CEO1_02
The hazard warning label shown below is found on a compressed gas cylinder.

Which of the following gases may be contained in the cyluder?
A. hydrogen
B. oxygen
C. chlorine
D. argan

CE02_38

Whictr of the following set-ifps can be used to dry moist sulphur dioxide gas?
(1)

(2)

(3)

A. (1) and (2) only
B. (i) and (3) only
C. (2) and (3) only
D. (I), (2) and (3)

CE04_05
Which of the following statements concerning nitric acid is correct?
A. Nitric acid can be used as fertilizer.
B. Nitrogen monoxide is a raw material in the manufacture of nitric acid.
C. In the laborntory, concentrated nitric acid is commonly stored in brow botites.
. The following hazard warning label should be displayed on a bottle of concentrated nitic acid

CE05_18
The following hazard warning labels are displayed on the reagent bottle of an acid

What information about this acid can be obtained from the labels?
A. It is very concentrated and flammable
B. It is very concentrated and oxidizing.
C. It is flammable and conosive,
D. It is corrosive and oxidizing.

CE06_11
Which of the following siatements about acids is correct?
A. Nitric acid is used in car batterics
B. Hydrochloric acid is produced in human stomach
C. Ethanoic acid is strong oxidizing agent
D. The following hazard waming label should be displayed on a bottle of concentrated sulphuric acid.

CE08 26
Consider the following pieces of apparatus:
Which of the following process can be performed by normal use of some or all of the above apparatus?

(1) Refluxing a reacting mixture
(2) Separating two immiscible liquids
(3) Performing a simple distillation
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE09 25
Which of the following hazard warning labels should be displayed on the reagent botte of methanol?

(2)

(3)
A. (1) and (2) only
8. (1) and (3) only
C. (2) and (3) onfy
D. (I), (2) and (3)

CEEO_05
Which of the following set-ups can be used to dry hydrogen chloride gas?
A. $\mathrm{HCl}(\mathrm{g}) \rightarrow 7 \square$

B.

D.

auhydrous calciun cliloride

CE10_26
Which of the following safety measures should be taken when investigating the reaction between sodium and water?
(1) Use forceps lo pick sodium.
(2) Use a small piece of sodium
(3) Use a small amount of water
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE10-42
Which of the following hazard warning labels should be displayed on a bottle of concentrated hydrochiloric acid?

(I)
A. (1) only

(2)
(2) B. (2) only
D. (2) and (3) only

CE11_10

The set-up shown in the above dingram can be used to collect
A. ethene.
B. ammonia.
C. sulphur dioxide.
D. hydrogen chloride.

CE11_19
What is / are the potential hazard(s) of mixing an acidic toilet cleaner with chorine bleach?
(1) A toxic gas is liberated.
(2) A large amount of heaf is given.
(3) A flammable substance is produred.
A. (i) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE11_20
Which of the following gases can be dried by using concentrated sulphuric acid?
(1) Ammonia
(2) Sulphur dioxide
(3) Hydragen chloride
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE1ISP_08
The following hazard waming labels are displayed on the reagent bottic of an actd.

What information about this acid can be obtained from the labels?
A. It is very concentrated and flammable.
B. It is very concentrated and oxidizing.
C. It is flammable and corrosive,
D. It is corrosive and exidizing.

DSEI__15

Which of the fotlowing hazard warning labets should be displayed on botly the reagent bottle storing concentrated sulphuric acid and the reagent bottle storing concentrated hydrochloric acid?

A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) willy

DSEIS_01
Which of the following statements is correct?
A. All aqueous solutions contain $\mathrm{H}^{+}(\mathrm{aq})$ ions.
B. The phll of all acid solutions is greater than zero.
C. All acidic compounds contain hydrogen as their constituent elements.
D. A'corrosive' hazard warning label must be displayed on all rengent botles containing acid solution.

DSE16_19
The hazard warning label below is displayed on a botile containing chemical Z :

Which of the following chemicals may Z be?
(1) Sodium
(2) Trichloromethane
(3) Concentraled aqueous ammonia
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) anly

DSE18_20
Which of the following hazard warning tabels should be displayed on a bottle containing propan-2ol?

(2)

(3)
A. (i) only
. (2) only
C. (I) and (3) only
D. (2) and (3) only

Structural Questions
AL99(I) 08 n(ii)
Suggest how to extinguish
(I) Burning cyclohexane in a conical flask, and
(II) Buming sodiun
(1 mark)
(1 mark)
AL00(I)_07c(ii)
What hazard warning label should be displayed on a botte of ammonitm nitrater(V) solid?

AL03(I) 08b

The following compounds can be used as drying agenls:

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s}), \quad \mathrm{NaOH}(\mathrm{~s}), \mathrm{CaCl}_{2}(\mathrm{~s}) \text { and } \mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})
$$

Choose, from the above, one compound which is most suitable and effective
(i) for drying a solution of $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H} \mathrm{in}_{\mathrm{CH}} \mathrm{CHCl}_{3}$.
(ii) for drying a moist solid sample of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$.

AL04(1)_07

A student proposed a method to delermine the concentration of citric acid in a sample of lemon juice by titration with standard sodium hydroxide solution. The method proposed consists of the following experimental procedures:

1. Prepare a standard sodium hydroxide solution by dissolving a known mass of sodium hydroxide pellets in deionized water and then make it up to $250.0 \mathrm{~cm}^{3}$.
2. Transfer a known volune of the sample of lemon juice to a clean conical flask.
3. Fill a burette, which has been well rinsed with deionized water beforeland, with the standard sodium hydroxide solution.
4. Titrate the lemon juice in the flask with the sodiun hydroxide solution using melliyl orange as the indicator.
5. Using this titration result, calculate the concentrate of citric acid in the sample.

Point out four inappropsiate practices in the method. Explain why they are inappropriate and suggest corrections for then.

AL04(I)_08C
The following passage about an explosion involving hydrogen-oxygen balloons was adapted from a chemical journal.

An accident occurred prior to the performance of a hydrogen-oxygen balloon demonstration, seriously injuring a demonstrator, who suffered painful second-degree burns.

To prepare for the demonstration, is balloons (pre-filled with a hydroget-oxygen gas mixture) in a large, black polyethene garbage bag were transported to the site and kept there for a few hours. White setting up the demonstration, the demonstrator opaned the bag and removed a single balloon for stringing and floating. Suddenly, the entire bag of balloons exploded violently...
(Source: Journal of Chemical Education, July 2003)
Using your knowledge of science, suggest why the explosion occurred.

AL04(I) 008 d
(i) Explain why carbon dioxide extinguthers nust not be used to put out a piece of burning sodium.
(ii) Suggest a proper way to put out a piece of burning sodium in the laboratory.
(I mark)

AL04(I) 07a
(ii) Suggest one hazard waruing labet which should be displayed on a bottlo of propan- 2 -ol,

AL04(1) 07b

(ii) Astudent suggested to use the set-up shown below to prepare a dry sample of sulphur dixodee from sodium sulphate(VI) solid.

Peint out two mistakes in the above set-up, and suggest the corecspondiag rectifications.
(4 narks)

AL05(1)_08
The photograph below shows a person conducting a test in a laboratory to detect the presence of smmonium ions in a solid sample. He is holding a test the containing a hot mixture of the sample and sodium hydroxide solution, and is trying to smell.

State three inappropriate laboratory practices of the persols and suggest the proper actions that shoulta be taken.

ALOG(I) 07b

(i) Circle the hazard warning label(s) below that should be displayed on a bottle of liquid bromine.

(1 mark)
(ii) A fow drops of liquid bromine are spilt on a laboratory bench. Suggest a chemical method to treat the splite liquid bromine.

AL06(I) 08b

State a possible consequence from each of the following poor laboratory techniques:
(i) Draining the lower layer from a separating funnel without removing the stopper.
(ii) Deternining the melting point of a compound without completely removing the solvent after recrystallization.

AL07(1)_07
In a chemistry laboratory, students are required to wear laboratory coat, plastic gloves and safety spectacles. Which of these safety measures do yout consider the most important? Explain.

AL08(1)_07b
(ii) Suggest why tho following hazard warning labels should be displayed on a botlle of $\mathrm{LiAlH}_{4}(\mathrm{~s})$.

AL08(II) 04

Suggest ONE safety precaution when shaking the liquid mixture in the separating fumel.

$\mathrm{ALO9}(\mathrm{I})$ _ 07 c

Explain why water should NOT be added to concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in order to dilute the acid.

AL09(1)_07d

Suggest the most appropriate hazard warning label that should be displayed on a bottle of $\mathrm{NaClO}_{3}(\mathrm{~s})$.

AL10(1) 07b

State under what circumstances each of the following practices would be adopted and explain your answer.
(i) The use of an air condenser instead of a water condenser in reflux.
(2 marks)
(ii) The use of concentrated $\mathrm{H}_{3} \mathrm{PO}_{4}$ inslead of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the preparation of hydrogen halides from the corresponding sodium halides.

DSEI2PP_08

(b) A concentrated aqueous metharel solution is used as the fuel in DMFC.
(ii) Circte TWO of the following lhazard wanning labels that should be displayed on the container of a coucentrated aqueous methanol solution.

Toxic \# *

(1 mark)

DSE12_07
A fertilizer only contains anmoniun nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ and potassitm chloride (KCl). An experimen was performed to deternine the percentage by mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in this fertilizer.
The KOH(aq) was added slowly to the fertilizer and the mixture formed was heated gently. The ammonia liberated from the reaction between $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and KOH was first cooled in a condenser, and then passed through an inverted fumel to a solution containing 0.0485 mol of HCl. The solution was finatly made up to $100.00 \mathrm{~cm}^{3}$ and labelled as ' S '.
(b) Suggest the potential lazard of one of the chemicals used

DSE13 04
(c) Solid sodium hydroxide is available in school laboratories. However, a standard $\mathrm{NaOH}(\mathrm{aq})$ CANNOT be directly prepared by weighing $\mathrm{NaOH}(\mathrm{s})$ and then dissolving it in waier. Explain why.
(e) The following were considered as INAPPROPRIATE practices whan (1 mark)解 ditration experiment, For each of them, explain why it wourd lead to inaccurate titration results:
(i) Rinsing the conical flask with the standard $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ before fransferring $25.00 \mathrm{~cm}^{3}$ of the acid solution to it.
(1 mark)
Cmy out the titration with the filter fluncl remained on top of the burette afer using ill to fill the burette with the $\mathrm{NaOH}(\mathrm{ac})$.

DSEI3_10
(a) An oxygen cylinder can be used to provided oxygen for the fuel cell. From the hazard warning labels shown below, circle the lineel that should be displayed on the oxygen cylinder.

DSE14_05

Concentrated acids are common reagents found in laboratories
(a) State a safety measure in handing concentrated acids in laboratories

DSE14_07 (modified)
(c) Suggest a possible reason why the concentration of the concentrated hydrochloric acid in the botle obtained from volumetric analysis would be smaller than that actual value.

DSE15 03
(b) A compound contains iron and oxygen only. In an experiment for determining the empirical formala of this compound, 2.31 g of the compound was heated with carbon monoxide. Upon complete reaction, catbon dioxide and 1.67 g of iron were formed.
(iii) As carbon monoxide is poisonous, suggest one necessary safety precaution in cartying out the experiment.
(1 mark)

DSE15_04

(d) A student diluted a sample of concentrated sulplurie acid for making a lead-acid accumulator.
(i) Describe tow concentrated sufphuric acid can be diluted in a faboratory. State a saiety precaution needed during the dilution process.
(3 marks)

DSE: 603

The diagram below shows an experimental set-up in which the glass wool soaked with octane is heated occasionally and the broken unglazed pozcelain is heated strongly. Some gases are collected in the test tube over water.

(d) When no more gas can be collected, what should be done to end the experiment for safety consideration? Explain your answer.
(2 marks)

DSE17 01
Barium (Ba) is an element in Group II of the Periodic Table, Its chemical properties are similar to those of calcium.
(b) A gas with a purgent smell is formed when $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s})$ is heated with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$. State the reason why the gas CANNOT be collected by each of the following methods.
(i)

Reason:
(ii)

Reason:

DSE17_06
Concentrated sulphuric acid is a reagent commonly found in laboratories.
(a) Circle TWO hazard warning labels that should the displayed on a botte of concentrated sulphuric acid:

(b) (i) Explain why concemtrated supherric acid should NOT be titrated directly with $\mathrm{NaOH}(\mathrm{ac})$).

DSE18 08
Refer to the experimental set-up as shown below:

(d) In consideration of laboratory satety, explain where the experiment should be performed.
(I mark)

2022

17. Refer to the following set-up :

Which of the following processes can be performed by using the above set-up ?
(1) obtaining pure water from sea water
(2) obtaining propane from diesel oil
(3) obtaining oxygen from liquefied air
A. (1) only
A.
B.
C.
(2) only
C.
(1) and (3) only
D. (2) and (3) only
2. The diagram below shows an experimental set-up in which a metal oxide $\mathbf{X}_{2} \mathrm{O}$ (s) is decomposed upon strong heating. A silvery metal \mathbf{X} and a colourless gas \mathbf{Z} are formed.

(a) State what \mathbf{Z} is and suggest a test for it. cylinder containing methane

Marking Scheme							
MCO							
CE88_39	c	CE89_27	C	CE91_05	B	CE94 32	A
CE97_10	A	CE9935	D	CEO1. 02	A	CEO2 38	B
CE04_05	c	CE05_18	D	CE0s_: 11	B	CE08_26	B
CEO9_25	A	CE10_05	D	CE10_26	A	CE10-42	\wedge
CEIL_10	A	CEII_19	A	CEH_20	D	DSE1ISE_08	D
DSE14_15	B (70\%)	DSEIS 01	A (46\%)	DSEFG19	C (27\%)	DSE18_20	A(63\%)
Structural Questions							
AL99(I)_08a(i)							
(I) Cover the flask with wet towel/fire blanket [1]							
OR, use foam / carbon dioxide / BCF / BTM type extinguisher							
(II) Use powder tyupe extinguisher/sand [1]							
AL00(1)_07c(f)							
Oxidizing / explosive [1]							
AL03(I)_08b							
(i) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ [1]							
(ii) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s}) / \mathrm{CaCl}(\mathrm{s}) / \mathrm{P}_{2} \mathrm{O}_{3}(\mathrm{~s})$							
AL04(). 07							
Step 1: A slandard $\mathrm{NaOHH}(\mathrm{aq})$ should not be prepared using the meehod as described. \quad [1/2]							
Explanation: $\mathrm{NaOH}(\mathrm{s})$ is not a primary standard/ is hygroscopic $/ \mathrm{NaOH}(\mathrm{s})$ reacts with$\mathrm{CO}_{2}(\mathrm{~g})$ in air.							
Correction: il is necessary to standardize the $\mathrm{NaOH}(\mathrm{aq})$ before usc.							
Step 3: The burette should not be rinsed with water only. [1/2]							
Explanation: Water that remains in the burelle will cause a dilution of the $\mathrm{NaOH}(8 q)$. $\quad[1 / 2]$							
Correction: The burette needs to be rinsed with deionized water and then with the $\mathrm{NaOH}(\mathrm{aq})$ prepared.							
Step 4: Medhyl orange is not a suitable indicator. [1/2]							
Explanation: The experiment involves a titration of a weak acid willu a strong alkali, pH at the [1/2] end point is about 8 to 9.							
Correction: Plenolphthalein should be used. [1/2]							
Step 5: Cafeulation should not be based on the result of one titration only. [1/2]							
Explanation: There may be errors in the titration [1/2]							
Correction: Repeat the titration at lenst 3 times. Use the mean titre for the calculation. (Ignore [1/2] the result of the trial titration, if necessary).							

tructural Questions
(I)-
$O R_{4} \quad$ use foam / carbon dioxide / BCF / BTM type extinguisher

AL00(1)_07c(i)

AL03(I)_08b
(i) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$

AL04(1)_07
Step 1: A slandard $\mathrm{NaOH}(\mathrm{aq})$ should not be prepared using the method as described.
$\mathrm{CO}_{2}(\mathrm{~g})$ in air. [1/2]
Step 3: The burette should not be rinsed with water only. [1/2]
Correction: The burette needs to be rinsed with deionized water and then with the $\mathrm{NaOH}(a q)$ [1/2]Step 4: Methyl orange is not a suitable indicator[1/2]

Explanation: The experiment involves a titration of a weak aeid will a strong alkali, pH at the $\quad[1 / 2]$ and point is about 8 to 9
Correction: Plenolohthaid

Explanation: There
Correction: Repent the titration at lenst 3 times. Use the mean titre for the calculation. (Ignore the result of the rial titration, if necessary).

AL04(1). 08 c
The garbage bag was filled with a hydrogen oxygen mixture because $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ diffused [1] out of Ite balloons.
The frictional force between balloons produces static electricity and hence sparks.
The electric spark cause the $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ mixture to explode.
(Accept oilher reasonable answers)

AL04(I) 08 d
(i) The high temperature of the piece of buming sodiun may cause decomposition of CO_{2}. The sodium will continue to bam.
(ii) Covering the piece of buming Na with sand / use dry powter extinguisher to put ont the fire.

ALO4(I)_07a
(ii) Flanmable

AL04(1) 07b
(ii) $\mathrm{KOH}(8 \mathrm{~g})$ should not be used as SO_{2} (g) reacts vigorously with KOH (aq), An empty [1] conical flask (as a trap) should be used instead. / It is not necessary to include the flask [1] contalning $\mathrm{KOH}(\mathrm{aq})$ in the set-up.
$\mathrm{SO}_{2}(\mathrm{~g})$ should not be collected over water as it is very soluble. Collect the $\mathrm{SO}_{2}(\mathrm{~g})$ [1] produced by dowfload delivery / upward displacement of air / using a syringe.

AL05(I) 08

The person did not wear laboratory coat. Should wear a Intoratory coat
The person did not have eye protection, Should weak safety spectacles / goggles.
Should not detect $\mathrm{NH}(\mathrm{g})$ by suelling while heating the reaction mixture. The mixture may
shoot his face. Should defect $\mathrm{NH}_{3}(\mathrm{~g})$ by the use of a piece of wet red litmus paper that can change it from red to blue
OR, by HCl(aq) that can fonn a white fumes with HCl(ag).
$O R$, should smell $\mathrm{NH}_{3}(\mathrm{~g})$ after funing off the Bunsen burner.
AL06!1) 076
(i) Toxic coers
(ii) Treat the spilt bromine with $\mathrm{NaOH}(\mathrm{aq})$)

AL06(D) 08b
(i) Withot reteasing the pressure, the liquid in the separating fumel with not drain out of the [funuel.
(ii) The nelting point deternined wit be lowered than the expected value.

AL07(I) 07

Safety spectacles 11
Eyes are the most delicate organs. Any harm on eyes camot casily be recoved

AL0810 07 B

(ii) LiAlH_{4} (s) reacts with water moisture in air to give H_{2} (g).

The reaction is highly exotiemic. When $\mathrm{H}_{2}(\mathrm{~g})$ is mixed with air under this condition, an II explosion may occur.
The reaction gives LiOH of higi concentmation. Presence of high [OH-] is corrosive.

AL08(I)_04

Release pressure in the sepasating finnel from time to time by inverting it and opening the tap.

AL09(1)_07c

Dilution of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is highly exothermic process. The heat evolved can vaporize the water [I] and cause splasiuing ont of the acid.

AL09(1)_07d
Oxidizing
AL10(1)_07b
(i) If the reactant(s) / solvent used in the experiment has a high boiling goint $\left(>130^{\circ} \mathrm{C}\right)$, the $\quad[1]$ large tomperature difference outside and inside the water jacket may cause cmoking of the water condenser.
(ii) HBr and HI are reducing agents. They react with concenteated $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give the [1] corresponding lalogens. In such cases, the non-oxidiziug and non-volatite acid $\mathrm{H}_{3} \mathrm{PO}_{4} \quad$ [1] should be used.
Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ can only be used to prepare HCl and HF .

DSE12PP_08
(b) (ii) Toxic and flammable

DSE12 07
(b) The KOH is (very) cortosive. $/ \mathrm{NH}_{4} \mathrm{NO}_{3}$ is explosive / $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is flammable / HCl is [1] corrosive

DSE13_04
(c) $\mathrm{NaOH}(\mathrm{aq})$ is deliguescent / hygroscopis/absorbs water from the atmosphere.

OR, $\mathrm{NaOH}(\mathrm{s})$ reacts with $\mathrm{CO}_{2}(\mathrm{~g})$ in the atnosphere
\therefore The mass of $\mathrm{NaOH}(\mathrm{s})$ cannot be accurately determined by weighing
(e) (i) Rinsing the conical flask with $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$: Sone $\mathrm{H}^{+}($aff $)$ions $/$acid / [$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{2}(\mathrm{aq})$ remain in the flask, and more alkali (as revealed from the burette reading) than actually required is used to reach the titration end-point. (Do not accept the concentration of H^{+}(aq) increase.)
(ii) NaOH(aq) clinging onto the stem of funnel may fall into the burette. The [volume of alkali used (as revealed from the burette reading) is smaller than what is expected.

DSE13_10
(a)

DSE14_05
(a) Wearing protective gloves or plastic gloves or gown or safety googles or any suitable PPE
$O R$, Adding concentrated acids into water when diluting the concentrated acids
$O R$, Use a fume cuploard.
Not accepted: maintain a good ventilation.
DSE14_07 (modified)
(c) Some HCl escaped / waporized from the concentrated acid as $\mathrm{HCl}(\mathrm{g}) /$ Concentrated [1] liydrochloric acid is volatile.

DSE15_03
(b) (iii) Perform the expcriment in a fume cupbond.

DSE15_04
(d) (i) Pour a small amount of the concontrated sulpheric acid to a large amount of [2] water.
Accept answers like "add concentrated sulphuric acid to a large anount of water."
Consiant stirring is required (if the amounts of water and acid are not mentioned)
Wear goggle / face shield/ safoty spectacles / safety glasses

DSE16_03
(d) The delivery tube should be taken out of the water level before removing the heating source, athervise sucking back will happen/the boiling tube will be cracked.

DSE17 01
(b) (i) The gas (ammonia) is less dense than air
(ii) The gas (ammonia) is soluble (in water).

Accept: the gas will be absorted by water / The gas will react will water. (Not accept: The gas is slighty soluble in water.)

DSE17_06
(a) Oxidizing and corrosive [?
(b) (i) The reaction between concentrated sulphuric acid and $\mathrm{NaOH}(\mathrm{aq})$ is highly [1] exothermic.
OR, Concentrated $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{SO}_{4}$ is corrosive.
$O R$, Avoid to fill the buretle more than once.
$O R$, Usc less chemicals.
(Do not accept answer like "splashed out" without mentioning of "highly exothermic.")

DSE18_08
(d) The experiment should be performed in a fume cupboard as chlorine gas is foxie/toxic [i] gas is released,
(Do not accept well-ventilated benches, elc.)

SECTION 1 Planet Earth
Multive-Cholce Questions
CE94 44
Which of the following methods can be used to distinguish between solid sodium carbonate and solid alcium carbonate?
(1) Heating the solid and testing flec gaseous product with lime water.
(2) Testing the solubility of the solid in water
(3) Conducting a flame test on the solid.
A. (1) and (2) only
B. (1) and (3) only
C. (2) aud (3) only
D. (1), (2) and (3)

CE99_01
Which of the following diagrams can represent a mixture of two compounds? In these diagrans, and O represent a nitrogen atom and an oxygen atom respectively.)
A.

B.

C.

D.

CE99-45
$1^{\text {st }}$ statement
Sulphur is classified as a non-metal
$2^{\text {nd }}$ statement Sulphur does not react with dilute acids.

CE04_11
A white solid is found around the mouth of a reagent botle containing lime water. The white solid is likely to be
A. calcium oxide.
B. calcium sulphate.
C. calcium carbonate.
D. calcium hydrogencarbonate.

CE04_29

Refer to the melting points and boiling points of four substances at 1 atm pressure as listed in the table below:

Substance	Melting paint $P^{\circ} \mathrm{C}$	Boiling point ${ }^{\circ} \mathrm{C}$
argor	-189	-186
bromine	-7	59
chlorine	-101	-35
sulphur dioxide	-75	-10

Which substance exists as a liquid at $-90^{\circ} \mathrm{C}$ and 1 atm pressure?
A. argon
B. bromine
C. chlorine
D. sulphur dioxide

CE0SSP 02
The hazard warning label shown below is found on a compressed gas cylinder.

Whicl of the following gases nay be contained in the cylinder?
A. hydrogen
B. oxggen
C. eblorine
D. argon

CE05SP_18
A white solid dissolves in water to give a colourless solution. The solution reacts with dilute hydrochloric acid to give a gas. The solid is probably
A. calcium oxide.
B. calcium carbonatc.
C. potassium hydroxide.
D. potassium catbonate

CE05_05

When a flame test is performed on copper(II) chloride, what is the colour of the flame observed?
A. golden yellow
B. pale purple
C. brick-red
D. bluish-green

CE05_19
Which of the following correctly describes the sequence of procedures to separate sand, salt and water from a mixture of sand and salt solution?
A. filtration, evaporation
B. filtration, distillation
C. crystallisation, filtration
D, crystallisation, filtration, distillation

CE0G_25
Which of the following substances contain calcium carbonate as the main chemical constituent?
(1) limestone
(2) chalk
(3) marble
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE08_08
Nitrogen, instead of air, is used to fill the packets of potato chips. It is because
A. air supports combustion but nitrogen does not.
B. the density of air is higher than that of nitrogen.
C. argon in air contaminates the chips but nitrogen does not
D. oxygen in air makes the chips go bad but nitrogen does not.

CE08_42
Cnleinm carbonate can be obtaincd from quicklime tlorough two processes as shown below.
\square quickilime $\xrightarrow{\text { Process } 1} \xrightarrow{\text { Iimewater }} \xrightarrow{\text { Process 2 }} \xrightarrow[\text { nalcium carbonate }]{ }$

Which of the following combinations is correct?

Process 1	Process 2
adding water	adding $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{an})$

CE11_28
$1^{\text {sh }}$ statement $\quad 2^{\text {nd }}$ statement
Carbon dioxide in air dissolves in enpolluted rainwater to form carbonic acid

CE11_40
An anhydrous compound Y gives a brick-red flane in flame test, Upon strong heating, Y gives out a gaseous mixture which turns blue coball(1) chloride paper pink and limewater milky. Which of the following compounds may Y be?
A. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. NaHCO_{3}
C. CaCO_{3}
D. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$

DSE1ISP_03

Which of the following correctly describes the sequence of procedures to separate sand, salt and water from a mixture of sand and salt solution?
A. Filfration, evaporation
B. Filtration, distillation
C. Crystallization, filtration
D. Crystallization, filtration, distidtation

DSE13_19
Which of the following statements about limestone is/are correct?
(1) It gives a golden yellow flame in a flame test.
(2) It gives a colorless gas when heated strongly.
(3) It dissolves in dilute sulphuric acid to give a clear solution.
A. (1) only
B. (2) only
c. (1) and (3) only
D. (2) and (3) only

DSE14_19
The set-up of an experiment is shown below. At room temperature, the system initially contains 40 cm^{3} of $\mathrm{N}_{2}(\mathrm{~g}), 25 \mathrm{~cm}^{3}$ of $\mathrm{O}_{2}(\mathrm{~g})$ and $10 \mathrm{~cm}^{3}$ of $\mathrm{He}(\mathrm{g})$.

The plungers of the gas syringes are moved to and fro until there is no firther change in the systent. The system is then allowed to cool to room temperature. Which of the following statements concerning the experiment are corzect?
(1) Some copper powder would change to a black substance.
(2) The total volume of the gases in the system would decrease by $25 \mathrm{~cm}^{3}$.
(3) The same change in total volume of the gases would be observed if excess copper powder is replaced with excess iron powder.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE14_20
The diagram below shows the set-ip of an experiment:

Which of the following methods may light tip the light bulb?
(1) heating the sodium bromide powder until molten
(2) adding deionized water to the sodium bromide powder
(3) replacing the sodium bromide powder with bromine fiquid
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSEIS_02
Which of the following processes would NOT give oxygen?
A. Heating mercury (II) oxide strongly
B. Electrolysis of dilute sulphuric acid
C. Fractional distillation of tiquefied air
D. Passing steam over heated magnesium

DSE15_23
Which of the following can distinguish a sample of limestone powder from a sample of table sati?
(1) adding water
(2) performing a flame test
(3) adding dilute lydruchloric avid
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) onty
D. (1), (2) and (3)

DSE1G_01
A flame test conducted for a sample gives a brick-red flame. The sample may contain
A. chalks.
B. quartz.
C. graphite.
D. rock salts.

DSE17_14
Which of the following statements concerning oxygen gas is correct?
A. Oxygen gas relights a glowing splint.
B. Oxygen gas turns moist pH paper red.
C. Oxygen gas turns moist pH paper bluc.
D. Oxygen gas gives a 'pop' sound when tested with a burning splimi.

DSE18_01

Which of the following processes is most suitable for extracting sodium chloride fron sea water?
A. Electrolysis
B. Crystallization
C. Simple distillation
D. Fractional distillation

DSE18_19

In an experiment, marble is heated in a boiling tabe and the gas evolved is passed into a test tube with
limewater. Which of the following statements concenning the experiment is/are correct?
(1) The marble turns brick red upon heating.
(2) The fimewater tums milky initialy but eventually becomes a colorless solution.
(3) If marble is replaced by ctalk, a similar observation would be obtained.
A. (1) only
B. (2) only
C. (1) and (3) ouly
D. (2) and (3) ouly

DSE21_03

3. Which of the following statements is INCORRECT ?
A. Cracking of heavy oil can give ethene.
B. Electrolysis of sea water can give chlorine
C. Strong heating of limestone can give oxygen
D. Fractional distillation of tiquefied air can give nitrogen.

tructural Questions

CE92_020
(i) 1.0 g of calcium carbonate is added to $50.0 \mathrm{~cm}^{3}$ of 0.1 M nitric acid, At the end of the reaction, $55.0 \mathrm{~cm}^{3}$ of a certain gas are collected af room temperature and pressure.

Draw a diagram of the set-tup suitable for this experiment.

CE92 04b
(ii) Silvery metal A reacts vigoreusly with water to form colourless solution B . When B is subjected to the flame test, it gives a persistent yellow flame. When B is added to copper(II) nitrate solution, precipitate C is formed, C changes to black solid D upon strong heating.

Describe how the flame test on B can be carried out in the laboratory.

CE94 08 b
A student carried out some tests on an ionic compound X which was a white solid. The results obtained were summarized in the following flow diagram:

(i) Based on the above information, deduce the cation present in X .
(ii) Describe how the flame test on X can be carricd out in the laboratory.

CE9s_07a

The label on a bolte of 'Effervescent Calcium' tablets is shown below.

Effervescent Calcium	
Ench bolle contains 10 tubleis.	
Erach tablet contains :	
Calcium carbonate	625 mg
Vitamin C	1000 mg
Citric rcid	1350 mg
Dosage: 1 table dxity	
Administration ; Dissolve ono labtet in a glass of water.	
Wrming : (1) Keep out of reach of children.	
(2) Keep	

(i) Effervescence occurs when a tablet of 'Effervescent Calcinn' is added to water, Based on the information given on the label, explain why effiervescence occurs.
(iii) On the label, some words are missing in the second warning statement. Complete the second warning statement, beginning with the word 'Keep'. Explain your answer.

CE98.07a(iii)
Sand (an impure form of quartz) and linestenc are raw materials used for making glass.
(1) Name that main chemicul cosstiftent of limestone
(2) Suggest ONE reason why glass had been used by mankind for a long time.
(3) Suggest ONE reason why glass bottles are preferred to plastic bottles for the storage of champagne.

CE99_02
(b) For each of the following experiment, state ONE observable clange and write a chemical equation for the reaction involved.

A small piece of calcium is placed in a Bunsen flame.

CE02_02
(a) For each of the following experiments, state an expected observation and write a chemical equation for the reaction involved.

A magnesumu ribbon is placed in a Bunsen flame.

ASL01(1)_06

Suggest tests to show the identities of the cation and anion in $\mathrm{KCl}(\mathrm{s})$, and state the expected obscryation.

AL02(1) 08 (modified)	
Draw a labeled diagram to show the set up of apparatus used in a simple distillation of mixture of 1-methyloyclopropanol and phosphoric(V) acid.	
	(2 marks)
AL02(11)_01	
The presence of calciu steps in a flame test.	essential

ALO4(T)_02

Consider the noble gases, He , $\mathrm{Ne}, \mathrm{Ar} \mathrm{Kr}$ and Xe . Sketch a graph to show the variation of boiling point of these noble gases and account for the vatiation.

AL04(D)_07

You are provided with three unlabolled bottles each containing one of the white powders listed below:

$\mathrm{KBr}(\mathrm{s}), \mathrm{SiO}_{2}(\mathrm{~s})$ and glucose

(a) Ontline tie physical tests that you wonld perform to distinguish unambiguously the three substances from one another.
(b) Describe how you would carry out a chemical rest to distinguish $\mathrm{KBr}(\mathrm{s})$ from glucose.
(2 marks)

AL04(I) 08

Draw a labeled diagran for the asserbly of apparatus used in simple distillation.

AL06(1)_08

State a possible consequence from following poor laboratory techniques, "determining the melling point of a compound without completely removing the solvent after recrystallization".
(1 mark)

AL07(1)_07

In a chemistry laboratory, students are required to wear laboratory coat, plastio gloves and safety spectactes. Which or lase sately measites do you consider the most inportant? Explain.
(2 marks)

AL07(I)_08(modified)
The crude product obtained can be purified by recrystallization. Suggest three criteria for an appropriate solvent for the recrystallization.

ASLIO(I) 10

(b) The crude product appears yellow due to the presence of mpurities. Ontline the experinental procedure for the purification of the crude product by recrystallization from an efthanol-water mixture.
(c) Suggest a method to verify or not the recrystallized sample of acetanilide is pure.

ALI1(I)_07
(b) For each of the following pairs of species, suggest a chemical test to distinguish between them and wite the chemical equation(s) of the reaction(s) involved.
(ii) $\mathrm{Cl}^{-}(\mathrm{aq})$ and $\mathrm{Br}(\mathrm{aq})$

ASL12(1) 09
Outine how you would separate $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$, $\mathrm{NaCl}(\mathrm{s})$ and $\mathrm{PbCl}_{2}(\mathrm{~s})$ from a mixtare of the three compourds.

DSE12PP_02

(b) One common way of preserving wine in an opened bottic is to inject argon, a gas which is chemically unreactive, into the botte and then stopper the bottle.
(i) Explain why argon is chemically unreactive.
(i) State the principle behind the use of argon in preserving wine.
(1 mark)
(iii) Helium gas is also chemically unreactive. Suggest why helimm is NOT used for preserving swine in an opened bottle.
(c) Another way of wine preservalion involves pumping air out from an opened bottle of wine and then stoppering the bottle. Suggest ONE possible drawback of preserving wine in this way.

DSE13.01
Water is the most abundant compound on the Earth's surface. It is very important to life on Earth. (b) Nearly 98% of the water on Earth is sea water, which is not fit for haman constuption. The diagram below shows the set-up used in a simple distiliation experiment for obtaining waler for sea water.

(i) Outine the undetlying principle of this simple distilation experiment.
(ii) Insoluble solid S was placed into the flask before heating. Why?

DSE15_02

For each of the following experiments, state the expected observation, and write the chemical equation(s) for the reaction(s) involved.
(a) Passing carbon dioxide gas into limewater until in excess.

DSE21_01(c)

Acerylene ($\mathrm{C}_{2} \mathrm{H}_{2}$) is a fuek. it can be obtained from calcium carbide $\left(\mathrm{CaC}_{2}\right)$ by two different reactions a Acepresented by the equations shown below:

$$
\begin{array}{ll}
\mathrm{CaC}_{2}+\mathrm{A} \xrightarrow{2200{ }^{\circ} \mathrm{C}} \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca} & \text { Reaction (1) } \\
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{25^{\circ} \mathrm{C}} \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2} & \text { Reaction (II) }
\end{array}
$$

(c) Refer to Reaction (1):
(i) A is a gas at room conditions. Suggest what A would be.
(ii) Hence, explain why the reaction is dangerous.

DSE21_03(d)

(d) Part of the structure of a mineral cortaining silicon and oxygen only is shoort in the ciacram
below:

- silion atom

Oxygen atom

What is this mineral?

DSE21_06(a)
Lead can be obtained from lead(II) od
nitrogen
gas and steam are also formed.

(2) Suggesta a reason for each of the following:
(1) The reacion tube is placed is a downward slanted position:
(ii) The experiment is perforned in a fume cupboard.

1. Which of the following statements concerning $\mathrm{CO}_{2}(\mathrm{~g})$ is INCORRECT ?
A. It can turn limewater milky.
B. It can be used to make dry ice
C. It can be produced by adding marble to water
D. It generally has a higher percentage in the air in urban areas than that in rural areas.
2. How many neutrons and electrons are there in a ${ }_{23}^{51} \mathrm{X}^{3+}$ ion ?

	Number of neutrons	Number of electrons
A.	23	20
B.	28	23
C.	28	20
D.	51	23

3. Which of the following substances is an electrolyte?
A. sodium chloride
B. silicon dioxide
C. methanol
mercury
4. Element \mathbf{X} is one of the first twenty elements in the Periodic Table. \mathbf{X} forms a stable $\mathbf{X H}_{4}{ }^{+}(\mathrm{aq})$ ion. Which group of the Periodic Table does \mathbf{X} most likely belong to ?

Marklng Scheme							
MCO							
CE994 44	D	CE99 01	B	CE99_45	B	CEOS_11	C (60\%)
CR04_29	C (67\%)	CE0SSP_02	A	CEASSP_18	D	CE05_05	D (87\%)
CEOS_19	B(52%)	CE06_25	D (80%)	CE08_08	D (88%)	CE08_42	A (75\%)
CB11 28	A (34%)	CEI1_40	D (68\%)	DSEASP_03	B	DSE13_19	B (65\%)
DSE14_19	D (38\%)	DSE1420	A (63\%)	DSEES_02	D (77\%)	DSE15_23	D (53%)
DSE16.01	A(81\%)	DSE17_14	A (97\%)	DSEt8.01	B (56\%)	DSE18_19	D(68\%)

Structural Questions

CE92_02c
(i)

CE92_04b
(ii) Use a clean platinum (or nichrome) wire to cary out the flame fest

CE94_08b
(i) The cation is K^{+}because K^{+}compound barns with a lilac (purple) flame. [1]
(ii) Use a clean plan (or id

Put the wire in concentrated hydrocluloric acid aud stick some sample solid X on it. [1]
Then heat the wire in a blee Bunsen burner flame and watch the flame colour,
CE95 07a
(i) Citric acid/ vitamin C (ascorbic acid) when dissolved in water gives H^{+}(aq) which reaots with calcium carbonate to give gas $\left(\mathrm{CO}_{2}\right)$ lubbles.
(iii) Out of moisture (water)/ in a dry place.

Cason. The ano ${ }^{\text {f }}$ active in the active ingredients of the tablet will react in the presence of water.
OR, Out of heat in a cool place.
Reason: at high temperature, vitamin C deteriorate / CaCO_{3} undergocs
decomposition / the amomt of active ingredients will decrease / the tablet will lose function.
$O R$, Away from sunlight
Reason: vilamin C may decompose. CaCO_{3} ana be decomposed by sunlight.
CE98 07a(iii)
(i) Calcium carbonate
(2) The materials for making glass are easily available / abundant in the eath crust.
$O R, \quad$ Glass can casily be manufactured by heating sand, limestone and sodium hydroxide.
(3) Champagne contains a pressurized carbon dioxide solution. Glass can withstand the pressure.
$O R$, The ethanol solution (champagne) can dissolve unpolymerized nonomers in plaslic.
(b) Calcium burns will a brick-red flame / formation of white powder (solid). [t] $2 \mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CaO}(\mathrm{s})$

CE02_02
(a) Magnesium burns with a brilliant (very bright) flame. / A white solid (MgO) solicl is
formed.
$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{MgO}(\mathrm{s})$ (white solid)

$3 \mathrm{Mg}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})$ (yellow solid)
CEO2_O6a
(i) Calcium hydroxide / $\mathrm{Ca}(\mathrm{OH})_{2}$

CE09 01
(a) Calcium carbonate / CaCO_{3}
(b) Limestone dissolves. / Gas (bubbles) given out.
$\mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(a) (i) $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ [1]
(ii) Decomposition of cafcimm carbonate is an endothemic process. [1]
$O R, \quad$ Carbon dioxide evolved can extinguish fire.
CE10_06
(a) Limewater turns milky and then turns clear again. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
(b) No. Sodium carbonate is soluble in water.
(c) No. The percentage of carbon dioxide in air is very low and similar observations would not be made in a short period of time.
$O R$, Yes. Air contains a low percentage of carbon dioxide and similar observations would be made in a sufficiently long period of time.
(d) $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

AL99()_07
Heat the sample.
Water vapour will turn anhydrous $\mathrm{CuSO}_{4}(\mathrm{~s})$ front white to blue / anhydrous $\mathrm{CoClz}_{2}(\mathrm{~s})$ from
blue to piak.
(0 M if heating is not mentioned)

ALOO (II)_020

(iii) Evaparate / heat/warm the solution to obtain a saturated / concentration solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$.
Allow the solution to cool/ase an ice bath to obtain $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$
Separate crystal by filtration.

ASL01(1)_06

Dissolve the solid sample into water to give solution.
Cation: Heat the sample solution over the non-Luminions Bunsen flame. Sample can burn
with tilac flame.
Abion: Add few drops of acidified sllver mitrate solution.
A white precipitate, $\mathrm{AgCl}(\mathrm{s})$, can be formed.
AL02(1) 08 (modifed)

(1 mark for a workable set-up; 0.5 mark for labeling the reagents and 0.5 mark for the direction of water flow in the condenser.)

AL02(11)_01
Clean a Pt wire with concentrated HCl .
Stick a sample of the sait onto the Pt wire will concentrated HCl .

AL04(l), 02

The infermolecular attraction between noble gas molecules is van der Waals' forces. The the noble gas. : The boiling point of noble gas increases as the group is descended.

AL04(1) 07
(a) Add water to white powder. Only $\mathrm{SiO}_{2}(s)$ is insoluble, $\left(\mathrm{SiO}_{2}\right.$ has giant covalent structure, all structures in giant covalent structure is insoluble in water)
Test the electrical conductivity of the solution obtained.
$\mathrm{KBr}(\mathrm{aq})$ conducts, but glucose solution does not.
$O R, \quad$ Conduct a flame test. Only $\mathrm{KBr}($ aq) gives a lilac flame.
$O R, \quad$ Determine the neiting points of the solids, $\mathrm{KBr}(\mathrm{s})$ has a very high melling point.
(b) Heat the solid strongly.

Only glacose chars. (burns with unbursed carbon)
or, Add acidified $\mathrm{AgNO}_{3}(\mathrm{aq}) . \mathrm{KBr}(\mathrm{aq})$ gives a pale yellow precipitale.

AL04(1)_08

(f mark for a workable sel-up; 0.5 mark for labeling the reagents and 0.5 mark for the direction of water flow in the condenser.)

AL06(1)_08
The m.p. deternined will be fower that the expected value.
AL07(I)_07
Safety spectacles
Eyes are the nost delicate organs. Any harm on eyes cannot easily be recoved.

AL07(I)_08 (modified)
Any THREE of the following:

- Product should have a high solubility in the solvent while the impurities should not.
- The solubility of product in the solvent should be high at elevated temperature but tow at room temperature.
* The solvent should be volatile (casily to remove by evaporation / distillation)
- The solvent should not react with product.

ASLIO(1)_10

(b) Dissolve the crude profuct in minimum volume of hot ethanol-water mixiture. [1] Heat the solution with activated clarcoal (to remove the color inpurities). [1]
Filter the hot mixture (using a short-stem funcet). [1/2]
Allow the filtrate to cool to room tensperature to oblain acetanilide.
[1/2]
(c) Any ONE of the followings:

1. Determine the melting point of the product and compare the result with fiterature data.
2. Use the method of mixed melting point.

AL11(I) 07
(b) (ii) Add acidified $\mathrm{AgNO}_{3}(\mathrm{aq})$. Cl (aq) gives a white precspitate, white $\mathrm{Br}(\mathrm{aq})$ gives a pale yellow precipitase. $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}$
OR, Add $\mathrm{Cl}_{2}(\mathrm{aq})$. Onfy Br (aq) gives a browe solution. $\mathrm{Cl}_{2}+2 \mathrm{Br} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$
$O R, \quad$ Treat solution wit acidified $\mathrm{KMnO}_{4}(\mathrm{aq}) . \mathrm{Cl}^{-}(\mathrm{aq})$ causes decolorization slowly; $\mathrm{Br}^{-}(\mathrm{aq})$ gives an oxange solution. $10 \mathrm{X}^{-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}-5 \mathrm{X}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$

ASL12\{() 09

DSE12PP 02

Heat the mixture, Only NHICl(s) will sublime. [1]
it can be collected on a cold surface. $[1 / 2]$
Add water to the remaining solid mixture. [1/2]
$\mathrm{PbCl}_{2}(\mathrm{~s})$ is insoluble. It can be collected by filtration. $\quad[1 / 2]$
$\mathrm{NaCl}(\mathrm{s})$ can be obtained from ils solution by crystallizations. [1/2]
$O R$, Add water to the mixture to dissulve $\mathrm{NaCl}(\mathrm{s})$ and $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$.
Remove undissolyed $\mathrm{PlBCl}($ (S) by filtration.
Scparate $\mathrm{NaCl}(s)$ and $\mathrm{NH}_{4} \mathrm{Cl}(s)$ from the solution by fractional ciystallization /
by (ion-exclange) chromatography.
(b) (i) The outermest shell of an argon atom is a stable netet structure. \therefore Ar does [1] not readily form bonds with other atoms
(ii) Ar is denser than an. It displaces air from the botte, and thus prevents the wine [1] from contact with air.
(iii) He is less dense that air. It will not displace air / it will easily diftuse from the [t] bottle.
(c) The substances with a pleasant odour are volatile organic compounds. Puaping air [1] out from the bottle may also remove these subslances.
]
\qquad

DSEI3 01
(b) (i) Water boils at about $100^{\circ} \mathrm{C}$, but the salts in sea water are non-yolatile / boiling of water is lower than that of salk.
The steam (water vapor) formed contenses on the cold surface of the condenser / cool down to give liquid water (the distiflate).
(ii) To proveat bumping / to prevent frothitug / splash / overflow duc to overheating of water.
To cnsure smiooth boiling.
DSE15 02
(a) A white precipitate/solid is firstly formed / It turns milky; the precipilate dissolves I
in the presence of excess CO_{2} (g).
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})$

SECTION 2 Microscopic World

Multiple-Cholce Questions
CE90_02
A cation of a certain element has 22 electrons and mass number of 55 . If the charge on the cation is +3 , the number of neutrons in the cation is
A. 19
B. 23
C. 25
D. 30

CE90 03

The atomic numbers of element X and element Y are 13 and 16 respectively. The formula of the compound formed between X and Y is likely to be
A. $X Y_{2}$
B. $\mathrm{X}_{2} \mathrm{Y}$
C. $\mathrm{X}_{2} \mathrm{Y}_{3}$
D. $X_{3} Y_{2}$

CE90_04
Which of the following combinations concenting the isotopes of an element is correct?

	No. of protons	No. of neutrons	No. of electrons
	same	different	same
B.	same	same	different
C.	different	same	different
D.	same	different	different

CE90 25
Bromine has a low melting poim because
A. it is a non-metal.
B. it is a member of the halogen family.
C. the atoms in each bromine molecule are bonded together by a covalent bond.
D. the bromine molecules are attracted together by van der Waals' forces.

CE90 26
Dry zino chloride solid is a non-conduetor of electricity because
A. it is a non-electrolyte.
B. it exists as molecules.
C. its jons are not mobile.
D. metallic bonding is not present.

CE91-01
Directions: Questions 1 and 2 refer to the following table.

A. W and X
B. W and Z
C. X and Y
D. Y and Z

CE91 02
Directions: Questions 1 and 2 refer to the following table.

The formula of the compound formed between X and Z is likely to be
A. $X Z$
B. XZ_{2}
C. $\mathrm{X}_{2} \mathrm{Z}$
D. $\mathrm{X}_{2} \mathrm{Z}_{3}$

CE91_94
Which of the following groups of ions/atoms has the same number of electrons?
A. $\mathrm{K}^{+}, \mathrm{Ca}^{2+}$
B. $\mathrm{Cl}_{1}, \mathrm{~S}$
C. $\mathbf{H}^{+}, \mathrm{He}$
D. $\mathrm{O}^{2}, \mathrm{Ar}$

CE92_02
X and Y are elenents. The melting points of their chlorides are given below:

	Malting point $\left({ }^{\circ} \mathrm{C}\right)$
Chioride of X	772
Chloride of Y	-68

Which of the following statements is correct?
A. Both X and Y are metals.
B. The chloride of Y is a solid at room temperaturc.
C. The chloride of X conducts electricity in the solid state.
D. The chloride of Y is a covalent compound.
$\mathrm{CE} 92-03$
Which of the following electron diagrams is correct?
A. $\quad \underset{X}{X X} \underset{X}{X X} \underset{X}{X X}$
B.
$\left[\begin{array}{c}x x \\ \times \underset{x}{x} \times x \\ x x\end{array}\right]$
c. $\quad \underset{X}{X} N \times \times \times \times \times{ }_{X}^{x}$
D. $\mathrm{He} \times \underset{X}{X} \mathrm{He}$

CE92_04

Consider the following table:

Element	W	X	Y	Z
Atomic number	9	10	14	19

Which of the following elements is likely to be an oxidizing agent?
A. W
B. X
c. Y
D. Z
$\mathrm{CEP}_{2} 30$
The atomic number and mass mimber of element E are 8 and 17 respectively. What are the number of protons and neutrons in an atom of E ?

CE93_01
Which of the following pairs of atomslions has the same number of electrons?
A. Mg^{2+} and F
B. Cl and Ne
C. K^{+}and O^{2-}
D. Cl^{-}aud S^{z}

CE93 02
The elements, sodium to clitorine, in the third period of the Periodic Table stiow a gradual change in properties. Which of the following changes is correct?
A. Their melting points increase.
8. Their ability to gain electrons increases.
C. Their oxides change from acidic to basic.
D. Their chloride change from covalent to ionic.

CE93_23

Which of the following statements about a solution of hydrogen cliloride in water is correct?
A. The hydrogen chloride exists as molecules in the solution.
B. The fiydrogen chloride is stightly ionized in water:
C. The pH value of the solution is greater than 7 .
D. The reaction between the solution and aqueous ammonia is exothernic.

CE94_01
If the atonic number of an element X is 13 , the formula of its oxide is
A. XO_{2}
B. XO_{3}
C. $\mathrm{X}_{2} \mathrm{O}_{3}$
D. $\mathrm{X}_{3} \mathrm{O}_{2}$

CE94 02
Consider the information given in the table below:

Atom	Atonic number	Mass number	No. of netatrons
P	6	14	
Q	7	14	
R		13	7
S		18	10
T	10		10

Which of the following atons are isotopes?
A. Pand Q
B. Pand R
C. Rand S
D. S and T

CE94_03
Which of the following molecules has the greatest number of lone pairs of electrons?
A. fluorine
B. hydragen
C. uitrogen
D. exygen

CE94_36
X, Y and Z are these different elements. The electronic diagram (showing electrons in the outemost shells only) of the compound formed by X, Y and Z is shown below:

Which of the following statement are correct?
(1) There is one electron in the outermost shell of an atom of X .
(2) There are five electrons in the outernost slell of an atom of Y
(3) There are eight electrons in the outermost shell of an atom of Z.
A. (1) and (2) ouly
C. (2) and (3) only
B. (1) and (3) only

CE94_46

1^{34} statement

Hydrogen chloride has a lower melting point than sodium chloride.

$2^{\text {nd }}$ statement

In each molecule of hydrogen chloride, a lydrogen and a chilorine atom are joined togelier by a covalent bond,

CE95 01
The atomic number of an element X is 18 . An atom of X has a mass number of 40 .
The atom has
A. 18 protons, 22 neutrons and 18 electrons.
B. 18 protons, 22 neutrons and 22 electrons.
C. 18 protons, 40 neutrons and 18 electrons.
D. 22 protons, 22 neztrons and 18 electrons

CE95 02
The electronic structure of a compound formed between an element X and chlorine is shown below
.. $\quad . \quad$..
$: \mathrm{Cl}: \mathrm{X}: \mathrm{Cl}:$
: Cl :
. ${ }^{\text {wn.) }}$
(Only electrons in the outernost shells are shown.)
What would be the formula of the compound forned between X and magnesium?
A. MgX
B. MgX_{2}
C. $\mathrm{Mg}_{2} \mathrm{X}_{3}$
D. $\mathrm{Mg}_{3} \mathrm{X}_{2}$

CE95 03
Which of the following correctiy describes the structure of quarz?
A. giat covalent structure
B. giant ionic structure
C. giant metallic structure
D. simple molecular sincture

CE95 04
Boron consists of two isotopes. The tible below lists the relative abundance of these two isotopes.

Isotope	Relative abundance
${ }_{5}^{10} \mathrm{~B}$	19.7%
${ }_{5}^{11} \mathrm{~B}$	80.3%

The relative atomic mass of boron (correct to 1 decimal place) is
A. 10.4
B. $\quad 10.6$
C. 10.8
D. 11,0

CE95_06
Which of the following fertilizers contains the largest percentage by mass of nitrogen?
(Relative atomic masses; $\mathrm{H}=1.0, \mathrm{~N}=14.0, \mathrm{O}=16.0, \mathrm{Na}=23.0, \mathrm{~S}=32.0, \mathrm{Cl}=35.5, \mathrm{~K}=39.0$)
A. ammonium chlaride
B. ammonium suiplate
C. polassium nitrate
D. sodium nitrate

CE95_26
Which of the following elements is a semi-metal?
A. Hg
3. si
C. C
D. Be

CE95_34
Which of the following particles is/are present in a hydrogen ion?
(1) proton
(2) neutron
(3) electron
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE95 39
Which of the following substances can conduct electricity?
(1) molten zhec chioride
(2) an aqueous solution of magnesium sulphate
(3) mixture of ethanol and water
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (t), (2) and (3)

CE96_01

Magnesium and calcium have similar chemical properties because
A. their atoms have the same atomic structure.
B. their atoms thave the same number of electran shells.
C. their atoms have the same number of electron in theit outermost shells.
D. their atoms have the stame electronic arrangement

CE96_02
Which of the following cal represent the electronic structure of potassium sulphate
A. $\quad[K]_{2}{ }^{+}[: \underset{S}{:}:]^{2-}$
B. $2[K]^{+}[: \ddot{S}:]^{2}$
c. $\left.\quad[K]^{21} \mid: S_{i}:\right]^{2-}$
D. : $\ddot{K}: \ddot{S}_{.}:$

CE96 03
The mass number of atom X is $27, X$ forms a cation with a charge of +3 . If the number of neutrons
in the cation is 14 , what is the number of electrons in the cation?
A. 10
B. 13
C. 14
D. 17

CE96_39
The atomic number of element X is 16 . Which of the following statements concerning X are correct?
(1) X can react with calcium to form an ionic compound.
(2) The oxide of X dissolves in water to form an acidic solution
(3) X ean conduct electricity in its molten state.
. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

C896 44
Which of the following elements can react together to form a covalent compound?
(1) argon
(2) nitrogen
(3) oxygen
(4) calcium
A. (1) and (2) only
B. (1) and (4) only
C. (2) and (3) only
D. (3) and (4) only

CE96_45
The melting point of hydrogen chloride is lower than that of potassium chloride.

CE96_50
$1^{\text {st }}$ statement
Both dry ice and quartz exist in the form of discrete molecules.

CE97-0
The chemical properties of an element depend on
A. its relative atomic mass.
B. the number of isotopes of the element.
C. the number of efectron shells in its atoms
D. the number of outermost shell electrons in its atons.

CE97_- 02
Elenents X and Y form a compound having the following electronic stucture:

$$
r: \ddot{Y}:]^{-} \quad\left[: \ddot{X}: 1^{2+} \quad\left[: \ddot{Y}: r^{-}\right.\right.
$$

(Only outermost sheil electrons are shown.)
Which of the following combinations is correct?
$\begin{array}{lll} & \underline{X} & Y \\ \text { A. } & \mathrm{Na} & \mathrm{S} \\ \text { B. } & \mathrm{Mg} & \mathrm{Br} \\ \text { C. } & \mathrm{Al} & \mathrm{Cl} \\ \text { D. } & \mathrm{Si} & \mathrm{O}\end{array}$

CE97_03
Argon exists as a gas at room temperature and pressure because
A. argon molecules are monoatomic.
B. argon is chemically inert.
C. the outermost electron shell of an argon atom bas an octet structure.
D. the attractive force between argon atoms is weak.

CE97_05
Which of the following diagrans best represents a part of the giant lattice of sodium chloride crystal?
(In these diagrams, *epresents Na^{+}ion and \circ represents $\mathrm{Cl}-$ ion)
A.

日.

c.

D.

CE97_30
M is an element in the third period of the Periodic Table, M forms a sulphate which has the formula $\mathrm{M}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. The formula of the nitrate of M is
A. MNO_{3}.
B. $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$
C. $\mathrm{M}_{\left(\mathrm{NO}_{3}\right)_{3}}$
D. $\mathrm{M}_{2}\left(\mathrm{NO}_{3}\right)_{3}$.

CE98 01
An element X exists as molecules. X Las an atomic number of 7 and a nsolecule of X has a formula X_{2}. Which of the following can represent the electronic structure of X_{2} ?
A. $: \ddot{X}: \ddot{X}:$
B. : $\dot{\mathrm{X}}:: \dot{\mathrm{x}}$:
c. $: \ddot{X}:: \ddot{X}:$
D. $: X: X:$

CE98_18
Which of the following ions has the same number of protons as the hydroxide ion, OH^{-}?
A. O^{2-}
B. F^{-}
C. Na^{+}
D. Mg^{2+}

CE98 33
Consider the following information:

Subslance	Melling point/C	Electrical conductivity at room temperature	Solubility in water
W	-34	poor	slightly soluble
X	44	poor	insoluble
X	232	poor	insoluble
Z	782	poor	very soluble

W|xich of the above substances exists as a simple molecular solid at room temperature?
A. ${ }^{\text {Pr }}$
B. X
C. Y
D. Z

CEO8 45

$\left[^{\text {st }}\right.$ statement

Element X (atomic number 11) reacts with clement Y (atomic number 16) to form an ionic compound.

$2^{\text {nd }}$ statement

Each atom of X loses one electron and each atom of Y accepts fwo electrons to form a compound with $\mathrm{X}_{2} \mathrm{Y}$.

CE99_05
Consider the information concening partigle X and particle Y Histed below:

Particle	Number of protons	Numbet of electrons	Number of neutrons
X	16	16	18
Y	16	18	18

Which of the following slatements is correci?
A. X and Y are atoms of the same element.
B. X and Y are atoms of different elciment.
C. X is a cation of Y.
D. Y is an anion of X.

CE99-01
Which of the following diagrams can represent a mixture of two compoonds?
(An these dingrams, and o represent a uitrogen atom and an oxygen atom respectively,

B.

c.

D.

CE99_11
The table below shows the ability of four substances H, X, Y and Z to conduct elcetricity. (In the table, $\sqrt{ }$ and \times respectively represent 'can conductivity' and 'cannot conduct electricity'.)

Substance	Solid stale	Liquid state	Aqueous solution
$J V$	\times	\checkmark	\checkmark
X	\times	\times	$\sqrt{\prime}$
Y	\times	\times	\times
Z	$\sqrt{\prime}$	$\sqrt{2}$	(insoluble in water)

Which of the substances is likely to be zinc chloriae?
A. W
B. X
C. Y
D. Z

CE99_19
lonic compound X has the formula $A B_{2}$, where A and B represent the cation and anion respectively.
A polassium sulphide
B. magnesiun fluoride
C. silicon dioxide.
D. calcium bronide.

CE99 34
lodine is a solid at room tenperature and pressure. Which of the following statement concerning the structure of iodine is/are correct?
(1) Iodine has a giant covalent structure.
(2) Iodine molecules are held together by van der Waals' forees.
(3) Iotine atoms are held together in paiss by covalent bonds,
A. (1) only.
B. (2) only.
C. (I) and (3) only.
D. (2) and (3) only.

CE99 39
Element X has an isolope ${ }_{15} \mathrm{X}$. Which of the following statements is/are correct?
(1) X belongs to V of the Periodic Table.
(2) X can react with oxygen to forman anic compound.
(3) ${ }_{15}^{31} \times$ has 16 nentens.
A. (1) only.
B. (2) only.
C. (I) and (3) only.
D. (2) and (3) ouly.

CE99-46
$1^{s s}$ statement
Metals have good thermal conductivity.

$2^{\text {nd }}$ statement

Mctals are composed of giant lattices of positive ions surrounded by valence clectrons which are free to move throughout the latice.

CE00_01

A compound formed from element X and sulphur has the following electronic structure:

$$
S: 8 x: 8
$$

(Only electrons in the outermost shells are shown.)
How many electrons are there in the outemost shell of an atom of X ?
A. 2
B. 4
C. 6
D. 8

CE00_07
Element X occurs in nature as two isotopes, ${ }^{63} \mathrm{X}$ and ${ }^{65} \mathrm{X}$. If the relative atomic mass of X is 63,5 , what is the relative abundance of the ${ }^{63} \mathrm{X}$ isotope?
A. 25%
B. 60%
C. 75%
D. 90%

CE00_09
The atomic number of ciement X is 12 . X reacts with element Y to form an ionic compond with formula XY_{2}. To which group of the Periodic Table does Y belong?
A. Group I
B. Group IV
C. Group VI
D. Group VII

CEOO_17
The melting point and boiling point of substance X are $321^{\circ} \mathrm{C}$ and $765^{\circ} \mathrm{C}$ respectively. In its molten state, X conducts electricity without decomposition. X probably has
A. an ionic structure.
B. a metallic structure.
C. a simple molecilar structure.
D. a covalent network structure

CEOO 34
Which of the following statements concerning helium is/are correct?
(1) The ontemost electron shell of a helimm atom has an octet structure
(2) Helium is used to fill water weather balloons.
(3) Helium exists as monatomic molecules.
A. (1) onl
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CEOO_39
X is an element in Group VI of the Periodic Table. X can form X^{2-} ions. Which of the following statements are correct?
(1) The oxidation number of X decrease when X^{2-} ion is formed.
(2) Both X atom and $\mathrm{X}^{\mathrm{z}-}$ ion lave the same number of electron shells.
(3) Both X atom and X^{2-} ion lave the same nocleat charge
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE00_42
Which of the following statements concerning carbor, sificon and phosplorus are cerrect?
(1) Carbon forms numerous compounds with hydrogen and oxygen.
(2) Silicon is used to make computer chips.
(3) Phosphorous is an essential element for plant growih.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CFOO_ 46

${ }^{14}$ shatement

Carbon gioxide and silicon dioxide have similar physical properties.

$2^{\text {nd }}$ statement

The atoms of carbon and silicon have the same number of electrons in their outermost shells.

CE01 01

Which of the following ions is responsible for the yellow colour of topaz?
A. Mn^{2+}
B. Mn^{3+}
C. Fe^{2+}
. Fe^{3+}
[Note: Topaz is a yellow coloured gemstone.]

CEO1_07
Which of the following statements concerning water is correct?
A. It reacts with calcium to give a coloutless gas.
B. It is a strong electrolyte
C. It turns anhydrous cobale(II) chloride from pink to blue.
D. It is immiscible will methato.

CEO1 18
Consider the following information about four substances, $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z :

Substances	Melting point $f \mathrm{C}$	Electrical conductivity at room tenperature
W	-23	poor
X	56	poor
Y	232	good
Z	750	poor

Which substance has a simple molecular structure and is a solid at room temperature?
A. W
B. X
C. Y
D. Z

CEO! 20
The lable lists some information about two elements, X and Y :

Element	Afomic number	Relative atomic mass
X	12	24.0
X	9	19.0

The compound formed from X and Y has a formula mass of
A. 43.0
B. $\quad 62.0$
C. $\quad 67.0$
D. 81,0

CEOL_37
Consider the information listed below:
Substance Attraction between particles in sybstances
(1) helium van der Waals' forces
(2) diarnond covalent bond
(3) magnesium oxide

Which of the following combination are correct?
A. (1) and (2) only
B. (1) and (3) only
C. (2) aud (3) only
D. (1), (2) and (3)

CE01_42
Which of the following ions lave the same number of electrons as neon atom?
(1) Mg^{2+}
(2) O^{2-}
(3) Cl^{-}
A. (1) and (2) only B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE01_49

1^{51} statemen

Lithium is the most reactive efement in Group I of the Periodic Table
$2^{\text {nd }}$ statement
Among the Group I elements, lithium loses efecirons most readily.

CEO2 01
The electronic diagram of an atom of element X is shown befow:

:

(Only eletrons in the outermost sitell are shown.)
The atomic number of X is probably
A. 7
B. 15
C. 17
D. 19

CE02_28
Whith of the following substances docs not conduct electricity in its solid state but does conduc electricity in its liquid state?
A. lilhism chloride
B. Phosphorous
C. platinum
D. perspex

CEO2 36
Which of the following statements concerning fluorinc is/are correct?
(I) Il exists as monatomic nolecuics.
(2) It reacis with hydrogen to form a covalent compound.
(3) It reacts with calciun to form a compound with formula CaF_{2}
B. (2) only
C. (I) and (3) only
D. (2) and (3) only

CE02_46

${ }^{151}$ statement

$2^{\text {nu }}$ slatement
Combustion of dinmond gives carbon
Dinmond is a crystalline form of carbon. dioxide.

CE02_49
1^{15} statement
When iodine sublimes, it absorbs energy
$2^{\text {nd }}$ statement
Energy is required to overcome the attractive force between iodine molecules.

CE03_01
Which of the following pairs of elements in Group I and VII of the Periodic Toble would react with each other mosf vigorously?

	Group I	Group VII
A.	lithium	fluorine
B.	lithium	iodine
C.	potassiunn	fluorine
D.	potassium	iodine

C803_12
Gallium (Ga) occurs naturally in two isofopic forms, ${ }^{69} \mathrm{Ga}$ and ${ }^{71} \mathrm{Ga}$. The table below lists the relative abundance of each isotope

Isolope	Relative abundance
${ }^{69} \mathrm{Ga}$	60.2%
${ }^{71} \mathrm{Ga}$	39.8%

What is the relative atomic mass of eallium?
A. 69.6
B. 69.
C. 70.0
D. 70.2

CE03 25
An atom of element X has 20 protons while an stom of element Y has 7 electrons. What is the formula of the compound formed from X and Y ?
A. XY_{2}
B. $\mathrm{X}_{2} \mathrm{Y}_{3}$
C. $\mathrm{X}_{2} \mathrm{Y}_{5}$
D. $\mathrm{X}_{3} \mathrm{Y}_{2}$

CE03_46
\int^{51} statement
${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ have the same chemical properties.
$2^{\text {nd }}$ statement
The number of electrons in the outcmost shell
of $a^{35} \mathrm{Cl}$ atom is equal to that of $a^{37} \mathrm{Cl}$ stom.

CE0SSP_03
Whith of the following substances can conduct efectricity in both solid and liquid states?
A. sulphur
B. marcury
C. quartz
D. lead(II) bromide

CEOSSP_I6
Which of the following natural substances is essentially a single componnd?
A. air
B, coal
C. petroleum
D. quartz

CE05SP 31

Caesium (Cs) is a group I element in the Periodic Tabfe and ifs relative atomic mass is greater that that of potassium. Which of the following slatements conceming caesium is INCORRECT?
A. Caesium is a weaker tedacing agent than potassium
B. Caesium reacts violently with water.
C. Caesium is a sof metal.
D. Caesium reacts with oxygen to form an oxide with formula $\mathrm{C}_{2} \mathrm{O}$.

CEO4_01
How many elements does ammonium dichromate consist of?
-
A.
C.
R, 3
D. 5

CE04 02
X, Y and Z are three consecutive elements in the Periodic Table. X forms a stable anion X^{-}, white Z forms a stable cation Z^{+}. Which of the following statements about X, Y and Z is correct?
A. X, Y and Z are elenuents in the same period of the Periodic Table.
B. Both X and Z are electrical conductors under room temperature and pressure.
C. Y reacts with Z readily.
D. X and Z^{+}have the same electronic arrangement.

CE04_10

Which of the following combinations concerning the properties of gases is INCORRECT?

	Gas	Property
A. Ammonia	has an irriating odour	
B. Mellzane	dissolves readify in water	
C. Carbon monoxide	can burn in air	
D. Nitrogen monoxide	changes from colourless to brown when exposed to ai	

CE04_23
Element X has three isotopes, ${ }^{205} X,{ }^{207} X$ and ${ }^{208} X$. The graph below shows the relative abundances of the isotopes.
What is the relative atomic mass of X ?
A. 206.8
3. 207.0
C. 207.3
D. 207.5

CE04_30
Refer to the melting poiuts and boiling points of four substances at I atm pressure as listed in the table below;

Subslance	Melting point $/ \mathrm{C}$	Boiling point $/ \mathrm{C}$
argon	-189	-186
bromine	-7	59
chlorine	-101	-35
sulphur dioxide	-75	-10

Which of the following chemical bonds/attractive forces exist(s) in all four substances at $25^{\circ} \mathrm{C}$ and
1 atm pressure?
(1) van der Waals' forces
(2) ionic bond
(3) covalent bond
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE04 31
The atomic number of element X is 15 . It has only one isolope with a mass namber of 31 . Which of the following statements concerning X is correct?
A. X forms an oxide which dissolves in water to give an alkaline solution.
B. In the compound formed from X and sodium, X has an oxidation number of -3 .
C. X is a gas at room temperature and pressure.
D. There are 15 neutrons in the nucleus of an atom of X.

CE05_03
The table below gives some information about certain components in a sample of fiquefied air.

Component	Boiling point $/ \mathcal{C}$
argon	-186
jutrogen	-196
oxygen	-183

In what order are these components distilled out when the sample undergoes fractional distillation?
A. nitrogen, oxygen, argon
B. nitrogen, argon, oxygen
C. oxygen, argon, nitrogen
D. oxygen, nitrogen, argon

CE05_06
Consider the information given in the table below:

Element	Atomic ntmber
w	6
x	17
y	18
z	20

Which of the following pairs of elements would renct with cach other most readily?
A. wand y
B. w and z
C. x and y
D. x and z

CE05_07
Which of the following statements concerning van der Waals' forces is correct?
A. They exist in quartz
B. They exist in limestone.
C. They exist in solid iodine
D. They exist in solid ammonium nitrate.

CE05 09
Which of the following chlorides has tie highest melling point?
A. HCl
B. LiCl
C. SCl_{2}
D. CCl_{4}

CE05_13
Consider the information given in the table below:

	Particle			
	X	Y	Z	W
No. of protoiss	8	8	8	10
No. of cectrons	10	10	8	10
No. of neutrons	8	10	10	10

Which of the following statements about the particles is correct?
A. W and Z are isotopes.
B. X and Z lave the same mass.
C. Y and Z have the same charge
D. X and Whave the same electronic armagement.

CE0S 27
Which of the following properties of sodiun chloride is/are evidence(s) to support that ionic bonds are strong?
(1) It is soluble in water,
(2) It has a high meling point.
(3) It can conduct electricity in molten state
A. (1) only
B. (2) only
C. (1) aud (3) only
D. (2) and (3) only

CE06_01
The elcetronic diagram of a compound formed between element X and element Y is shown below:
(Onty electrons in the outcmost shells are shown.)
Which of the following combinations conceming X and Y is correct?

	X	Y
A.	carbon	oxygen
B.	silicon	oxygen
C.	oxygen	sodium
D.	oxygen	chlorine

CE06-02
Which of the following statements about the Periodic Table is correct?
A. The elements are arranged in order of incrensing relative atomic mass.
B. The reactivity of the elements in Group II decreases down the group.
C. The boiling poin of the elements in Group VII decreases down the group.
D. All elements in Group 0 exist in gascouss state at room temperature and pressure.

CE06 04
Which of the following combinations concerning the change of plysical state of a substance is INCORRECT?

Change of physical state		Process cyaporation
liquid to gas		precipitation
liquid to solitd		sublimation
colid to gas	gas to liquid	
condensation		

CE06_05
${ }_{26}^{56} \mathrm{Fe}$ is an isetope of iron. Which of the following correctly describes the number of subatomic particles in an Fe^{2+} ion formed from this isotope?

	No. of electrons	No. of neutrons	
A.	23	26	
B.	23	30	
C.	24	26	
D.	26	30	
CE06 06			
Which of the following substance exist(s) in liquid state at room tenperature and pressure?			
	Substance	Melting point /C	Boiling point/C
	W	-92	7
	X	7	81
	Y	56	197
	z	-95	69

A. Wonly
B. Xonly
C. X and Z only
D. Y and Z only

CE06 14
Element X has two isotopes, ${ }^{39} X$ and ${ }^{4} X$. The table befow isists the percentage aburdatice of the two isotopes:

Isotope	Percentage abundance
${ }^{39} X$	93,2
${ }^{41} X$	6.8

What is the relative atomic mass of X ?
A. 39.0
B. 39.1
C. 40.0
D. 40.9

CE06 24

In which of the following atoms or ions is the outermost shell an octet?
(1) Li^{+}
(2) Ne
(3) S^{2-}
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE07_03

X is an clement in the Periodic Table and X^{+}ion has an clectronic arrangement of $2,8,8$. Which of the following statements concerning X is correct?
A. X is a halogen
B. X is a transition element
C. X is a group 0 elcment
D. X is a period 4 element

CE07_12
Which of the following pairs of elements would form a covalent compound?
A. mercary and neon
B. neon and nitrogen
C. mercury and floorine
D. fluorine and nitrogen

CE07 13
M is an element in the Periodic Table, M^{2-} ion possesses 45 neutions and 36 electrons. What is M ?
A. Se
B. Kr
C. Sr
D. Rh

CE07 18
Consider the information below

Solid	Melting point	Electrical conductivity	Solubility in water
W	High	Good	Insoluble
X	High	Non-condueting	Soluble
Y	Low	Non-conducting	Soluble
Z	Very high	Non-conducting	Insoluble

A. W
B. X
A. W
C. Y

CE07_28
$1^{\text {st }}$ statement $2^{\text {nd }}$ statement
Molten sulphur is a good conductor of Sulphur molecules are mobile in molten
electricity. electricity. suphin.

CE07_29
1^{31} statement
Isotopes of an elenent have the same mass.

20743
Which of the following bonds or atractive forces exist in ammonium bilrate?
(I) ionic bond
(2) covalent bond
(3) van der Waals' forces
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE08_02

J and Q are two alkaline earll metais in the Periodic Table, If the atomic number of J is x, then the atonic number of Q could be
A. $x-2$
B. $x+6$
C. $x-10$
D. $x+18$

CE08 18
In which of the following groups of substances there exists a difference in bonding type annong the substances?
A. iodine, oxygen, nitrogen
B. chromium, mercury, aluminima
C. methane, ethyl ethanoate, sulphur dioxide
D. potassium chloride, hydrogen chloride, silver chloride

CE08 19

Which of the following statements concening a water molecule is/are correct?
(1) The number of bonding electrons contributed by each hydrogen atom the the molecule is 2 .
(2) The number of bonding clectrons contributed by the oxygen atom in the molecule is 2 .
(3) The total number of electrons in the molecule is 8 .
A. (i) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE0846
A certain form of solid carbon is composed of C_{60} molecules. Each C_{60} molecule is formed by 60 carbon atoms bonded logether like a football as shown in the diagram below:

Which of the following statements is/are correct?
(1) The molar mass of C_{60} is 12.0 g .
(2) The sold gives carbon dioxide upon complete combustion.
(3) The melting point of the solid is higher than that of diamond.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE09 01
The electronic arrangementis of three chemical species are shown below:
W : 2,1
$\mathrm{X}^{2+}: \quad 2,8$
Y^{-}: 2,8,7
Which of the elements W, X and Y are in the same period of the Periodic Table?
A. W and X only
B. W and Y only
C. X and Y only
D. V, X and Y

CE09_07
A colorless aqueous solution of compound Z can conduct electricity and hurns blue litmus paper red. It can be deduced that
A. Z must be an ionic compound.
B. Z must conain hydrogen in its chemical formula.
C. Solution of Z must contain more ions than molecules.
D. Solution of Z must contain more H^{+}ions than OH^{-}ions,

CEOS 18
Which of the following statements concerning the Periodic Table is/are correct?
(1) Ni is an example of transition elements.
(2) The elements are arranged in increasing order of nentron number.
(3) The lower the element located in each group, the more reactive the element is.
A. (I) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE09_19
Which of the following substances can exist in the form of simple molecules?
(1) iodine
(2) nylon
(3) dry ice
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) auly

CEO9_22
A substance has a high melting point and docs not conduct electricity when in solid state. It may
be
(1) a compound with giant molecules.
(2) an element with giant covalent structure.
(3) A compound with giant ienic structure.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) ouly
D. (1), (2) and (3)

CE09_28

$1^{\text {art }}$ statement

$2^{\text {nd }}$ statement
Ammonium chloride is an ionic compornd.
Anmonium chloride can conduct electricity in aqueous state.

CE10_01
How many electrons and neutrons are there in a doubly clarged cation formed from ${ }_{25}^{55} \mathrm{Mn}$?

	Number of electrons	
A.	23	
Aumber of neitrons		
B.	23	30
C.	25	32
D.	25	28
		30

CE10_13
Which of the following combinations shows a correct matching of a molecule and its structural formula?

	molccule
A. nitrogen	siructural formula
B. helium	$\mathrm{N}=\mathrm{N}$
C. carbon dioxide	$\mathrm{He}-\mathrm{He}$
D. hydrogen peroxide	$\mathrm{O}-\mathrm{C}-\mathrm{O}$

CE10_17
Which of the substances listed in the following table has a giant ionic streteture?

Substance	Electrical conductivity in solid state	Elcetrical conductivity in molten sfate	
W	not conducting		
X	not conducting conducting		

CEI1_01
Element Q forms a stable Q^{2+} ion. What may the atomic number of Q be?
A. 6
B. 11
C. 14
D. 20

CE11_02
The atomic number of element X is 15 . X reacts with chlorine to form a chboride. Which of the following oan represent the electronic diagram of the chitoride? (Only electrons in the outermost
shells are shown.)
A. $: \ddot{\mathrm{X}}: \ddot{\mathrm{Cl}}:$
B. $\quad \ddot{\mathrm{Cl}}: \ddot{\mathrm{X}}: \ddot{\mathrm{C}}:$
$: \mathrm{Cl}_{-}$
c.
$[\mathrm{X}]^{+}\left[\begin{array}{ll}: & \ddot{\mathrm{Cl}}: \\ & :\end{array}\right]^{-}$
D. $[\mathrm{X}]^{3+} 3[: \ddot{\mathrm{Cl}}:]^{-}$

CE11_03
Which of the following subslances is a single componid?
A. graplite
B. villegar
C. ethanol
D. Petrol

CE11_31
X, Y and Z are three different elements. X^{2+} ion, Y^{*} ion and atgon atom have the same electronic arrangemeni. Z belongs to the same period as X and the same group as Y in the Periodic Table. What is Z ?
A. Mg
B. Cl
C. Ca
D. Br

ALIO(1)_03 (modified)
${ }^{123}$ and ${ }^{127}$ I are two isotopes of iodine. ${ }^{[23}$ I is radioactive will a half-life (time required to reduce by half of its origimal amount) of 13 hours, while ${ }^{[27}$ is not radioactive. Which of the following statements aboui these two isotopes is/are correct?
(1) ${ }^{123}$ I is chemically more reactive than ${ }^{127}$ I.
(2) ${ }^{123} \mathrm{I}$ has a groater proton-to-neutron ratio than ${ }^{12 / 1}$.
(3) The number of ${ }^{123}$ atoms in a sample drops to $1 / 4$ of its original value after 26 lwurs.
A. (1) only
B. (2) ouly
C. (I) and (3) only
D. (2) aud (3) ouly

DSE11SP_07
The alomic number of an element X is 18 . An atom of X has a mass number of 40 . The atom las
A. 18 protons, 22 neutrons and 18 electrons.
B. 18 protons, 22 neutrons and 22 electrons.
C. 18 protons, 40 nentrons and 18 electrons.
D. 22 protoms, 22 neutrons and 18 electrons

DSE11SP_11
Element X has three isotopes, ${ }^{205} \mathrm{X},{ }^{207} \mathrm{X}$ and ${ }^{208} \mathrm{X}$. The graph (on the right) shows the relative abundances of the isotopes.
What is the relative atomic mass of X ?
A. 206.8
B. 207.0
C. 207.3
D. 207.5

DSE11SP_22
Iodine is a solid at room temperature and pressure. Which of the following statenants coneerning the strueture of iodine is/are correct?
(1) lodine fras a giant covalent structure
(2) Iodine molecules are held together by van der Waals' forces.
(3) Iodine atons are held together in pairs by covalent bonds.
A. (1) orly
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE11SP_24

${ }^{\text {st }}$ statement

Carbon dioxide and silicon dioxide have similar physical properties.
$2^{\text {nd }}$ statement
The atoms of carton and silicon have the same number of electrons in their outermosl shells.

DSE11SP_36
$1^{\text {st }}$ statement
The reaction of ethanoic acid with ethanol is a neurnalization.

$2^{\text {nd }}$ statement

Water is one of the products in the reaction of ethanoic acid and ethanol.

DSEI2PP 01

Element \bar{X} occurs in nature in two isotopes, ${ }^{69} \mathrm{X}$ and ${ }^{71} \mathrm{X}$. The table befow lists the relative abundance of each isotope:

DSE12PP 03
Which of the following specics is NOT an appropriate example for illustrating dative bond formation?
A. NH_{3}
B. $\mathrm{NH}_{4}{ }^{\text { }}$
C. BF_{4}^{-}
D. $\mathrm{BF}_{3} \mathrm{NH}_{3}$

DSE12PP_04
Which of the following statements about silicon dioxide is correct?
A. It consists of discrete molecules.
B. If melts upon heating in a test tube.
C. It is ductilo
D. It is a poor conductor of electricity.

DSEI2PP_15
Which of the following statements best describes metallic bonding?
A. It is an attractive force between ions,
B. It is an atractive fore between polar chemical speceies.
C. It is an attractive force between atomic nuclei and bondipair electrons.
D. It is an attractive force between cations and delocalized electrons.

DSE12PP_18
Barium (Ba) is an element in Group II of the Periodic Table. Which of the following is/are the expected observation(s) when a small piece of barium is added to a trough of water containing a few drops of phenolphthatein?
(1) A colorless gas is liberated.
(2) The piece of barium floats on the water surface.
(3) The resulting solution in the trough is colorless.
A. (1) only
B. (2) only
C. (1) aud (3) only
D. (2) and (3) only

DSE12_01
Which of the following substances CANNOT conduct electricity?
A. $\mathrm{Pt}(\mathrm{s})$
B. $\mathrm{PbBr}_{2}(\mathrm{I})$
C. C(graphite)
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{H}$

DSE12_08

Silicon and carbon react to form silicon catbide. The crystal strusture of silicon carbide is similar to that of diamond. Silicon carbide is very hard because
A. It has a high melting point.
B. Silicon atoms and carbon atoms form triple bonds.
C. It has a giant network structure with strong covalent bond.
D. Both silicon and carbon atoms have four outermost shell electrous.

DSE12_1s
Which of the following statements concerning an ${ }^{131} 1$ and a ${ }^{13 i} \mathrm{Xe}$ atom is/are correct?
(1) They have the same number of protons.
(2) They have different numbers of neutrons.
(3) Thoy have different numbers of outernost shell electrons
A. (I) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSEI3_01
Sllicon is an element in Gromp IV of the Periodic Table. The oxide of silicon has the chemical formula SiO_{2}. Which of the following statement about silicon and its oxide is correct?
A. Silicon is a good conductor of heat.
B. Silicon exists as simple molecules.
C. SiO_{2} is a hard material at room temperature.
D. SiO_{2} dissolves in water to give an acidic solution.

DSE13_02
Suppose that element X has only two isotopes, ${ }^{63} \mathrm{X}$ and ${ }^{65} \mathrm{X}$. The graph (on the right) shows the relative abundance of the two isotopes:
Which of the following is the relative atontic mass of x ?
A. 63.3
B. 63.5
C. 63.6
D. 64.0

DSE13_04

Seandium (Sc) is a metal. Scandium, in its compounds, exhibits only one oxidation mumber. The chemical formula of scandium nitrate is $\mathrm{Sc}\left(\mathrm{NO}_{3}\right)_{3}$. Which of the following is most likcly to be the chemical formula of scandium phosphate?
A. $\mathrm{Sc}_{2}\left(\mathrm{PO}_{4}\right)_{3}$
B. ScPO_{4}
C. $\mathrm{Sc}\left(\mathrm{PO}_{4}\right)$
D. $\mathrm{Se}\left(\mathrm{PO}_{4}\right)_{3}$

OSE13_12
Both radium (Ra) and calcium (Ca) belong to the same group of the Periodic Table. Which of the following statements is INCORRECT?
A. Radium is a good conductor of electricity in the solid state.
B. Radium atoms readily donate electrons to form Ra^{2+} ions.
C. Both radium and catcium become tarnished after exposed to air for some the
D. Radium is less reactive than calcium.

DSE14_01

Which of the following atoms has the smallest number of neutrons?
A. ${ }^{63} \mathrm{Ca}$
B. ${ }^{59} \mathrm{Co}$
C. ${ }^{58} \mathrm{Ni}$
D. ${ }^{57} \mathrm{Fe}$

DSEl4_02
Which of the following compounds has a giant ionic structure?
A. $\mathrm{N}_{2} \mathrm{O}_{4}$
B. HNO
C. NCl_{3}
D. $\mathrm{NH}_{4} \mathrm{NO}_{3}$

DSE15_03
Element Q belongs to Group II of the Periodic Table. It combines with element R to give an ionic compound with chemical formula Qarz Which group of the Periodic Table docs R belong to?
A. Group III
B. Group V
C. Group VI
D. Group VII

DSE15_15
Which of the following statements conceming 'atom' is correct?
A. All atoms do not carry net clarges.
B. Mass is evenly distributed within an atom
C. All atoms consist of protons, neutrons and electrons.
D. For all elements, atoms of the same element have the same mass number

DSE15 35

$$
1^{\text {st }} \text { statement } \quad 2^{\text {nd }} \text { sfatement }
$$

The melting point of silicon is higher than The number of electrons in a silicon aton
that of aluminium.
greitcrithan that it ah akiminium atom

DSEIG_02
Which of the foliowing is the electron diagram (only electrons in the outermost shell are shown) of fithium sulphide?
A. Li:S:
B. $[\mathrm{Li}]^{+}\left[\begin{array}{rl}80\end{array}\right]^{-}$
c. $[\mathrm{Li}]^{+}\left[\mathrm{PR}^{\circ \mathrm{S}} \mathrm{S}^{\circ}\right]^{2-}[\mathrm{Li}]^{+}$

DSE17_01
Elements X and Y forn an ionic compound with chemical formula $X_{2} Y$. If the ion of X and ion of Y have the same electronic arrangement, which of the following may this compotind be?
A. Lithium oxide
B. Aluminium oxide
C. Potassimm sulphide
D. Maguesium chlaride

DSEI7_16
Which of the following statements concerning helium isfare correct
(I) Helium is chemically inert.
(2) Helium exists as diatomic molecules.
(3) The outernost electron shelt of a helium atom has an octet striecturc.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE18_02
Neon exists as a gas at room temperature and pressure because
A. neon is chemically inert.
B. neon molecule are monoatomic.
C. the atractive force between neon atoms is weak.
D. the outemost electron sheti of a neon atom has an octet structure.

DSE18_05

Quartz $\left(\mathrm{SiO}_{2}\right)$ is harder than dry ice $\left(\mathrm{CO}_{2}\right)$ because
A. the atomic size of silicon is larger than that of carbon.
B. a silicon atom lits inore electrons than a carton atom has.
C. quartz has a giant network structure, but dry ice consists of discrete molecules.
D. the silicon-oxygen bond in quartz is strong, but the carbon-oxygen boad in dry ice is weak

DSE19 01
Whicl of the following pairs of atomic numbers corresponds to elements will similar chemical properties?
A. 4,14
B. 8,18
C. 9,35
D. 19,38

DSE19 02
The set-up of an experiment is shown belos:

Whan be observed atter the circuit is closed for a period of ting
B. If X is dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, a orange patch migrates towards Q.
C. IfX is ellanol, a purple patch migrates towards P
D. If \mathbf{X} is eflianol, an orange patch migrates towards \mathbf{X}

DSEI9_24
$1^{\text {st }}$ statement
$2^{\text {nd }}$ statoment
Mercury has good electrical conductivity at Mercury has delocalized electrons. room temperature.

DSE2020:
2. Which of the following statements concerning quarta is correct?
A. Quatz is soluble in hexane
B. Quattz consists of SiO_{2} molecules.
D. Quartz is hard because it has a giant covalent network structure
3. What is the mass of oxygen in 24.0 g of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$?
(Relative atomic masses: $\mathrm{H}=1.0,0=16.0, \mathrm{~S}=32.1, \mathrm{Cu}=63.5$)
$\begin{array}{lr}\text { A. } & 6.2 \mathrm{~g} \\ \text { B. } & 9.6 \mathrm{~g} \\ \text { C. } & 13.8 \mathrm{~g} \\ \text { D. } & 21.7 \mathrm{~g}\end{array}$
5. Which of the following statements concerning francium (atomic number $=87$, is correct?
A. تrancium has a bigher melting point than potassium.
B. Francium forns cations more readily than potassium,
C.
Francium is a weaker oxidising agent than potassium.
D. Francium has a fewer number of occupied electron shells than potassium
14. The set-up below is used to show that hexane (C H.) contains carbon and hydrogen, What are X and Y ?

DSE2021:

1. The meeting poin of a chemical species is $146^{\circ} \mathrm{C}$. It is soluble in water and the solution formed does not conduct electricity. Which of the following structures would this chemical species have?
```
A. giant ionic structure
\({ }^{\text {B. giant metallic structure }}\)
C. giant covalent structure
D.
simple molecular structure
```

19. The composition by mass of element \mathbf{X} in the cempound $\mathrm{K}_{2} \mathrm{XO}$, is 26.8%. Which of the following
(Relative atomic masses: $0=16.0, \mathrm{~K}=39.1$)
(1) X is a transition metal.
(2) X is an element in Group vi of the Perlodic Table.
A. (1) only
B. (2) only
B. (2) only
C.
D.
(2) and (3) anly
(3) only
20. Which of the following solids has $/$ have delocalised electrons in its $/$ their structure(s) ?
(1) graphite
(3) silyer
$\begin{array}{ll}\text { A. } & \text { (1) only } \\ \text { B. } & \text { (2) only } \\ \text { C. } & \text { (1) and (3) only } \\ \text { D. } & \text { (2) and (3) only }\end{array}$

Structural Questions
CEOO_01b

Diagram I : an allotrope of carbon

Dingran II : sodium chloride

The two diagrams above represent part of the structure of an allotrope of carbon, and sodium chloride at room temperature.
(i) What type of bonding exists in each of the substances shown above?
(ii) State a condition ander which each substance can conduct electricity. Explain your answers.
(iii) Name an allotrope of carbon ollier than that shown above
(iv) Which allotrope of carbon is used to
(I) make pencil lead?
(2) cut glass?

Explain your answers with reference to the different arrangenents of atoms in these two allotropes.
(y) Do you agree with the statoment; 'sodium chloride cannot casily be changed into sodium and chloride?' Explain your answer.

(12 marks)

CES1_01a
The following is a part of the Periodic Table:

	Group							
	I	II	III	IV	V	VI	VII	0
Second period				a			b	
Thitd period	c		d			e	f	g

Refcring to the leters indicated in the above table, answer the following questions:
(i) (1) What is the hame for the family of clements of whith b and fae menbers?
(2) In what way are the electronic arrangenents of the atoms of elements b and f
(I) similar to each other?
(II) different from each other?
(ii) Element d has a higher melting point than element c. Explain.
(iv) Two clements in the above table have allotropes.
(1) Explain the meaning of 'allotropes'
(2) Suggest what the two elements are.
(v) Element e can form compounds with elements a and c separately.
(1) Draw the efectronic stuctures of these two compounds, showing the outermost electrons ONLY.
(2) Which of these two compounds has a higher melting point? Explain your answer.

CE92 01 b
(iii) Why can metals conduct electricity?

CE92_03b
Noon, a monatomic gas, occurs naturally as a mixture of three isofopes. The relative abundnuce of these isotopes is tabulated below:
these isotopes is tabulated below:

Isotope	${ }_{10}^{20} \mathrm{Ne}$	${ }_{10}^{21} \mathrm{Ne}$	${ }_{10}^{22} \mathrm{Ne}$
Abundance (\%)	90.52	0.31	2.17

(i) State the number of clectrons in the outermost sheil of a neon atom,
(ii) Explain why neon gas is monatomic.
(iii) What is meant by the term 'isotope'?
(iv) Calculate
(1) the relative atomic mass of neon.

CE93_02b
Physical properties of substances depend mainly on the types of binding force between thei constituent particles.
(i) The melling points of diamond and tetrachloromethane are $3750^{\circ} \mathrm{C}$ and $-23^{\circ} \mathrm{C}$ respectively Dray 3-dimentional diagrams for the structure of dianond and for a tetrachloromethane molecule. Hence explain the difference in their mefling points.
(ii) In their solid states, sodium conducts electricity but sodiun chloride does not. Explain.
(iii) Explain why tetrachloramethane does not conduct electricity in liquid state.

CE93_04a

The following table gives some information about $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z which represent particles of some elements. These particles are cifler atoms or ions.

	Mass number	Atomic number	No. of proton	No. of electron	No. of neutron
W		12		12	12
X			12	10	12
Y	35	17			
Z			17	17	20

(i) In which group of the Periodic Table should W be placed? Explain your answer.
(it) (1) What is the relationship between W and X ?
(2) Suggest a chemical reaction which can change W into X.
(iii) Molecules of Y and Z are both diatomic.
(1) Draw the electronic structure of a molecule of Y , showing electrons in the outermost shells only,
(2) Do molecules of Y and of Z have the same chemical properties? Explain your answer,
(iv) W can fonm a compound with Z . Calculate the formula mass of the compound formed.

CE94_01
The table below lists some information about three metals X, Y and Z

Metal	X	Y	Z
Atomic number	12	20	

(a). To which group in the Periodic Table docs Y beloug?

CE94_07b
The table below lists some physical properties of lead, bromine and lead(II) bromide.

	Lead	Bromine	Lead(II) bromide
Melting point	$328^{\circ} \mathrm{C}$	$-7^{\circ} \mathrm{C}$	$370^{\circ} \mathrm{C}$
Electrical conductivity in the solid state	Conducting	Non-conducting	Non-conducting
Electical conductivity in the liquid state	Conducting	Non-conducting	

(i) Explain the difference in metting points betwen bromite and tead(1)) bromide.
(ii) Explain the difference in electrical conductivity between lead and Lead(II) bronide in the solid state.
(iii) Will lead(II) bromide conduct electrieity in the liquid state? Explair your answer.

CE95_02

In each of the following groups of substances, there is ONE substance which is different from the others in terms of their properties. In each group, identify the substance which is different from the others and explain your choice.
(a) argon, fluorine, felhim, neon

CE95 04
"When atoms combine, they tend to attain noble gas electronie structures."

Discuss how atoms can attain the noble gas electronic structures. In your answer, your should give suitable examples and the electronic structures of the products formed.

CE96 07a
The boxes below show some information about two atoms, lydrogen (C) and denterimn (D):

Mnss number \rightarrow
Alomic nilmber \rightarrow

(i) Suggesta tern to indicate the relationship between a hydtogen atom and a deuterium atom.
(i) Slate the number of neutrons in a deuterium atom
(iii) Deuterium reacts with oxygen in the same way as hydrogen.

$$
2 \mathrm{D}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{D}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{AH} \text { is negatiy }
$$

The product of the reaction is known as "heavy water".
(1) Explain why deuterium reaets with oxygen in the same way as hydrogen.
(2) Draw the electronic structure of "heavy water", showing elecirons in the outermost sheils ONLY.
(3) What is meant by ' ΔH is negative"?
(4) What is the formula nass of 'heavy water'?

CE98 01
Lithium is a group I element in the Periodic Table. It occurs naturally in two isotopic fonns. The relative abundance of the each of these isotopes is shown in the table below:

Isotope	${ }^{6} \mathrm{Li}$	${ }^{7} \mathrm{Li}$
Relative abundance (\%)	7.4	92.6

(a) What is the meaning of the term 'isotope'?
(b) Calculate the relative atomic mass of lithium

CE99_04

With the help of electronic diagrams, describe the formation of magnesium chloride and tetrachloroniethane from atoms of relevant elements. State, with explanation, which of the two compounds has a higher melting point.

CE99 06a

(i) Draw the electronic diagram of water, showing electrons in the outermost shells only.

(1 mark)

CE00 01
Six compounds are classified into two groups as shown in the table below:

Gas	Solid
Ammonia	Yron(1II) oxide
Carbon dioxide	Magnesium oxide
Nitrogen dioxide	Potassium oxide

Reclassify these compounds into two groups according to
(a) one of their physical properties, and
(b) one of their chemical properties.

CE00_02

The table below lists some information about four elements, $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z :

Element	Atomic number	Refative atomic mass
W	16	32.1
X	18	39.9
Y	19	39.1
Z	20	40.1

(a) What is the meaning of the term 'relative atomic mass'?
(b) Stato, wiff explanation, which of the above elements
(i) should be stored under paraffin oil.
(ii) is used to fill a light bulb.

CE00_08e
State whether each of the following statements is true or false. Explain your answer in each case
(i) The metting point of sodium cbloride is much higher than that of metlane because the ionic bonding in sodium chioride is much stronger than the covalent bonding in methane.
Note: melhane is a simple molecule.

CE01 07

(c) The photograph below shows a diamond ring:

(i) Explain why gold and diamond cach has a high melting point.

CEOI_08a
A part of the Periodic Table is shown below:

Period	2	Group							
		11		11	IV	ψ	VI	Yil	0
		Li	Be	B	C	N	\bigcirc	F	Ne
	3	Na	Mg	Al	Si	P	S	Cl	Ar
	4	K	Ca					Br	Kr
	5								Xe_{e}

(i) Across a period, the elements demonstrate a gradual change in some of theii physical properties. State ONE such property.
(iv) Xenon (Xe) is a Group 0 element. State, with explanation, what will happen if a balloon filled with xenon is released from the top of a tower. \qquad

CE02_06a
(iii) Explain why moten magnesium chloride can conduct electricity.

CE02 06 b

Magnesium occurs naturally in three isotopic forns. The relative abundance of each isotope is slown in the table below:

Isotape	${ }^{24} \mathrm{Mg}$	${ }^{25} \mathrm{Mg}$	${ }^{25} \mathrm{Mg}$
Relative abundance(\%)	78.6	10.1	${ }^{11.3}$

(i) State the meaning of the term 'isolopes of an olement'.
(ii) Calculate the relative atomic mass of magnestun.
(iii) Is il possible to separate the isotopes of magnesium by chenical means? Explain your answes.

CE02 08 b

Both carbon and silicon are Group IV elements in the Periodic Table.
(i) Draw the electronic diagram of a carbon dioxide molecule, showing electrons in the outernost slaclls only,
(ii) Explain way carbon dioxide can be used in fire fighting.
(iii) Explain why earbon dioxide is a gas, whereas silicon dioxide is a solid at room temperature and pressure,
(iv) (2) Suggest ONE use of silicon.

CE03_03

(a) The atomic numbers of sulphar and chlorine are 16 and 17 respectively. Draw the electronic diagrams of the following atoms:
(i) sulphur atom
(ii) chlorine atom

Chloting react with oupler bom a compound with reltive The compound contains 52.5% of chlorine by mass
(i) Deduce the molecular fomula of the compound.
(ii) Draw the electronic diagram of the compound, showing electrons in the outermos sfiells only:
(Relative atomic masses: $\mathrm{S}=32.1, \mathrm{Cl}=35.5$)

CE03 07a

The setmp shown below is used to investigate the electrical conductivity of lead (II) bromide.

When the lead(II) bromide beconres molten, the bulb lights up.
(iii) State what will happen to the bulb when thenting is stopped and the molten lead(Il) bromide is allowed to cool down gradually to room temperature,
Explails your answer.

CEO4_05
$\mathrm{Ni}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{SiO}_{2}$ and SO_{2} are oxides of Period 3 elements in the Periodic Table. Discuss how the melting points of these oxides are related to the bonding and structure.

CE04_08a
A portion or the Periodic Table is shown below:

(i) Identify ONE semi-metal in the above table.
(ii) Suggest why Group 0 clements seldon form compounds.
(iii) Using aluminium as an example, describe the bonding in metals. Hence, explain why metals are ductite.
(iv) Which metai and non-metal in the above table would react most vigorously with each other?
(v) (I) The atomic number of bromise is 35 . The electronic arrangentent of a bromine atom can be represented as $2,8, x, y$. What are the values of x and y ?
(2) $\mathrm{At} 5^{\circ} \mathrm{C}$, the reaction of bromiae with sodium hydroxide solution is similar to that of chlorine with sodiun hydroxide solation.
Write a chemical equation for the reaction of bromine with sodium bydroxide solution at this temperature.
(8 marks)

CE05_01
(a) Calcium is an element in Group Il of the Periodic Table.
(i) Calcium reacts with nitrogen to form calcium nitride, which is an ionic compound. Draw the electronic diagram of calcium sitride, showing electrons in the outernost shells only.
(ii) Suggest a test to show that marble is a calcium-centaining substance.
(b) Strontium (Sr) is another Group il element. It exists in several isotopic forms.
(i) What is the meaning of the term 'isotope'?
(ii) Strontiun-90 $\left({ }^{\infty} \mathrm{Sr}\right)$ is a radioactive isotope of strontium, and is one of the dangerous by-products of meclear fission.
Complete the table below by prowiding the relevant information for a ${ }^{0} \mathrm{Sr}$ atom.

	Number of protons	Number of neatrons
${ }^{\text {POS. }} \mathrm{SF}$		

(c) (i) State the similarily between a calcium atom and a strontium atom in tems of electronic arrangement.
(ii) Children's teeth require a large amount of calcium to grow. Scientists found that in areas where nuclear weapon tests were conducted above the ground, childron's teeth contained a higher level of ${ }^{90} \mathrm{Sr}$.
Suggest a reason for the findings of the scientists.

CE07_01
A is a compound fomed from oxygen and magnesium, while B is a compound formed from oxygens and fluorine.
(a) Draw the electronic diagram of A, showing electrons in the oufermost thells only.
(1 mark)
(b) Draw the electronic diagram of B, showing electrons in the outermosi shells only.
(c) Compare the melting points of \boldsymbol{A} and \boldsymbol{B}. Explain your answer.

CE08_01
T, X and Z are three elements in the Periodic Table, with the sum of their ntomic numbers equals to 38. Moreover, boin T and X are Group VII elements, while the atomic number of T is smalle ithan that of X.
(a) What are elements T, X and Z ?
(b) Draw the electronic diagram of the conpound formed from T and X, showing electrons in the outermost shells onily
(1 mark)
(c) Discuss, with explanation, the electrical condectivity of the compound formed from X and Z with reference to the type and property of the particles in it.
(2 marks)

CE08_02

Boron occurs naturally in two isotopes, ${ }^{10} \mathrm{~B}$ and ${ }^{14} \mathrm{~B}$.
(a) What is meant by the ferm 'isotopes'?
(b) With reference to the Periodic Table, catculate the percentage abundance of " B in nature.
(c) ${ }^{10} \mathrm{BCl}_{3}$ and ${ }^{11} \mathrm{BCl}_{3}$ are compounds formed respectively from the two isotopes of boron with chlorine. ${ }^{10} \mathrm{BCl}_{3}$ reacts with water to give white fiumes. State, with explanation, the expected observation when ${ }^{1} \mathrm{BCl}_{3}$ is added to water.

CE09_09
Discuss respectively why electrical conductivity and melling point differ among sodium chloride (NaCl), sodiun (Na) and chorine (Cl_{2}).

CEII 03

Graphite is a forn of carbon and can be used to make pencil cores and efectrodes. There are layers of carbon atoms in the stricture of graphite. In each layer, each carbon atom is linked to other carbon atoms by covalent bonds. Moreover, delocalized electrons exist in the layers, while van der Waals' forces exist between the layers as shown in the diagram below:

(a) Answer the following questions according to the information given above.
(i) Explain why the graphite used to make pencil cores can be easily detactied to form markings on paper.
(ii) Explain why graphite can be used to make electrodes.
(2 marks) explain why using lead to make pencil cores is not as good as using graphite.
(2 marks)
Diamond is another fom of carbon, With reference to the bonding and structure of diamond, explain why diamond is so hard.
(2 marks)

CE11_08

Write an essay on how the position of an element in the Periodic Table is determined by the electronic arrangement of its atom, and how this position determines the types of chemical bondings the atom might form.
(9 marks)
(iii) The following data were obtained from the nass spectram of a catbon-containing compourd:

lon	Mass /a.m.u.	Relative intensily
${ }^{12} \mathrm{C}^{+}$	12,010	100.00
${ }^{13} \mathrm{C}^{+}$	13,003	1.12

Using the above data, calculate the relative atomic moss of earbon,
(2 marks)

AL.98(II) 01 (modified)
(a) Draw the electronic diagram of BF_{3}.
(1 mark)
(b) BF_{3} reacts with NH_{3} to form an adduct, $\mathrm{BF}_{3} \mathrm{NH}_{3}$. Account for the formation of the addice and draw its electronic diagram.

AL98(II)_02 (modified)
The structures of two allotropes of earbon, diamond and graphite, are shown below.

dinmond
(a) Comment on the three different carbon-carbon distances as indicated in the albove structure,
(b) With reference to the above structures, explain why diamond is hard whoreas graphite is sof enough to be used as lubricaut.
(3 marks)

AL99() 01

Account for the statement that "At 298 K and 1 atm pressure, carlon dioxide is a gas whereas silicon dioxide is a solid".

AL96(I) 01 a
(i) Write down the number of neutrons, protons and electrons in one atom of carbon-12, ${ }^{12} \mathrm{C}$, and ine one atom of earbon- $13,{ }^{13} \mathrm{C}$.
(ii) The isotopic mass of ${ }^{12} \mathrm{C}$ is 12.000 atomic mass (a.m.u.). Calculate the mass, in kg of 1 mark)

The isotopic mass of ${ }^{12} \mathrm{C}$ is 12.000 atomic mass (a.m.u.). Calculate the mass, in kg , of I mo of ${ }^{12} \mathrm{C}$ atoms.
(1 a.m. $\mathrm{u}_{2}=1.6605 \times 10^{-27} \mathrm{~kg}$; Avogadro constant, $\mathrm{L}=6.0221 \times 10^{23} \mathrm{~mol}^{-1}$)

ALOOCD) 01
The diagrams below show the arrangement of atoms, ions or molecuies in four crystaline substances: graphite, ice, iodine and sodium chloride.
(a) Write the name of the substance of each structure in the space provided.
(b) Label, on the diagrams, the types of interactions that are present in these substances.
(1)

(ii)

(iii)
(iv)

AL02(1) 03
CO_{2} and SiO_{2} are oxides of Group IV elements. Account for the fact that CO_{2} is a gas white SiO_{2} is a high melting solid under room temperature and atmospheric presstre.

ASL03(1)_07
Carbon, germaniem and lead are elements in Group IV of the Periodic Table
(a) Diamond and graphite are allotropes of carbon.
(i) Draw their three-dimensional structures
(2 marks)
(ii) With reference to their structure, compare the harduess of diamond and graphite.
(3 marks)
(b) Germaniun has the same structure as diamond. Which of these substances has a higher melting point? Explain.
(1 mark)
(c) Suggest why the density of tead ($11.3 \mathrm{~g} \mathrm{~cm}^{-3}$) is much higher than that of gernaniuns (5.3 $\mathrm{g} \mathrm{cm}^{-3}$)

ASL04(I) O1 (modified)
(a) Wite the electronic arrangement of a copper atom
(b) Copper occurs naturally in two isotopic forms, ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{C}$. Estimate the relative abundance of each isotope, and show how the answer is obtained.
(c) Describe the bonding in copper. Hence, explain why copper is an electrical conductor.

AL04(I) 02

Consider the noble gases, $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar} \mathrm{Kr}$ and Xe . Sketch a graph to show the variation of boiling poim of these noble gases and account for the variation.
(a) Suggest, with explanation, what element X is
(b) Give one use of X and one ase of its oxide.
(c) (i) Draw the tifee-dimensional structure of the chloride of X
(ii) When the chloride of X is added to water, a white. State the expected observation and write the chemical equation for the reaction involved.

ASL04(I) 06
(a) Explain the following observation:
'At 298 K and a atm pressure, cabbon dioxide is a gas whereas silicon dioxide is a solid.' (2 marks)
(b) Wheth of the following diagrams, X or Y, represents the structure of silicon dioxide int solid state?

(1 matk)
(c) With reference to its structure, explain why silicon dioxide can be used as abrasive.
(1 mark)
(d) Dry ice can be used in packaging ice-cream. Suggest TwO advantage of using ice over using ice in packaing ice-cream.

AL05(1) 01 (modified)

Describe the interaction among the entities in each of the following species:
(a) Argongas
(b) Zinc metal
(c) CaF_{2} crystal

AL06(1) 01 (modified)
The table below lists the melting points of three oxides of the Period 3 etements:

Oxide	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SO_{2}
Melting point $/{ }^{\circ} \mathrm{C}$	92 O	2040	-75

Account for the large diference in the melting points of the three oxides

AL0G(I)_02 (modified)

Draw a diagran to slow the three-dimensional arrangement of cafben afoms in graphite, and indicato the interactions between the carbon atoms.

ASL06(I) 05

Sticon (Si) and germanium (Gc) nomally have the same crystal structure, as shown betow:

(a) Identify the type of crystal structure of silicon and germaium,
(b) Explain which of these two clements has a higher meling point.
(1 mark)
(2 marks)
(c) Explain why silicon(IV) oxide has a higher melthg point than silicondV) chitorlde in terms of their structures.
(3 marks)
$\mathrm{ALOB}(\mathrm{II}) _01$
Both sodium and chlorine are elements in Perind 3 of the Periodic Table. At room temperature and atmospheric pressure, $\mathrm{Na}_{2} \mathrm{O}$ is a solid with a very high melting point whereas $\mathrm{Cl}_{2} \mathrm{O}$ is a gas. Account for this difference in property between $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{Cl}_{2} \mathrm{O}$.

AL08(II)_ 04 (modified)
Dianond and graphite show a marked difference in electrieal conductivity. Account for their difference in electrical conductivity in terms of bonding and structure.

ASL08(il) 04 (modified)
Account for the following observations:
The melling point of potassium bromide is lower than that of sodium bromide.
(2 marks)

AL09(n) 03
Selenium (Sc) is an element in Group VI of the Periodic Table.
(a) Selenum occurs in mature in six isotopes wilt the percentage abundance of each isotope given on the tight Calculate the relative atomic mass of selenium.
b) Selenimu dioxide SoO , has a melting poit the meting point of $315^{\circ} \mathrm{C}$ It does not conduct electricity in both solid and molten state. Deduce the type of bonding and structure of SeO_{2} (2 marks)

AL09(IL)_03

Account for the following:
"Under stress, metals deform but their ionic salts ffacture."
(2 marks)

AL12(II) 08

(a) The strseture of graplite is shown below:

Describe the bonding and structure of graphite. Hence, explain why graphite is considered a sofl material.
(4 marks)
(b) Graphene is a flat monolayer of carbon atom tigitly packed into a two-dimensioual honeycomb lattice. It is the building block for graphite, Graphene can be isolated from graphite by using adhesive lape.
(i) Suggest why graphene is considered a very strong material
(1 mark)
(ii) Scientiss anticipate that graphene, affer appropriate fabrication, can replace steel in making cars. Apart from strength consideration, suggest ONB reason why graphene car be a bettor material than steel in making cars.
(1 mark)

AL13(I)_05

Calcium and radium are elemcuts in Group II of the Periodic Table.
(a) Would the melting point of raditm be higher or lower than that of calcium? Explain.
(b) Account for the difference in reactivity of $\mathrm{Ca}(\mathrm{s})$ and $\mathrm{Ra}(\mathrm{s})$ will water.
(c) Predict, with explanation, the reaction of RaCl_{2} (aq) with $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

AL13(II) 08

Both arsenic and bromine are elements in Period 4 of the Periodic Table. They form fluorides with chemical formulae AsFs_{5} and BrFs_{5} respectively.
(b) Given: BrF_{5} and AsFs react according to the following equation

$$
\mathrm{BrF}_{5}+\mathrm{AsF}_{5}=\mathrm{BrFs}_{4}^{+}+\mathrm{AsF}_{6}
$$

Comment on the electrical conductivity of liquid BrFs and that of a mixture of BrFs and Asks. Explain your answer.

DSE1ISP_01
State whether each of the following statements is truc or false. Explain your answer in each case.
(a) The melting point of sodiun chloride is much higher than that of methane because the ionic botding in sodium chloride is mucl stronger than the covalent bonding in methane.
(2 marks)
DSE11SP_07
Complete the table below by
(a) drawing a three-dimensional diagram for the structure of each solid substance, and
(b) giving an explanation of whether the solid substance is an electrical conductor.
(3 marks)
(3 marks)

Solid substance	Three-dintensional diagran for the structure of the solid substance	Explanation of whether the solid substance is an electrical conductor
Diamond		
Graphite		
Caesiun chloride		

DSE12PP_03
(a) Nittogen reacts with magnesium to give magnesiun nitride ($\mathrm{Mg}_{2} \mathrm{~N}_{2}$).
(i) Dray the electron diagram of magnesium nitride, slowing electrons in the outermost shells only.
(b) Consider the nitrogen compound NCl_{3}.
(i) Draw the electron diagram of NCl_{3}, showing efectrons in the oulernost sheils only.
(1 mark)

DSE12_0
Neon occurs maturally in three isotopes with the abondance of each isotope shown in the table below:

Isotope	Abundance $/ \%$
${ }^{20} \mathrm{Ne}$	90.48
${ }^{21} \mathrm{Ne}$	0.27
${ }^{22} \mathrm{Ne}$	9.25

(a) What is meant by the term 'isotope'?
(b) Cateulate the relative atomic mass of neon
(c) Give one daily application of neon.
(d) Explain why the boiling point of neon is lower than that of oxygen

DSE13_01

Water is the most abundant compound on the Earth's surface, II is very important to life on Earth
(a) Draw the electron diagram for a water molectule, showing electrons in the ottermost thells only.

DSE13_02
Both BF_{3} and NH_{3} exist as simple molecules.
(c) BF_{3} reacts with NH_{3} to give $\mathrm{F}_{3} \mathrm{BNH}_{3}$. Describe the bond formation between BF_{3} and NH_{3}.

DSE13 08

Both caesium (Cs) and sodium (Na) are elements in Group I of the Periodic Table, Caesium reacts with cliborine to form caesium chloride.
(a) Write the chemical equation for the reaction caesium with chlorine.
(b) Solid caesium chiloride has a giant ionic structure.
(i) Draw a diagram to show the structure of cacsium chiforide,
(ii) Explain why solid cassiun chloride is britte.
(c) Predict, with ONE reason, whether sodium or caesium is more reactive towards chloride.

DSE13_13
Lithium, beryllium, carbon (graphite) and nitrogen are elements of the second period of the Periodic Table. Arrange them in increasing order of melting point, and explain the order in ferms of stmeture and bonding.
(4 marks +1 mark)

DSE14_01
Graphite is a form of carbon and has a layer structure. Graphene is an individunl single layer of graphite. Their structures are shown below:
graphite
graplene
(a) Thin sheets of graphene can be easily peeted off from graphite using adhesive tape.
(i) Explain why graphenc can be easily peeled off.
(ii) Explain whether graphene can conduet electrieity.
(1 mark)
(iii) Draw the electron diagran for a molecule of the compound formed by complete combustion of graphene, showing electrons in the outermost stefls only.
(1 mark)
(b) Based on the fact that graphene can be easily peeled off from graphite, a student concluded that graphite should have a low melting point due io its layer structure. Explain whether yon agres with this conclusion.
(2 marks)

DSE15 01

Argon and chlotine are elements in the same period of the Periodic Table.
(a) Draw the electron diagram for a molecule of argon, showing electrons in all shefls.
(b) What is the type of intermolecular force in chlorine gas?
(1 mark)
(1 mark)
(c) Complete the table below by siating the natural source and the method of extraction from the source for each element.

Element	Natural source	Method of extraction
Argon		
Chlorine		

(4 marks)

DSE15_10
(a) For each of the oxides below, draw its electron diagram (showing electrons in the outernost shefls only), and stat ils behavior in water.
(i) $\mathrm{Na}_{2} \mathrm{O}$
(ii) $\mathrm{Cl}_{2} \mathrm{O}$
(2 marks)
(2 marks)
DSEI6_0:
Refer to the following information of phosphorus (P) and chlorine (Cl)

	P	Cl
Atomic number	15	17
Relative atomic mass	31.0	35.5

(a) State the electronic arrangement of a phosphoris atom.
(1 mark)
(b) All chlorine atoms have the same atomic number. Explain why some chlorine atoms have different mass numbers.
(1 mark)
DSE16_02
The set-up of an experiment for studying the movement of ions is shown below.

(a) Explain why the filter paper is soaked with $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ instead of water.
(b) State the color of $\mathrm{FeSO}_{4}(\mathrm{aq})$.

(c) Explain what would be observed around the middle of the filier paper when the circuit is closed for a poriod of time.
(d) The experiment is repeated, but the two poles of the cells have been reversed at the very begiming. Explain what would be observed around the middle of the filter paper when the circuit is closed for a period of time.
(2 marks)

DSE16 04

Consider the molecules $\mathrm{CO}_{2}, \mathrm{CS}_{2}$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}$
(c) Suggest why, under room temperature and pressure, CO_{2} is a gas but CS_{2} is a liquid.

(2 marks)

DSE16-08

Consider the experimental set-1p shown below:

(a) In the above experiment, the bulb lights up when the $\mathrm{SrBr}_{2}(s)$ becomes molten. (Atomic number of $\mathrm{St}=38$)
(i) State the observation at carbon electrode \mathbf{X}.
(ii) Write a balf equation for the change that occurs at carbon electrode \mathbf{Y}.
(b) Explain why the experiment should bo performed in a fume cupboard.

DSE17_01

Barium (Ba) is an element in Group II of the Periodic Table. Its chemical properties are similar to thase of calcium.
(a) Describe the bonding in barium.

DSE17. 03

Answer the following questions.
(c) Describe the formation of dative covaleat bond using $\mathrm{H}_{3} \mathrm{O}^{+}$as example.

DSE17 08

Combustion of petrol increases the concentration of carbon dioxide in the atmosphere, and may contribute to global warning. Combustion of petrol also emits poisonous air pollutants.
(b) Draw the electron diagram for a molecule of carbon dioxide, stowing electrons in the outermost shell only.

DSE20_01abciii

DSEI8_01

Lithime occurs naturally in two isotopes, ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$. It can form lithium nitride ($\mathrm{Li}_{3} \mathrm{~N}$) when burnt in air.
(a) (i) Calculate the percentage abundance of ${ }^{6} \mathrm{Li}$ in nature. (Relative atomic mass: $\mathrm{Li}=6.9$)
(2 marks)
(ii) Drav the electron diagram for lithium nitride, showing efectrons in the oufermost shells onty.
(1 mark)
DSE19_01
The table below shows some information of three atoms:

	Number of protens	Number of electrons	Number of neufrons
Protium	1	1	0
Deuterium	1	1	1
Oxygen	8	8	8

(a) Explain why protium ald deuterima are isolopes.
(1 mant)
(b) Deuterium can be represented by D. If reacts with oxygen as shown in the equation below:

$$
2 \mathrm{D}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{D}_{2} \mathrm{O}
$$

Draw the clectron diagrom for a $\mathrm{D}_{2} \mathrm{O}$ molecule, showing ELECTRONS IN THE OUTERMOST SHELLS only.
(1 mark)
(c) A small piece of sodium metal is placed into hiquid $\mathrm{D}_{2} \mathrm{O}$ at room conditions.
(i) State TWO expected observations
(ii) Write the chemical equation for the reaction involved.
(I mark)

DSE19_02

Sodium chloride crystal has a glant jonic structure.
(a) The diagram below shows a part of the structure of sodium chloride crystal with some ions missing.

Complete the diagram by using - as Na^{+}ion and O as Cl^{-}ion.

1. The table below shows some information of elements y and z

	Y	\mathbf{Z}
Atomic number	35	53
Number of occupied electron shelts in the atoms	4	5
Number of eleetrons in the outermost shell in the atoms	7	7

(a) State the electronic arrandentert of an atom of Y.
(b) Draw the electron diagram for a molecule of \angle, showing ELECTRONS IN THE OUTERMOST SHELLS only.
(c) An experiment for Y and Z is performed as shown in the set-ap below. Dilute hydrechloric acid is added to the $\mathrm{K}_{2} \mathrm{SO}_{3}$ erystas, thet the whole set-up is covered with a lid.

1. (c)
(
$\mathrm{K}_{2} \mathrm{SO}_{3}$, crystals react with dilate hydrochtoric acid to give sutphur dioxide Write a chemical equation for the reaction, showing afl state symbols
(ii) State the experted obswryation in Container (1) and wite an ionice equation for the reaction involued.
(ii) It is expected that the observation in Container (2) is similar to that in Container (1). Suggest a reason for this expectation based on electronic arrangement

DSE20_03bi,iii
(b) $\mathrm{H}_{3} \mathrm{NBH}_{4}$ has a structure similar to that of ethane. It efectron diagran is showe below (showing elecirons in the outermost shells only).

(i) Whictio of the $\mathrm{H}-\mathrm{B}, \mathrm{B}-\mathrm{N}$ and $\mathrm{N}-\mathrm{H}$ bords would be dative covalent bond(s) ? Explain your answer.
(IIi) Under suitable conditions, H3NBH ${ }^{2}$ can detompose into baron nitrids and hydrogen. The structure of solid boron nitride is similiar to that of graphite. Draw the structure of ONE LAYER of selid boron nitride (Nose : P and N are in alternate positions).

DSE21_01(a)
(a) Draw the electron diagram for a $\mathrm{C}_{2} \mathrm{H}_{2}$ molecule, showing ELECTRONS IN THE OUTERMOST SHELLS only.

DSE21.03(a),(b),(c)(i)
3. Silicon occurs naturally in three isotapes with the abundance of each isctope shown in the table below :

Isotope	Abundance $/ \%$
${ }^{2} \mathrm{~S} \mathrm{Si}$	92.20
${ }^{2} \mathrm{~V} \mathrm{Si}$	x
${ }^{35} \mathrm{Si}$	y

(a) What is meant by the term 'isotope'?
(b) Calculate x.
(Relative atomic mass: $\$ i=28.1$)
(c) Silicon dioxide is an oxide of silicon.
(i) Explain why silicon dioxide has a high melting point.
6.

Copper(II) phosphate is insoluble in water. What is the number of moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ ions remaining in the solution of the resulting mixture when 0.04 mol of $\mathrm{CuCl}_{2}(\mathrm{aq})$ is mixed with 0.02 mol of $\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})$?
A. $\quad 0.00$
B. 0.01
C. 0.02
D. 0.03
7. A white solid does NOT dissolve in both water and excess aqueous ammonia. Which of the following m this solid be ?
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{Zn}(\mathrm{OH})_{2}$
C. MgSO_{4}
D. CaCO_{3}
10. $\quad 6.54 \mathrm{~g}$ of zinc granules are added to $100.0 \mathrm{~cm}^{3}$ of $1.0 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$. After the reaction has completed, which of the following statements is correct ?
(Relative atomic masses: $\mathrm{Zn}=65.4, \mathrm{Ag}=107.9$)
A. Some zinc granules have reacted and no silver ions remain in the solution.
B. All the zinc granules have reacted and no silver ions remain in the solution.
C. All the zinc granules have reacted and some silver ions remain in the solution.
D. The mass of the zinc granules reacted is equal to the mass of the solid product formed.
18. Which of the following pairs of substances, when mixed, would release hydrogen gas ?
(1) copper and concentrated $\mathrm{HCl}(\mathrm{aq})$
(2) iron and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
(3) calcium and $\mathrm{NaOH}(\mathrm{aq})$
$\begin{array}{ll}\text { A. } & \text { (1) only } \\ \text { B. } & \text { (2) only } \\ \text { C. } & \text { (1) and (3) only } \\ \text { D. } & \text { (2) and (3) only }\end{array}$

1. Iodine is a halogen. It can form potassium iodide and hydrogen iodide.
(a) Name the relationship between ${ }_{53}^{127}$ and ${ }_{53}^{129}$ I.

(1 mark

(b) The electronic arrangement of an iodine atom is $2,8, x, 18, y$. What is x ?

Draw the electron diagram for potassium iodide, showing ELECTRONS IN THE OUTERMOS SHELLS only.
(d) Suggest why an aqueous solution of hydrogen iodide can conduct electricity.
(1 mark)
(e) In terms of bonding and structure, explain whether potassium iodide or hydrogen iodide would have a higher melting point.
2. The diagram below shows an experimental set-up in which a metal oxide $\mathbf{X}_{2} \mathrm{O}$ (s) is decomposed upon strong heating. A silvery metal \mathbf{X} and a colourless gas \mathbf{Z} are formed.

(a) State what \mathbf{Z} is and suggest a test for it.
(b) When 3.028 g of $\mathbf{X}_{2} \mathrm{O}(\mathrm{s})$ is completely decomposed, 2.819 g of metal \mathbf{X} can be obtained.
(i) Calculate the relative atomic mass of \mathbf{X}. (Relative atomic mass : $\mathrm{O}=16.0$)
(ii) Suggest what \mathbf{X} is.

2022

1
10. At room conditions, $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ would decompose into $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ very slowly in the absence of $\mathrm{MnO}_{2}(\mathrm{~s})$. An experiment was performed as shown in the set-up below :

When $10.0 \mathrm{~cm}^{3}$ of $3.00 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ was mixed with a small amount of $\mathrm{MnO}_{2}(\mathrm{~s})$ and detergent solution at room conditions, $\mathrm{O}_{2}(\mathrm{~g})$ started to be released rapidly and foam was produced. The $\mathrm{MnO}_{2}(\mathrm{~s})$ remained chemically unchanged at the end of the reaction.
(a) Write a chemical equation for the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$.
(b) Explain how manganese illustrates a characteristic of transition metals according to the results of this experiment.

Marking Scheme							
MCa							
CE9日 02	D	CE90_03	C	04	A	-25	D
CE90-26	c	CE91_01	B	CE91_02	A	CB92_02	D
CE92_03	c	CE92_04	A	CE92_30	A	CE92_45	C
CE93-01	D	CE93 02	B	CE93 23	D	CE94_01	C
CE94_02	B	CE94_03	A	CE94_36	A	CE94-46	B
CE95_01	A	CE95-02	D	CEOS 03	A	CE95-0.4	C
CE95_06	A	CE95 26	B	CE95 34	A	CE95_39	A
CE96_01	c	CE96 02	B	CE96 03	A	CE96_39	A
CE96_44	c	CE96_45	B	CE96_50	C	CE97_01	D
CE97_02	B	CE97 03	D	CE97_05	B	CE97_30	C
CE98_01	D	CE98. 18	B	CE98 33	B	CE98 45	\wedge
CE99_05	D	CE99 01	B	CE99_11	A	CE99 19	B
CE99_34	D	CE29 39	C	CE99-46	A	CE00_01	B
Ce00_07	c	Crood 09	D	CE00_17	B	$\mathrm{CEOO}_{-3} 3$	D
CECO 3 3:	D	CEOO 42	D	CE00_46	C	CE01_0	D
CE01_07	A	CE01_18	в	CEO1_20	B	CE0! 37	D
CEOL 42	A	CE01_49	D	CE02_OI	C	CE02_28	A
$\mathrm{CEO2}^{36}$	D	CE02_46	A	CE02_49	A	CE03_01	$\mathrm{C}(64 \%)$
CEOS_12	B (88\%)	CE03_25	$\mathrm{D}(57 \%)$	CE03_46	B (59\%)	CESSSP_03	B (67\%)
CEOSSP_16	D	CE05SP_31	A(60\%)	CE04 01	$\mathrm{C}(67 \%)$	CE04_02	$D(54 \%)$
CE04_10	B (47\%)	CE04_23	C(84\%)	CE04_30	A (45\%)	CEO4_31	B (64%)
CR05_03	B (67%)	CE05_06	$\mathrm{D}(76 \%)$	CE05_07	$\mathrm{C}(67 \%)$	CEOS 09	B (53%)
CEOS_13	D (70\%)	CEOS_27	B (66\%)	CE06_01	D (68%)	CE06_02	D (53\%)
CEO6_04	B(72\%)	CE06_05	B (5\%\%)	CE06_06	C (79\%)	CEO6_4	B (87\%)
CROG 24	D (54\%)	CE07_03	$\mathrm{D}(52 \%)$	CE07_12	D (80\%)	CE07_13	A (66\%)
CE07_18	B (64\%)	CE07_28	$\mathrm{C}(31 \%)$	CE07_29	C (82\%)	CE07_43	A(24%)
CE08_02	D (76\%)	CE08_18	D (49\%)	CE08_19	B ($43 \%)$	CE08_46	B (63\%)
Ceos_O1	$\mathrm{C}(71 \%)$	CE09_07	D (63\%)	CE09_18	A (79\%)	CEOS 19	$\mathrm{C}(72 \%)$
CEO9_22	D (17\%)	CEO9 28	B(48\%)	CE10-01	A(53\%)	CElo_13	D(53\%)
CE10_17	B (83\%)	CEIt_0]	D(92\%)	CEII_02	B (85\%)	CEII_03	C(16\%)
CE11_31	D (58\%)	ALIO(l)_03	D	DSE1SP_07	A	DSEIISP_11	C
DSE1ISP 22	D	DSE11SP_24	C	DSEIISP_36	C	DSE12PP_01	B
DSE12PP_03	A	DSE12PP_04	D	DSE12PP_15	D	DSEL2PP_ ${ }^{18}$	A
DSEL2 01	D (71\%)	DSE12 08	$\mathrm{C}(94 \%)$	DSE12_15	D (63\%)	DSEP3-01	C(70\%)
DSE13_02	C (92\%)	DSE13 04	$\mathrm{B}(62 \%)$	DSE13_12	D (80\%)	DSEI4_01	C(74%)
DSEL4_02	D (75\%)	DSEIS_03	В (73\%)	DSEIS_15	A (60\%)	DSEES 35	$\mathrm{B}(69 \%)$
DSE16_02	C (88\%)	DSE17.01	C(58\%)	DSEIT_16	A (66\%)	DSE18_02	C(70\%)
DSE18_05	C (80\%)	DSE19_01	c	DSE19_02	A	DSEl9_24	A
DSE2020: 2_D, 3_C, 5_B, 14_C							

Structural Questions

CE90_01b
(i) carbon: covalent bond/ weak van der Waals' force
sodium chloride: ionic bond
(ii) carbon (graphite): can conduct electricity in solid state.
[Do NOT accepl: powder stata, moften state and at high temperature]
sodium chloride: can conduct electricity in molten/ liquid state/ in aqueous solution [I] because the ions become mobile in liquid state
(iii) diamond
(iv) (1) graphite (diagram D) [1]
because the layers of earbon atoms can slide easily [I]
(2) diamond
because the carbon atoms are strongly bonded to form a giant situcture [1]
(v) Agtee, becouse it tequires a lot of energy to melf NaCl in the laboratory.

OR, Disagree, because melting NaCl is easy in industry, followed by electrolysis of molten NaCl to form the elements.
OR, Disagree, because the efectrolysis of brine (conc. NaCl) solution using mercury cathode and graphite anode can be carried out.

CE91_01a
(i) (1) halogen
(1) each has 7 electrons in its outermost shell (or they have the same number of electrons in their outermost shells).
(II) f and b have different numbers of electron steels / b occupied 2 electron shells whereas foccupied 3 electron shells.
(ii) because the metalic bond in element d is stronger. [1]
(iv) (I) Ala allotrope is the same element with different structure. [1]
(2) a and e/carbon and phosphorous.
[Note: allatrope of carbon (diamond and graphite), phosphorous (red phosphorous and yellow phosphorous)]
(v) (I)

(2) $c_{2} e$ has higher melting point because
[1]
c_{2} e has stong ionic fond beiween ions but ae2 has weak van der Whals' toree between molecules.

CE92_01b
(iii) Metals have delocalized (mobile) electrons for conducting cicctricity. [Rote: Do not accept free efectrons]

CE92_03b
(i) 8 electrons
(ii) Neon has a stablo octot structure with 8 outermost shell electrons,
(iii) Isotopes are atoms with same number of protons but different aumber of theutrons.
(iv) (1) Relative atomic mass of Ne

$$
\begin{equation*}
=\frac{20 \times 90.52+21 \times 0.31+22 \times 9.17}{100} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=20.19 \tag{1}
\end{equation*}
$$

CE93 026
(i)
[$1+1$]

letrachlnrnmailman

Dlamond has much higher mefting point than CCl_{4} because diamond has giant covalent structure with strong covalent bonds between C atoms but CCl_{4} has simple molecular stracture with weak van der Wanis' force between molecutes.
(ii) In solid state, sotium has mobile (delecalized) electrous to conduct electricity but [1+1] NaCl has ions that are not mobile.
(iii) In liquid state, CCl_{4} has no mobile ion or nobile electron.

CE93 04a
(3) Gronp II
because W has an electronic configtration of $(2,8,2)$ that Whas tho outermost shell electrons,
(ii) (1) X is the cation (or positive ion) of W. [i]
(2) W reacts with $\mathrm{HCL}(\mathrm{aq})$ to form chloride of X .
(iii) (1)

(2) Yes. Both Y and Z are isotopes.

OR, \quad Yes. Both Y and Z have the same ele tronic configuration

CES4 01~
(a) Group II

CE94_07b
(i) Br_{2} has a much snaller melting point than $\mathrm{PbBr} \mathbf{z}_{2}$ because Br 2 has only woak van [1] der Wams' force between molecules butt PbBr_{2} has strong ionic boud between [1] ions.
(ii) Lead has mobile clectrons for conducting electricity. But solid PLBrzhas ions that are nat mobile.
(iii) Yes, in liquid state, ions in PbBr_{2} are mobile.

CE95_02:
(a) fluorine
fluorine is reactive/ yellow/ coloured gas
$O R, \quad$ others are inert/ unreative/stable/ colourless (gases)

CE95_04
Chenical knowdedge (5 marks)

Covalent bond

When atoms of non-metals combine, they tend to share their (vatencel outermost)
electrons to form molecules.
Electronic structure of a molecule, c.g. $\mathrm{HCl} / \mathrm{Cl} 2$ etc.

Innic bond
When metal and non-metal combine, atoms of the metal dornate electrons to form $[1+1]$ positive ions while atoms of the non-metal accept electrons to form negative fons.
Electronic structure of an ionic compound e.g. NaCl etc

3 marks for presentation

CE96_07a
(i) isotope [1]
(ii) One/1
(iii) (i) H and D have the same electronic structure (or electronic arrangement) [1]
(2)

(3) The reaction is exothermic / gives out heat / release energy
(4) Formula mass of $\mathrm{D}_{2} \mathrm{O}=2+2+16=20$

CE98_01

(a) Atoms with same atomic number but different mass number.
$O R, \quad$ atoms with the same number of protons but different number of neutrons.
(b) Relative atomic mass $=\frac{6 \times 0.074+7 \times 0.926}{100}$
$=6.93$
(Atso accept 6.9 and 6.929)
CE99_04
Chemical knowledge
For MgCl_{2}, each magnesium atom loses (iwo) electeons and each ciloride atom accepts [1]
(one) electron to form an ionic compound.

$$
[\mathrm{Mg}]^{2+} 2\left[\mathrm{Cl}_{\mathrm{H}}^{\mathrm{H}}\right]^{-}
$$

In CCl_{4}, the carbon atom shares (a pair of) electrons with (eacth of the four) chiloride atoms to form a covalent compound.

MgCl_{2} has higher melting point than CCl_{4} because the attraction, weak van der Waals' $[1+1$ foress, between molecules of CCl_{4} is weak and the atraction between ions, ionic bond, $\mathrm{in} \mathrm{MgCl}_{2}$ is strong.

3 marks for preselitation

CE99_06a

(i)

CEOO_01
(a) Any ONE of the following:

Substance with colour	Substance without colour (white)
Nitrogen dioxide	Ammonia
Fron(IIT) oxide	Carbon dioxide
	Magnesium oxide Potassium oxide

OR,

Substances with an odour	Substances without an odour
Ammonia	Carbon dioxide
Nitrogen dioxide	Magnesium oxide
	Iron(III) oxide Potassium oxide

Water soluble subsianees	Water insoluble substances
Ammonia	Iron(III) oxide
Carbon dioxide	Magnesium oxide
Nitrogen dioxide	
Potassium oxide	

(b) Any ONE of the following:

Acidic substances	Basic subslances
Carbon dioxide Nitrogen dioxide	Ammonia Iron(III) oxide Magnesiun oxide Potassium oxide
OR,	
Can be reduced by heating with charcoal	Catnot be reduced by heating with chatcoal
Carbon dioxide	Ammonia
Nitrogen dioxide	Magnesium oxide
Iron(III) exide	Potassiun oxide
OR,	
Can be decomposed by electrolysis	Cammet be decomposed by electrolysis
Magnesium oxide	Anmmonia
Iron(III) exide	Carton dioxide
Potassium oxids	Nitrogen dioxide

OR,

Substances that react wilh water	Substances not react wilh water
Ammonia	Iron(III) oxide
Nitrogen dioxide	Mnguesium oxifle
Carbon dioxide	
Potassium oxide	

CE00_02
(a) Relative atomic mass is the average mass of all isotopes of the clement on the $[1+1]$ ${ }^{12} C(=12.000)$ scale.
$O R$, relative atom mass $=\frac{\text { average mass of an atom of the element }}{1}$
(b) (i) $Y /$ potassimm (K)
Y is a reactive metal and reacts readily with oxygen/water in air.
(ii) $X / a r g o n(A r)$
X is chemically inert / is a noble gas / will not react with hot tungsten filament.

CEOO O8C

(i) False.

The high melting poin of NaCl is due to the presence of strong fonic acid bond. [1]
The low melting point of CH_{4} is not due to the existence of covalent bonding
between C and H atoms but due to the weak van der Waals' forces between moleculcs.

CE01_07s
(i) Gold has strong metallic bond between atoms.

Diamond has a covalent network structure and strong covalent bonds exist between carbon atoms.

CEOI_08a
(i) Atomic size (atomic radius)/metallic character.
(iv) The balloon falls to the ground because Xe is much denser than air.

CE02_06a
(iii) Molten magnesium chloride contains mebile fons.

CEO2_06
(i) Isotopes are atons with the same atomic number but different mass number. [1]
$O R$, the same number of protots but different number of neutrons.
(ii) Relative atomic mass of $\mathrm{Mg}=\frac{24 \times 78.6+25 \times 10.1+26 \times 11.3}{100}=24.3$

CE02 08 b
(i)
(ii) Carbon dioxide is denser than air.

CE03 03
(a) (i)
(ii)

CE03_03
(b) (i)
(iii) No, because isolopes of an element have the same chemical properties. [Note: because isotopes have same clectronic arrangement.]

Il can exclude air from the fuel / can blanket the fire from air.
(iii) Silicon dioxide has a covalent network stracture. [1]

Atraction between CO_{2} molecules is weak van der Waals' forces. [1]
$\begin{array}{ll}\text { (iv) (1) } & \mathrm{SiO}_{2}+\mathrm{C} \longrightarrow \mathrm{Si}+\mathrm{CO}_{2} \\ O R, \quad \mathrm{SiO}_{2}+2 \mathrm{C} \longrightarrow \mathrm{Si}+2 \mathrm{CO}\end{array}$
(2) Making computer chips / electronic parts / alloy / semi-conductors

[From HKEAA:
The question asked for the electronic diagtams of a sulptur atom and a chlorine atom. Many candidates drew electronte diagrams which showed only electrons in the outermost shells. Such answers were considered as incomplete and were not accepted.]

	S	Cl
Mass $/ \mathrm{g}$	$135.2-70.98=64.22$	$135.2 \times 0.525=70.98$
Number of mole	$\frac{64.22}{32,1}=2$	$\frac{70.98}{35.5}=2$
Mole ratio	2	2

Molecular formula: $\mathrm{S}_{2} \mathrm{Cl}_{2}$
(ii)

CE03_07a
(iii) The light bulb gradually goes out.

At lower temperatures, movement of ions slows down. Therefore, a smatler current flows through the external circuit and the light becane dimmer. When molten lead(II) bromide becomes solid, there is no traslational motion of ions. This no current flows through the extenial circuit and the light went out. [From HKEAA:
Fow candidates were able to describe the gradual dimming of the light bulb as an obscrvation of the experiment. Some candidates failed to provide an explanation for the observation in terms of the slowing down in the mation of the ions.]

CEO4_05
Chemical knowledge (6 marks)
$\mathrm{Na}_{2} \mathrm{O}$ and MgO are ionic compounds. The cations and anions pack together to form a giant [1] fonic structure/ lattice/crystal.
The atraction belween cations and antons in $\mathrm{Na}_{2} \mathrm{O}$ and MgO is strong ionic bond/ strong electrostatic altraction exists between cations and anions.
$\therefore \mathrm{Na}_{2} \mathrm{O}$ and MgO have high melting points.
SiO_{2} has a covalent network structure/ giant covalent structure.
Melting of SiO_{2} requires the breaking of strong covalent bonds between atoms.
$\therefore \mathrm{SiO}_{2}$ has a ligh melting point,
SO_{2} has a simple molecular structure.
Infernolecular attraction is weak van der Waals' forces/dipole-dipole attraction,
$\therefore \mathrm{SO}_{2}$ has a low melting point / exists as a gas at room semperature and pressure.
Effective communication

CE04_09a

(i) Boron (B)/Silicon (Si)
(ii) Atonss of Group 0 elements have an octet (duplet) stricture in the outermost shell have completely filled outermost shells. (accept equivalent answers.)
(iii) Metals can be considered as making up of positive ions and a 'sea' of delocalised electrons. The attraction between the positive ions/metalit ions and the delocalised electrons holds the particles together (metallic bond).
Metallic bond is non-directional. Layers of noms can easily slide over euch anolicr. \therefore metals have high ductility.
(iv) Potassiun and fluorine $/ \mathrm{K}$ and F
$x=18 \quad$ [1]
(2) $\mathrm{Br}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{BrO}^{-}+\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O}$
$O R, \quad \mathrm{Br}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{NaOBr}+\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Note}\right.$: we know that $\mathrm{Cl}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{NaOCl}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ Just replace Cl by Br]

CEOS_01
(a) (i)

$$
3 \mathrm{Ca}^{2+} 2\left[\begin{array}{l}
x \\
x \mathrm{~N}_{x}^{x x} \\
N_{x}
\end{array}\right]^{x}
$$

(ii) Flame test

Calcium compounds give a brick-red flame. [1]
(b) (i) Isotopes are atons of the same element with same proton number but [1] different neutron numbers.
(ii) Protons $=38$, neutrons $=52$ [1]
(c) (i) They have the same number of electrons in their outernost shells. [1]
(ii) St has sinilar chenical properties as Ca does, thes can replace some of the [1] Ca required.

CE07_01
(a)
$[(\mathrm{Mg})]\left[\begin{array}{l}2+ \\ 0\end{array}\right]^{2-}$
(b)

Po
(c) Melting point of A is higher than that of B.

Ions of A are linked by strong ionic bonds / electrostatic force forming giant crystol latice.
Molccules of B are attracted by weak van der Waals' forces / intermolecular forces. [1]
CE08_01
(a) T:fluorine $/ \mathrm{F}$

X : chlorine / Cl
Z: magnesium / Mg
(b) : $\mathrm{T}:{ }_{0}^{\circ}:$
(c) The compound contains ions, it conducts electricity in molten/ açueous state because [1+1] the ions in it are mobile. It does not conduct electricity in solid state because the ions in it are no mobile.

CE08_02

(a) Isotopes are atoms of the same element / atomic number / proton number that have [1] different mass mumbers / neutron numbers,
(b) Let the percentage abundance of ${ }^{11} \mathrm{~B}$ be $\mathrm{X} \%$.
$11(X)+10(100-X)=10.8(100)$
$X=80$
The percenfage aburdane of ${ }^{14} \mathrm{~B}$ is 80%.
(c) Giving out white fumes because chemical properties of isotopes are the same.

CE09_09

Chemical knowledge

Electrical conductivity

a. Sodium can conduct electricity because there are delacalised electrons.
b. Chiorine cannot conduct electricity because of no delocalised electrons and no [1 mobile ions.
c. Sodiam chloride can conduct efectrivity in aqueous / molten state because there are

mobile ions.

Melting point

d. Chorine has low mefting point because weak intermolecuar forces / weak van der Waals' forces / weak forces between molecules.
e. Sodium bas high melting point because strong metallic bonds / strong electrostatic forces between delocalised electrons and sodium ions.
f. Sodimn chloride has high melting point because strong ionic bonds / strong electrostatio forees between sodium ions and chloride ions.
Effective commanication

CEII_03
(a) (i) The van der Waals' forces between layers are weak. [i]
(ii) The delocalised electrons can conduct electricity

1
(b) Lead atoms are held by metallic bonds.

The metallic bonds are strong, so lead metal tears off less readily than graphite.

(c) Diamond has a giant covalent structure.

There are strong covalent bonds between atoms in diamond.
CE11_08
Chemical knowledge

The position of atom in the Periodic Table

- Total number of electron shells equals to the period number.
- Total number of outermost shell electrons equals to the group number.

The types of chernical bonding

- Group I to III atoms may form icmic bonds with Group IV to VII atoms. / Group I io III atoms lose clectrons to fom ionic bonds. / Group IV to VII atoms gain slectrons to form ionic bonds.
Group I to Ill aloms may form netallic bonds within their elements.
- Group IV to VIl atoms may form covaient bonds within their clements or with other Group IV to VII atoms.
- Group o/ VIII atoms or noble gases normally do not form any chenical bonds.

Effective communication
AL96(I) 018
(i) ${ }^{12} \mathrm{C} \quad \mathrm{Cn}, 6 \mathrm{p}, 68$
${ }^{13} \mathrm{C} \quad 7 \mathrm{n}, 6 \mathrm{p}, 6 \mathrm{e}$
(ii) mass of 1 mole of ${ }^{12} \mathrm{C}=12.000 \times 1.6605 \times 10^{-27} \times 6.0221 \times 10^{23} \quad$ [1] $=0.0120 \mathrm{~kg}$
(Accept answers which could round off to 0.012)
(iii) relative atomic mass $=\frac{12.000 \times 100+13.003 \times 1.12}{100+1.12}=12.001$
(Accept answers which could round off to 12.01)

AL98(II)_01 (modified)
(a)

(b) The wacant site on the electron shell or B atom in BF_{3} can gccept the lone pair of [1] electron on N atom in NH_{3} to form a dative bond.

AL98(II)_02 (modified)
(a) In dianond, the C atoms are held by $\mathrm{C}-\mathrm{C}$ single covalent bonds, whereas in graphit the interaction between C aloms within the same layer is covalent bond with multiple bond character. In grapinte, the attraction between the layers of C atoms is van der Waals' forces.
The stronger interaction will lead to a shorter $\mathrm{C}-\mathrm{C}$ distance
Therefore the C-C distances are:
Between layers of graphite $>$ between C atoms in diamond $>$ within layers of graphite
(b) In diamond, the C - C bonds are strong. The strong directional shanater of $[1 / 2]$ covalent bond restricts the relative motion between Catoms. : Diamond is hard [1] In graphite, the C atoms are held in layer structure. The weale attraction forec [1/2] between laycrs allows the layers to slip over each other.
\therefore graphite is soft and can be used as lubricant
AL99(I)_01
CO_{2} has a simple molecular structure, while SiO_{2} has a giant covalent structure.

AL00(I) 01

Sodium chloride

Iodine

Graphite

ASLO1(0_05 (modified)
Since etement X forms covalent bonds will other 4 X atoms tetrhedrally to give a giant covalent structure.
(b) X: to make a semi-conductor

Oxide of \mathbf{X} : to make a glass
(c) (i)

(ii) $\mathrm{SiCl}_{4}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{g})$ $\mathrm{SiCl}_{4}(\mathrm{l})$ hydrolyzes in water to give white fume, $\mathrm{HCl}(\mathrm{g})$.

AL02(1) 03
CO_{2} exists as simple molecules / has simple molecular stritcture and the intermolecular [1/2] attraction is van der Waals' forces.
SiO_{2} has a giant covalent network struclure. Atfraction between CO_{2} molecules is weak, [/2] but attraction between Si and O atoms $\mathrm{in}^{\mathrm{SiO}_{2}(\mathrm{~s}) \text { is strong. }}$

ASL03(I) 07
(a) (i)

diamond

graphite
(ii) In dianond, flie \mathbf{C} - \mathbf{C} bonds are stroug. The sfrong directional character of [1] covalent bond restricts the relative motion between C atoms. \therefore Diamond is [1/3] harder.
In graphite, the C atoms are held in hayer structure. The weak attraction force [1] between layers allows the layers to slip over each other. \therefore Graphite is soft $\quad[1 / 2]$ material.
(b) Diamond has a higher boiling point.

As the carbon atom is smaller than gernanium atom, and hence $\mathrm{C}-\mathrm{C}$ bouds are [I] stronger than $\mathrm{Gt}-\mathrm{Ge}$ bond
(c) The atomic mass of Pb is much higher than Ge , and Pbadopts a close-packing pattern [1] in its lattice.

ASL04(1) O1 (modified)
(a) $2,8,17,2$
(b) Let x be the fractional abundance of ${ }^{63} \mathrm{Cu}$
$63.5=63(x)+65(1-x)$
$x=0.75$
\% abundance of ${ }^{53} \mathrm{Cu}=75$
$\%$ abundance of ${ }^{65} \mathrm{Cu}=25$[1]
(c) Copper metal can be considered as making up of a latice of cations and a 'sca' of delocalized electrons.
The attraction between the cations and the 'sea' of delocalized electrons is responsible for the metallic bond
The deolocalized electrons can move under the influence of an electric field.
$\therefore \mathrm{Cu}$ is an electrical conductor.
ALO4(1) 02

The intermolecular attraction betyeen noble gas molecules is van der Waals' forces,

ASL04(I) 06
(a) At 298 K and I atm pressure, CO_{2} exists as sinple molecules while SiO_{2} exists as a [/7] giant coyalent network.
In the latice of SiO_{2}, atoms do not have translational motion. In carbon dioxide, as [1/2]
the internolecular attraction between CO_{2} is weak, molectes of CO_{2} can have free [8/2] random motion.
$\therefore \mathrm{CO}_{2}$ is a gas while SiO_{2} is a solid.
(b) x
(c) The strong covalent bonds in SiO_{2} prevent the atoms from Iranslational motion. [1]
SiO_{2} is hard and strong.
(d) Dry ice can produce a very low temperature $\left(-78^{\circ} \mathrm{C}\right)$.

Dry ice sublimes and no messy liquid (as in the case of ice) is produced. [1]
AL05(1) 01 (modified)
(a) Van der Waals' forces [For reference only]

Owing to electron movement, aneven distribution of electron induces the polarity (instantaneous dipoie) in molecules of Ar. The instantaneous polarity in a molecule attracts electrons of a neighboring molecule leading to the formation of an induced polarity (induced dipole).
Van der Waals' forces are resulted from the attraction of the instantaneous dipole and
induced dipole.
(b) Metallic bond

In metal the oulermost shell efectrons of a metal atom are weakly attracted by the nuctews. Metallic bond is resulted from the electrostatic attraction between the metallic cations and the delocalized efectron. [Do not accept Zn 'afoms ${ }^{4}$ or 'nuclei' inslead of 'cation']
(c) Ionic bond Ca atoms donate electrons to F atoms, and Ca^{2+} and $\mathrm{F}-$ ions are formed.
The strong electrostatic attraction between Ca^{2+} and F -holds the ions in a regular [1] three dimensional structure.

AL06(I) 01 (modificd)

$\mathrm{Na} 2 \mathrm{O}(\mathrm{s})$ and $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ are ionic compounds. $\mathrm{SO}_{2}(\mathrm{~g})$ is a covalent compound and it exists
as simple moleculc. The attraction between $\mathrm{SO}_{2}(\mathrm{~g})$ molectle is weak van đer Wazls' [.] forces.
$\therefore \mathrm{SO}_{2}(\mathrm{~g})$ las a very low melting point.
The charge : radio ratio of A^{3+} is greater than that of $\mathrm{Na}^{+} / \mathrm{AB}^{3+}$ has a higher charge density than $\mathrm{Na}^{+} . \therefore \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ has a mucl stronger ionle bond than $\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$. 5 m.p. of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})>\quad 1 / 2$ m.p. of $\mathrm{Na}_{2} \mathrm{O}\{\mathrm{s}\}$
[Remark: strenglt of ionic bond increases with the increasing charge of cations and anions AND decreases with the increasing tonic radii of the ions

AL06(I) 02 (modified)
Diagram + labels of interatomic attractions:

ASLOG(I) 05
(a) Giant covalent structure
(b) Silicon would have a higher melting point than gernanium.[1]

Si Sibur il
(c) Silicon (IV) oxide has a giant eovalent stracture. Silicon(IV) chloride has a simple [I] molecular structure.
Large amonnt of energy is required to break down numerous $\mathrm{Si}-\mathrm{O}$ covalent bonds in silicon(IV) oxide during melting.
Small amount of energy is sufficient to oyercome weak yan der Waals? forces [1] between silison(IV) chtoride molecules.
(a) 3 out of 4 ontermost electrons of each C atom form a C - C bond with another 3 catbon atoms on the same plane.
The remaining outcrmost electron of each C atom is delobalized
The attraction between atoms wiffin a layer is strong covalent bond, while that [1] between layers is weak yan der Waals' forces.
Graphite is soft because the layers can slide over one another casily.
(b) (i) The C atoms in graphene are bonded by strong covalent bond.
(ii) Any ONE of the following:

- Graphene has a smaller density.
- Graphenc is not easily cofroded / chemically inert.

AL13(1I)_05
(a) tu.p. of $\mathrm{Ca}>$ m.p. of Ra

For metals in the same group of the Periodic Table, their metallic bond strength depends on their atomic radius (or atomic size).
Ra has a larger atomic size than Ca . $:$ metallic bond in Ca is stronger than that in Ra.
(b) Ra is more reactive than Ca towards water ($\mathrm{H}_{2}(\mathrm{~g})$ is formed.)
$\mathrm{M}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{M}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
Ra has a larger size and is more ready to donate its outemiost electrons.
(c) A white precipitate of $\mathrm{RaSO}_{4}(\mathrm{~s})$ will be formed.

The solubility of sulphate(V) of Group II elements decreases as the group is decended. As both $\mathrm{SrSO}_{4}(\mathrm{~s})$ and $\mathrm{BaSO}_{4}(\mathrm{aq})$ are insoluble in water, it is likely that $\mathrm{RbSO}_{4}(\mathrm{~s})$ is also insoluble.

AL13(1)_08
(b) $\operatorname{Brfs}(\mathrm{f})$ contains only molecules and no delocalized electrons or mobile ions. It cannot conduet electrieity.
A mixture of BrF_{5} and AsFs_{5} contains BrF_{4}^{+}and $\mathrm{AsF}^{-}{ }^{-}$ions. These ions have translational motion in an applied electric field. Thus, the mixture can conduct electricity.

DSE11SP_01
(a) False. The high melting point of NaCl is due to the strong electrostatic atitraction between ions (sodium ions and chlocide ion) / the presence of strong ionic bonds. The low melting point of CH_{4} is not due to the existence of covalent bond between C and H atons, but due to the weak van der Whals' forees between the molecules t weak intermolecular forces.

DSELISP_07

Solid substance	Three-dimensional diagram for the structure of the solid substance	Explanation of whether the solid substance is an electrical conductor
Diamond		Insulator because no delocalized electrons
Craphite		Conductor because delocalized electrons are present

DSE12PP_03
(a) (i)

(b) (ii)

DSE12_01
(a) Atoms with the same number of protons but different aumbers of neufrons. $O R$. Atoms with the same atomic number but different mass numbers.
(b) $20 \times 0.9048+21 \times 0.0027+22 \times 0.00925=20.19$
(c) Gas for filling huminous advertisement tubes / nem tubes / neon signs / neon light. [1] (NOT accept fluorescent tubes)
(d) Neon is monoatomic whereas oxygen is diatonic. O_{2} molecule has larger molecular [1] size than Ne molecule. (NOT accept larger molecular mass)
Thus stronger van der Waals' force / strong intermolecular force among O_{2} molecules.
(NOT Accept VDW force)

DSE13_01
(a)

DSE13 02
(c) $\mathrm{In}_{\mathrm{BF}} \mathrm{BF}_{3}$, there are three (bond) efectron pairs / there is a vacant site / 6 electrons only / electron deficient in the outernost shell of the B atom.
By accepting the lone pair of electrons from the nitrogen atom of NH_{3} / forming dative bond with N , boron attains the stable electronic configuration of neon (a noble gas).

DSE13_08
(a) $2 \mathrm{Cs}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{CsCl}$
(b) (i)

- Cl^{-}
- Cs^{+}
(The drawing should be either show the cortect labels for Cs^{+}and Cr , or show clearly there are two types of ions in the latice with correct relative positions.)
(ii) CsCl contains $\mathrm{Cs}^{+} /$eations and $\mathrm{Cl}^{-} /$antions. m CsCl , ions ate strongly leld by ionic bond.
Relative movement of the ions can bring ions of the same charge close to each other, and will_result in repulsion. $\therefore \mathrm{CsCl}(\mathrm{s})$ is brittle.
(c) $\mathrm{Cs}(\mathrm{s})$ is moro reactive than $\mathrm{Na}(\mathrm{s})$. The relativity of Group I netal increnses down [1] the group.
$O R$, The electron in the outermost shell (valence electron) of Cs is weakly bounded by the mucleus as compared with that of Na .
$O R, \quad \mathrm{Cs}$ atom loses its outermost shell electron more easily than Na atom.
OR, $\quad \mathrm{Cs}$ alon loses it electron more easily than Na atom because Cs kas more electron shells than $\mathrm{Na} /$ the size of Cs atom is larger than that of $\mathrm{Na} /$ the atomic radius of Cs is larger than that of Na .
OR, Both Cs and Na are Grop I metals, and the size of Cs atom is larger than that of Na .

DSE13_13

Nitrogen < lithium < beryllium < carbon (graphite)
N_{2} has the lowest metting point as it las a simple molecular structure, weak wala der Waals' forces / intermolecular forces need to be overcome.
Both Li and Be have metallic structure, metallic bond in Li is weaker than that in Be . [1] $\therefore \mathrm{Li}<\mathrm{Be}$ in melting points.
C has the highest melting point as it has a giant covalent struchure, large amount of energy
is needed to break strong covalent bonds between atoms in melting.
Effective communication
DSE14_01
(a) (i) Layers of graphite are held together by van der Wanls' forces / weals intermolecular forces only.
(ii) Yes, graphenc has delocalized electrans / electrons in graphene are noi
localized/mobile electrons/electrons will flow.
(iis) $\mathrm{O}_{\mathrm{C}}^{\circ} \mathrm{C} \mathrm{N}_{\mathrm{K}}^{\circ} \mathrm{O}^{\prime \prime}$
(Accept any symbols of electrons, ignore shape)
Not accepted: Showing electrons in the inner stiells.
(b) No. Graphene layers are made up of a giant covalent structure.

A large amount of energy is needed during melting to destroy the large amount of [1] strong covalent bonds between atoms.

DSE15_01
(a)

(b) Van der Waals' forces
(c)
Van der Waals' forces

Element	Natural source	Meltod of extraction
Argon	Atmosphere / air	Fractional distillation of Iliquefied air (NOT accept "distillation")
Chlorine	Rock salt/sea water/ocean NOT accept "lake", "river", "sait water", etc.	Electrolysis of sen water

DSE15_10
(a) (i)

It gives an alkaline / a base solution / NaOH / soditun hydroxide
(ii)

It gives an acidic solution / HOCl/ / yypochlorous acid
DSE16 01
(a) $2,8,5$
(b) Chlorine exists as isotopes. / There are chlorine atoms wilh same number of [1] protons but different number of neutrons, / All chtorine atoms have 17 protons. Some chlorine atoms have 18 neutrons and some have 20.

DSE16_02
(a) To increase the electrical conductivity of the filter paper / To increase the fumber
of moblife ions / To provide mobile ions / $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is an clectrolyte
(Also accept: Allow ions to pass through $/ \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ acts as a salt bridge) (Not ascept: To complete the circuit)
(b) pale green / green / light green
(c) (Dark) Blue color appears around the middle of the filter paper, $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions move towards negative pole $/$ move to the right and $\mathrm{Fe}(\mathrm{CN})^{3-}$ (aq) \quad [1] ions move towards positive pole / move to the left (forming a blue compound).
(d) The color around the middle of the filter paper renains unchanged / white / [1] colorless.
$\mathrm{Fe}^{2+}(\mathrm{aq})$ ions and $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$-(aq) ious to not migrate towards each other.
OR, $\quad \mathrm{Fe}^{2+}(\mathrm{aq})$ tons and $\mathrm{Fe}(\mathrm{CN})_{0^{3}}{ }^{3}(\mathrm{aq})$ ions move to opposite sides.
OR, $\quad \mathrm{K}^{+}(\mathrm{aq})$ and $\mathrm{SO}_{4}{ }^{2-}$ (aq) migrate towards each other but do not form colored compounds.

DSE16_04
(c) The intermolecular forces between $\mathrm{CS}_{2}, \mathrm{CO}_{2}$ molecules are van der Waals' forces. [1]

As CS_{2} has greater molecular size than CO_{2}, the van der Waals' forces between [1
CS_{2} molccules are stronger than those between CO_{2} molecules.
DSE16_08
(a) (i) Reddsch brown gas observed. [1]
(ii) $\mathrm{Sr}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sr}$ teddish brown fiquic. \quad [1]
(b) Bromine gas formed is toxic / poisonous. / Bromine is toxic. / A toxic gas is formed. Do not accept answers like "itritant", "harmful".

DSE17_01
(a) The metallic bond / electrostatic attraetion between delocalized electrons f sea of clectrons and metal ions / barium ions / Ba^{2+}.
(Not accept: free electrons/ electrons / outernost electrons)
(Or diagram with correct labels)
(For diagram:
(1) The barium ions should be labelled as " $\mathrm{Ba}^{2+\cdots}$.
(2) Clearly indicates sea of electrons, or delocalized electrons between metal ions.
(3) Clearly indicate meallic bond $/$ electrostatic attraction between sea of electrons / delocalized electrons and metal ions)

DSE17_03

(c) The O atom in $\mathrm{H}_{2} \mathrm{O}$ hats lone pais of electrons.
H^{+}does not have electrons in its outermost shell.
Dative covalent bond fomed between the O atom in $\mathrm{H}_{2} \mathrm{O}$ and H^{+}by sharing electron [1] pair.
(Also accept grophical answer as bofow:)
$\mathrm{H}: \underset{\mathrm{H}}{\ddot{\mathrm{H}}:}+\mathrm{H}^{+} \longrightarrow\left[\begin{array}{c}\mathrm{H}: \ddot{\mathrm{O}}: \mathrm{H} \\ \ddot{\mathrm{H}}\end{array}\right]^{+}$
dative covalent bond

DSEI7_08

DSE18_01
(a) (i) $6 x+7(1-x)=6.9$
$x=0.1=10 \%$ (Accept answer without unit) (Accept $0.1,10,10.0)$
[I]
(ii)
$3[\mathrm{Li}]^{+}[(\mathrm{N})]^{3-}$
The electron diagram should have brackets .
$\begin{array}{ll} \\ & \mathrm{Sr}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sr} \\ {[\mathrm{I}]} \\ & \\ & \\ & 55\end{array}$

DSE19 01
(a) Protium and deuterium lave same number of protons but different number of eutrons.
R, Protim nond deuterium lave same atomic number but different mass number.
(b)

(c) (i) Any Two of the following

- (Colourless) gas evolves.
- Sodium metal dissolves.
- Sodium drags / moves on the surface of $\mathrm{D}_{2} \mathrm{O}(1)$.
- Sparks are observed / flame is observed/ sodium burns.
- Heat evolves.
- White fume evolves.
- Hissing sound is heard
- Sodium meits to (silvery) ball,
(ii) $2 \mathrm{Na}+2 \mathrm{D}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOD}+\mathrm{D}_{2}$
(State symbols not required) (Ignore incorrect state symbols)

DSE19_02
(a)

DSE20_01

1. (a) $2,8,18,7 \longrightarrow 1$
(b) $\mathrm{z}_{\mathrm{e}}^{\mathrm{C}}$

Accept answer with correct mimer shifl elections)

(c) (i) $\mathrm{K}_{2} \mathrm{SO}_{3}(\mathrm{~s})+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow 2 \mathrm{KCl(aq)}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g}) /$
$\mathrm{K}_{2} \mathrm{SO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})$
Correct states (1 mark)
(No marli ifthe chenical species shown in the equation bre moorect)
(ii) (Reddish brown/brown) changes to colourless. / The solution changes to colourless. (Reddish brown / brown) changes to colourless / The solution $\mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{3} \mathrm{O} \rightarrow 2 \mathrm{Br}+\mathrm{SO}_{\mathrm{r}^{2}}+4 \mathrm{H}^{+}$
(State symbols not required) (Ignore incorrect state symbols)
OR $\mathrm{Y}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Y}^{-}+\mathrm{SO}_{4}^{2}+4 \mathrm{H}^{+}$
(iii) Y and Z have the same number of electrons/ seven electrons in the outermost shells, hence similar chemical properties (leading to sinuilar observation). Anof acemp "Same chemical propricies")

DSE20_03

(b) (i) : $\mathrm{B}-\mathrm{N}$ is the dative covalent bond.

The lone electron pair on nitrogen atom of NH_{3} is donated to form a dative covalent bond with the boron atom of BH_{3}.
(ii) - Both are yan der Waats forces belween their respective mulecules. As $\mathrm{H}_{3} \mathrm{NBH}_{3}$ is polar but ecthane is not the van der Wanls' forces. between $\mathrm{H}_{3} \mathrm{NBH}_{3}$ molecules are stronger than those between ethane molecules.
(Only the $2^{\text {nid }}$ mark will be given if the candiate answered in terms of intermolecular ferces" instead of van der Waals" fotcess: (2xi mark not accept tomparison of nolecular size)
(iii)

(1 mark for showing the fused hexagonal structure, need to show at least 2 fised ingss 1 mark for showing alternating N and B atoms)
Igrore the doubte bondas in the structure)

SECTION 3 Metals

Muttiple-Choice Questions

CE90_07
The reaction between leadin) nitrate solution and sodium hydrogencarbonate solution can be represented by the equation below:
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}^{-}(\mathrm{aq}) \longrightarrow \mathrm{PbCO}_{3}(\mathrm{x})+\mathrm{H}_{2} \mathrm{O}(\mathrm{y})+\mathrm{CO}_{2}(\mathrm{z})$

	\underline{x}	\underline{y}	\underline{z}
A.	aq	aq	aq
B.	aq	1	g
C.	s	aq	g
D.	s	1	g

CE90_09
The molecular fommla of a gas is X_{3}. If the Ayogadrot's Number is L moll ${ }^{-1}$, how may molecules are there in 965 of X_{3} ?
(Relative atomic mass of $\mathrm{X}=16.0$)
A. $\frac{1}{2} \mathrm{~L}$
B. 2 L
C. 3 L
D. 6 L

CE90_10
2g of carbon dioxide gas contain x molecules, how many molecules are present in 2 g of holium gas?
Relative atonic masses: $\mathrm{He}=4.0, \mathrm{C}=12.0, \mathrm{O}=16,0$
C $\quad \mathrm{x}$
B. $\quad 5.5 x$
C. $7 x$
D. 11 x

CE90_31
6.1g of a hydrated metal sulphate was heated to constant mass. After cooling to room temperature. the residual anhydrous metal sulphate weighed 7.1 g .
How many mates of water of crystallization are there in one mole of the hydrated metal sulphate? Relative molecular masses: anlydrous metal sulphate $=142.0$, water $=18.0$)
A. 4
B. 5
C. 7
D. 10

CE90_45
${ }^{15}$ statement
Magnesiun chloride solution gives a white
precipitate wilh fead(II) mitrate solution.
$2^{\text {nd }}$ shatement
Maghesiun is higher that lead in the metal reactivity series.

CE90 49

Sea water can corrode ships more quickly
than fresh water
$2^{\text {nd }}$ statement
Sodium chtoride in sea water speeds up the corrosion of iron

CE91_08
X, Y and Z are metals. Y can displace X from a solution of the nitrate of X. Oxides of X and Y can be reduced by hydrogen but not the oxide of Z. Which of the following arrangements represenis the correct descending order of reactivity of the metals?
A. $\mathrm{Z}>\mathrm{Y}>\mathrm{X}$
B. $X>Y>Z$
C. $Z>X>Y$
D. $X>Z>Y$

CE91_09

Which of the following combinations would produce the largest current flowing from metal X to metal Y in the extemal circuit?

	Metal X		Mctaly
A.	Fe	Cu	
B.	Mg		Ag
C.	Ag	Zu	
D.	Cu	Pb	

CE91_11
2.60 g of a metal X combine with 1.20 g of oxygen to form an oxide in which the oxidation number of X is +3 . What is the relative atomic mass of X ?
(Relative atomic mass: $\mathrm{O}=16.0$)
A. 11.6
B. 34.7
C. 52.0
D. 104

CE91_31
Which of the following substances, when heated, can react with oxygen?
(1) sodium
(2) sulphu
(3) iron
A. (2) only
B. (1) and (2) oniy
C. (1) and (3) onty
D. (1), (2) and (3)

CE92_01

Rubidium (Rb) is a group I efement below potassium in the Periodic Table. Which of the following statements about rubidium is correct?
A. Rubielium forms an acidic oxide.
B. Rubidiun is more reactive than potassium.
C. Rubidiun can be obtained from its oxide by reaction with carbon.
D. The formula for rubidium citloride is $\mathrm{RbCl} l_{2}$.

CE92_06

0.01 mol of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is burnt completely in oxygen. What are the numbers of moles of carbon dioxide and water formed respectively?

	carbon dioxide		water
	0.01		0.03
A.	0.02	0.03	
B.	0.02	0.06	
C.	0.04	0.06	

CE92_07
Which of the following gases, each having a nass of 10.0 g, has the greatest number of molecules at room temperature and pressure?
(Relative atomic masses: $\mathrm{C}=12.0 ; \mathrm{N}=14.0 ; \mathrm{O}=16.0 ; \mathrm{F}=19.0 ; \mathrm{Ne}=20.2$)
A. nittogen
B. fluorine
C. neon
D. carbon monoxide

CE92_31

In the above experiment, a gas is evolved and burns at the jet. Metal X is probably
A. zinc.
B. aluminium.
C. maguesium.
D. copper.

CE92_33
Which of the following ions is/are coloured?
(1) $\mathrm{Pb}^{2+}(\mathrm{aq})$
(2) $\mathrm{Cr}^{3+}(\mathrm{aq})$
(3) $\mathrm{MnO}_{4}^{-}(\mathrm{ac})$
A. (1) only
B. (3) only
C. (I) and (2) ouly
D. (2) and (3) only

CE92_34
Which of the following metals can be obtained by reducing their oxides with carbon?
(1) iron
(2) calcium
(3) lead
A. (1) aud (2) only
B. (1) and (3) only
c. (2) aud (3) only
D. (1), (2) and (3)

CE93 08
The mofecular formula of a gaseons element X is X_{2}. If the relative atomic mass of X is 19 , what is the number of mofecules in 114 g of the gas?
(Avogadro's number $=6.022 \times 10^{23}$)
A. 3
B. 6
C. $3 \times 6.022 \times 10^{23}$
D. $6 \times 6.022 \times 10^{23}$

CE93_20
Direction: Q .20 and Q .21 refer to the following experiment:
Three different pairs of metal wires are placed separately in petri dishes (as shown in the diagram below) containing a mixture of gelatin, potassium hamacyanoferrate(III) solution and phenolplutialein solution.

Dish 1

Dish II

Disli 111

Which of the following statements are correct?
(1) The iron wire in Dish I does not corrode readily.
(2) The iron wire in Dish II corrodes readlly.
(3) The iron wires in Dish 111 do not corrode.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE93_21
In Dish II, which of the following colours will develop around the iron wire and the copper wire?

	iron wire	copper wire
A.	pink	blue
B.	blue	pink
C.	pink	no colour
D.	blue	nocolour

CE93 4

$1^{\text {st }}$ statement
Sodjum carbonate is not decomposed by heat.

CE94_08

Which of the following contains the same number of atoms as 2.20 g of carbon dioxide (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{~N}=14.0, \mathrm{O}=16.0, \mathrm{~S}=32.0, \mathrm{Cl}=35.5$)
A. 1.70 g of ammouia
B. 2.25 g of nitrogen monoxide
C. 2.80 g of sulphur dioxide
D. 3.55 g of chiorine

CE94_18
The fomula of hydrated magnesium sulphate crystals is $\mathrm{MgSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$. When 3.80 g of the hydrated crystals are heated, $2,00 \mathrm{~g}$ of anhydrous magnesium sulphate are produced. What is the alue of x ?
(Relative atomic mass: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Mg}=24.0, \mathrm{~S}=32.0$)
A. 3
B. 4
C. 5
D. 6

CE94_44

Which of the following methads can be used to distinguish between solid sodium carbonate and calcium carbonate?

1) Heating the sold and testing the gaseous product with lime water.
(2) Testing the solubility of the solid in water
(3) Conducting a flame test on the solid
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE95_05
Which of the following methods can be used to extract tcad from lead(II) oxide?
A. heating lead(II) oxide in the absence of air
B. heating lead(II) oxide in the presence of ait
C. heating lead(II) oxide with copper at high temperature
D. heating lead(II) oxide with carbon at high temperature

CE95_18
Metal X reacts with dilute hydrochloric acid to liberate hydrogen, but metal Y and metal Z have no reaction with the dilute acid. The oxide of metal Y decmposes on heating but the oxide of netal Z does not.
Which of the following arrangements represents the order of increasing reactivity of the three metals?
A. $X<Y<Z$
B. $\mathrm{Y}<\mathrm{Z}<\mathrm{X}$
c. $X<Z<Y$
D. $Z<Y<X$

When a piece of iron wire coupled with picce of tin wire is left in the air for a long period of time, the iron wire does not corrode.

CE96_08

Zinc blocks are often attached to the steel legs of off-shore oil platforms because
A. zine can proteet steel from corrosion.
B. zine is more resistant to corrosion than steel
C. zinc is harder than steel.
D. zine does not react with crude oil.

CE96_35
In which of the following processes will lead be produced
(1) the electrolysis of molten lead(II) bromide
(2) heating lead(II) oxide strongly
(3) adding magnesium to lead(II) nitrate solution
A. (1)only
B. (2) only
C. (1) and (3) only
D. (2) and (3) ouly

CE96_47

${ }^{s t}$ statement

The resistance of alumininm to corrosion can be enhanced by anodization.
$2^{\text {nd }}$ statement
Tin prevents iron from corrosion by sacrificial protection.

CE97_ 28

What mass of copper is obtained when 0.40 mol of copper(II) oxide are completely reduced by carbon?
A. $\quad 12.7 \mathrm{~g}$
B. $\quad 15.9 \mathrm{~g}$
C. $\quad 25.4 \mathrm{~g}$
D. 31.8 g

CE97_32

Which of the following metal oxides can be reduced to the metal when leated with carbon?
(1) alumiuium oxide
(2) lead(11) oxide
(3) iron(III) oxide
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE97 41
Aluninium is used to make window frames becaus
(1) it is strong
(2) it can resist corrosion
(3) it is the most abundant metallic element in the earth crust

Which of the above statements are correct?
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE97_47
${ }^{\text {st }}$ statement
The reaction of sodium with water produce
hydrogen.
$2^{\text {nd }}$ statentent
The reaction of sodium with water is exothermic.

CE97-48
The body of a motor car will corrode faster if corumon salts is surinkled on roads after a heavy show
$2^{\text {nd }}$ statement
Common salt and water form a conducting sofution.

CE98_02
The formula for ozone is O_{3}. If one mole of ozone contains x atoms, how many atoms will one mole of oxygen gas contain?
A. $\frac{x}{3}$
B. $\frac{2 x}{3}$
C. $\frac{3 x}{2}$
D. $3 x$

CE98_10
The fonmula for hydrated iron(I) sulphate is $\mathrm{FeSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$. On strong heating, 20.1g of the sulphate produces 9.1 g of water. What is the value of x ?
(Retative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{~S}=32.1, \mathrm{Fe}=56.0$)
A. 5
B. 6
C. 7
D. 8

CE98_H
Consider the following experiment

During the experiment, a gas is liberated. The gas can burn at the end of the delivery tube. X is
probably
A. copper.
B. lead.
C. silver.
D. zinc.

CE98_19
In eacli of the four solutions shown below, a strip of zine is added.

Tube 1

Tube III

Tube 11

Tube IV

Which of the following conbinations is correct?

	Tube		Observation
A.	I		no change
B.	II	brown coating on zinc	
C.	III		no change
D.	IV	grey coating on zinc	

CE98 20
The following equation represents the reaction of an oxide of lead with hydrogen:

$$
\mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{~Pb}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What mass of lead would be obtained if 68.5 g of the oxide was consumed in the reaction? (Relative atomic masses: $\mathrm{O}=16.0, \mathrm{~Pb}=207.0$)
A. $\quad 20.7 \mathrm{~g}$
B. $\quad 41.4 \mathrm{~g}$
C. 62.1 g
D. $\quad 82.8 \mathrm{~g}$

CE98_27
Consider the following chenical equation:
$\mathrm{Zn}+p \mathrm{MnO}_{2}+q \mathrm{NH}_{4}^{+} \longrightarrow \mathrm{Zn}^{2+}+\underset{\mathrm{Mn}_{2} \mathrm{O}_{3}+\mathrm{yNH}_{3}+z \mathrm{H}_{2} \mathrm{O} \mathrm{C}}{ }$
Which of the following combinations is corrcet?

	\underline{x}	\underline{y}	\underline{z}
A.	1	2	1
B.	1	3	2
C.	2	3	2
D.	2	2	3

CE98_44
Upon heating, a mixture of iron and sulphur gives a black substance, Which of the following statements concerning the black subslance are correct?
(1) It is insoluble in water.
(2) It can be attracted by a bar magnet.
(3) If reacts with dilute hydrochloric acid to give a gas with a pungent smell.
A. (1) and (2) ony
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE99_02
One mole of calcium bromide contains
A. 1 mole of molecules
B. 2 moles of cations
C. 2 moles of anions.
D. 3 moles of atoms.

CE99_OB

Iron can be produced from irom(II) oxide by fine following reaction:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$
What mass of iron(III) oxide is required to produce 2.1g of iron?
Relative atonic masses: $\mathrm{O}=16.0, \mathrm{Fe}=56.0$)
A. 3.0 g
B. 4.5 g
C. $\quad 6.0 \mathrm{~g}$
D. 9.0 g

CE99_17
The compound $X_{2} S$ contains 58.9% of X by mass. What is the relative atomic nass of X (Relative atomic mass: $S=32.0$)
A. 11.5
B. 23.0
С. 39.0
D. 46.0

CE99_2
Consider the following chemical equation:
$2 \mathrm{HNO}_{3}+x \mathrm{FeSO}_{4}+y \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}$
Which of the following combinations is correct?
$\begin{array}{llll} & \underset{y}{x} & y & \underline{z}\end{array}$
$\begin{array}{llll}\text { B. } & 4 & 3 & 2\end{array}$
$\begin{array}{llll}\text { D. } & 6 & 2 & 3 \\ & 3 & 3\end{array}$

CEO9 22
In which of the following situations is iron prevented from rusting by sacrificial protection?
A. Iron plates are jointed together with copper rivets.
B. Iron pipes are comected to lead blocks.
C. Iron sheets are plated with zinc.
D. Iron cans are coated with tin.

CE99_31
Which of the following metal oxides CANNOT be reduced by heating with carbon?
(1) magnesiun oxide
(2) Lead(II) bromide
(3) iran(III) oxide
A. (I) ouly
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE99 46

${ }^{\text {st }}$ statement

Metals have good themal conductivity.
Metals are composed of giant latices of positive ions surrounded by valence electrons which are free to move throughout the lattices.

CE00 03

ron cans used for canning food are ustually coated with tin instead of zinc. This is because
A. tin is more reactive than zinc.
B. tin ions are non-toxic but zinc ions are toxic.
C. tin forms an alloy with iron and this alloy is corrosion resistant.
D. tin prevents iron cans from rusting by sacrificial protection.

CEOO 04
Metal X forms an oxide. 27.53 g of this oxide contains 24.96 g of X . What is tle mole ratio of X to oxygen in the oxide?
A. $1: 1$
A. $1: 1$
B. $1: 2$
D. $3: 4$

CE00_33
In an experiment, a piece of calcium metal was added to a beaker of water. Which of the following statements concerning the experiment is/are correct?
(1) The calcium metal sinks to the bottom of the beaker
(2) The calcium metal burnt with brick red flame.
(3) At the end of the experiment, an alkaline solution was formed in the beaker.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) ouly

CEOO_50
$1^{\text {st }}$ statement
Aluminium was used earlier than iron in the history of mankind.

CEO1 26
What is the percentage by mass of chromium in potassium dichromate ?
(Relative atomic mass: $\mathrm{O}=16.0, \mathrm{~K}=39.1, \mathrm{Cr}=52.0$)
A. 17.7
B. 25.1
C. 35.4
D. 40.8

CE01_30
Which iron nail in the test tubes shown below would rust most slowly?
A.

B.

C.

CEOI_38
In which of the following experiments would a metal be produced?
(1) heating silver oxide
(2) heating iron pyrite
(3) heating a mixture of lead(11) oxide and earban powder
A. (1) and (2) only
B. (1) and (3) onlly
C. (2) and (3) only
D. (I), (2) aud (3)

CEOL 49
$1^{\text {st }}$ statement
Lithium is the most reactive element in Among the Group I elements, lithium loses Group I of the Periodic Table.
$2^{\text {nd }}$ statement electrons most readily.

CE02_03

An oxide of element X has the formula $\mathrm{X}_{2} \mathrm{O}_{3} .10 .2 \mathrm{~g}$ of this oxide contains 5.4 g of X . What is the relatiyc atomic mass of X ?
(Relative atomic mass: $\mathrm{O}=16.0$)
A. $\quad 12.0$
B. $\quad 18.0$
C. $\quad 27.0$
D. 36,0

CE02 08

Which of the following statements concerning aluminum is correct?
A. Aluminiun is used to make staintess steel.
B. The strengh of afuninium can be enhanced by anodization.
C. Aluminium is the most abundant element in the earth's crust.
D. When aluminiun is exposed to air, a layer of alumbum oxide is formed on its surface

CE02_14
Ammonium dichromate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, deconposes on heating to give eliromium(II) oxide, waier and nitrogen. What mass of water is obtained when 126 g of ammonium dichromate undergoes complete decomposition?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{~N}=14.0,0=16.0, \mathrm{Cr}=52.0$)
A. 9 g
B. 18 g
C. 36 g
D. 72 g

CE02_23
Which of the following gases contains the greatest number of molecules at room temperature and pressure?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{~N}=14.0, \mathrm{O}=16.0, \mathrm{Cl}=35.5$)
A. $\quad 2.0 \mathrm{~g}$ of lyydrogen
B. 16.0 g of oxyger
C. $\quad 18.0 \mathrm{~g}$ of ammonia
D. $\quad 60.0 \mathrm{~g}$ of chlarine

CE02_26
When a piece of copper is dropped into an aqueous solution of compound X, the copper gradhally dissolve. X is probably
A. magnesium choride
B. lead(II) nitrate
C. silver nitrate
D. ammonium cliforide

CE02_27

Which of the following objects is least likely to contain titatum?
A. missile
B. water lap
C. bicycle frame
D. artificial hip joint

CEO3_01
Which of the following pairs of elements in Group I and VII of the Periodic Table would react with each oller most vigorously?

	Groun I	Group VII
A.	lithum	fluorine
B.	lithium	iodine
C.	potassium	fluorine
D.	potassium	iodine

CE03_02

Which of the following snbstances, upon heating in a test tube, would undergo a chemical change?
A. Water
B. cafciun oxide
C. sodiun chloride
D. hydrated copper(II) sulphate

CE03_05
Which of the following methods can be used to obtain aluminitm from alumintum oxide?
A. reducing the oxide with carbon
B. heating the oxide strongly
C. electrolysis of the molten oxide
D. heating the oxide with iron powder

CE03_11
A sample of $\mathrm{MgSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s})$ of mass 123.2 g contains 63.0 g of water of crystallization. What is the value of x ?
(Relative atomio masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Mg}=24.3, \mathrm{~S}=32.1$)
A. 4
B. 5
C. 6
D. 7

CE03_28
Which of the foltowing gases contains the greatest number of molecules?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Ne}=20.2, \mathrm{Cl}=35.5$)
A. $\quad 50.0 \mathrm{~g}$ of neon
B. 50.0 g of oxygen
C. 50.0 g of hydrogen chloride
D. $50,0 \mathrm{~g}$ of carbon monoxide

CE03 09
Which iron nail in the beakers shown below would undergo corrosion most readily?

CE03_42
Iron pyrite ($\mathrm{TeS} \mathrm{S}_{2}$) tooks like gold and its common name is "fool's gold". Which of the fallawing methods can be used to distinguish iron pyite from gold?
(1) comparing their densities
(2) comparing their electrical conductivity
(3) comparitg the effect of heat on them
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE0SSP_08
What is the formula mass of magnesium fluoride?
A. 43.3
B. 62.3
C. 67.6
D. 81.3

CE05SP 21
Both atuminum and iron can be extracted from their oxides. Which of the following combinations slows the commonly used extraction methods?

Alunimium	Iron
heating wilh carbon	heating with carbon
heating wilth carbon	electrolysis
elcotrolysis	heaing will cabon
electrolysis	electrolysis

$1^{\text {st }}$ statement

ron was used earlicr than copper in the histoty of mankind.
$2^{\text {nd }}$ statement
Iron is more reactive than copper in the earth crust.

CE05SP_32
Lead forms an oxide. 27.53 g of this oxide of lead contains 24.96 g of lead. What is the cmpirical formula of this oxide?
A. PbO
B. PbO_{2}
C. $\mathrm{Pb}_{2} \mathrm{O}_{3}$
D. $\mathrm{Pb}_{3} \mathrm{O}_{4}$

CE0SSP_41
Which of the following statements concerning anodization of aluminiun atticles is/are correct?
(1) During the anodization process, aluminium articles are comected to the negative pole of the power supply.
(2) Anodization can increase the thickness of the oxide layer on aluminium articles.
(3) Aftor anodization, afuminium articles will not easily be corroded.
A. (1) only
B. (2) only
C. (1) and (3) ouly
D. (2) and (3) only

CE04_12

The relative atomic mass of element X is 74.9. It forms an oxide containing 24.3% of oxygen by mass. What is the mole ratio of X to oxygen in the oxide?
A. $1: 2$
B. $1: 3$
C. $2: 3$
D. $2: 5$

CE04 16
Magnesium can be obtained from magnesium oxide by
A. electrolysis of the molten oxide.
B. Leating the oxide strongly.
C. leating the oxide with cartou.
D. heating the oxide with zinc powder.

CEO4 26
What is the percentage by mass of nitrogen in the fertilizer $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$?
A. 10.6%
B. 12.3%
C. 21.2%
D. 24.6%

CE04_35
A piece of sodiun is on fire in the laboratory. Which of the following metiods can be used to pul out the fire?
(1) Using sand to cover the buming sadium
(2) Spraying form fron a form extingusher onto the burning sodium
(3) Spraying powder from a powder extinguisher onto the burning sodium
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) ouly
D. (1), (2) and (3)

CE04_48
$1^{\text {sl }}$ statement
$2^{\text {nd }}$ statement
Lead can displace iron from iron(I) nitrate Lead occupics a higher position in the solution.

CE05 10
Directions: Q .10 and Q .11 refer to the following experiment.

Rust indicator solution was poured into the following glass dishes to cover the iron nails, which were wrapped with different metal strips. The dishes were allowed to stand in air for some time.

silver strip
disha 1

zinc strip
dish 2

copper strip
dish 3

magnesium strip dish 4

If the iron mail rusts, what would the colour of the rust indicator be around the nall?
A. yellow
B. brown
C. red
D. blue

CE0S_11

A. dish 1 only
B. dish 2 ouly
C. dish 1 and dish 3 only

CEOS_23
Which of the following samples of gases contains the smallest number of molecules?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{~N}=14.0, \mathrm{O}=16.0, \mathrm{~S}=32 . \mathrm{I}$)
A. 10 g of NO_{2}
B. 10 g of CO_{2}
C. 10 g of $\mathrm{H}_{2} \mathrm{~S}$
D. 10 g of $\mathrm{C}_{2} \mathrm{H}_{4}$

CEO6_08
Consider the following equation:
$x \mathrm{VO}_{2^{+}}(\mathrm{aq})+y \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow x \mathrm{VO}^{2+}(\mathrm{aq})+z \mathrm{H}_{2} \mathrm{O}(\mathrm{b})+\mathrm{l}_{2}(\mathrm{aq})$
(V is the symbol for the element vanadium.)
Which of the following combinations is correct?

	x	y	z
A.	1	2	1
B.	1	4	2
C.	2	4	2
D.	3	6	3

CEOC_09
Which of the following properties is considered the most important one when choosing an alloy for making fuse in electric plugs?
A. low nelling poin
B. highe electrical conductivity
C. good ductility
D. figh mechanical strength

CE06_13
X and Y are two different metals. Which of the following shows that Y is more reactive than X ?
A. X forms an ion with a charge of +2 while Y forms an ion with a charge of +1 .
B. X reacts with dilute hydrochloric acid but Y does not.
C. X can displace Y from an aqueous solution of a salt of X .
D. The oxide of X undergoes decomposition upon strong heating but the oxide of Y does not.

CE06_18
Element X forms two oxides XO and XO_{2}. If 1 mole of XO contains a atoms, 2 noles of XO_{2} would contain
A. $3 / 2 \mathrm{n}$ atoms
B. 2 n atoms
C. 3 natoms
D. 61 atoms

CE06 34
Which of the following changes occur afier an alumibiun artigle has been amodized?
A. its electrical conductivity increases.
B. Is tensile strength increases.
C. It hecomes more easily dyed.
D. If becomes more easily oxidized.

CE06_37
The relative atomic mass of metal X is 55.8 .23 .90 g of X is allowed to react with excess oxygen untili X is completely oxidized. The mass of the metal oxides obtained is 34.18 g . What is the empirical formula of the oxide? (Relative atomic mass: $\mathrm{O}=16.0$)
A. $X 0$
B. $\mathrm{X}_{2} \mathrm{O}$
C. $\quad \mathrm{X}_{3} \mathrm{O}_{2}$
D. $\mathrm{X}_{3} \mathrm{O}_{4}$

CE07_05
Metal Y and calcinm are both in the same gromp of the Periodic Table. When equal mass of Y and calcium respectively reacts with excess hydrochloric acid under the same condition, Y gives more hydrogen than calcium does, Which of the following deductions is correct?
A. The reactivity of Y is higher than that of calctum.
B. The metallis bond in Y is weaker than that in calcium.
C. The atomic number of Y is greater than that of calcium.
D. The relative atomic mass of Y is smalior than that of calcimen.

CE07_07

X, Y and Z are metals. The table below shows the observations when each of them is put into copper(II) sulphate solution

copper(ii) sulphate solution:
Metal Obscrvation X No observable change Y Brown solid formed and colourless gas evolved Z Brown solid formed

Which of the following amangement correctly represents the ascending order of reactivity of the metals?
A. $\mathrm{X}<\mathrm{Z}<\mathrm{Y}$
B. $Y<Z<X$
C. $Z<X<Y$
D. $\mathrm{X}<\mathrm{Y}<\mathrm{Z}$

CE07_11
D, J, R and Y represent four different compounds. D and J react according to the following equation:

$$
D+2 J \longrightarrow R+2 Y
$$

d grams of D react with j grams of J to give r grams of R and y grams of X. What is the value of y ?
A. $d+j-$,
B. $d+2 j-r$
C. $2(d+j-s)$
D. $(d+2 j-r) / 2$

CE07_34
What mass of iron can be oblained by complete reduction of 7.18 g of iron(III) oxide?
(Relative atomic masses: $\mathrm{Fe}=55.8, \mathrm{O}=16.0$)
A. 2.51 g
B. $\quad 3.86 \mathrm{~g}$
C. $\quad 5.02 \mathrm{~g}$
D. 5.58 g

CE07_38
Which of the following methods is most suitable for preparing a sample of lead(I) sulplate?
A. Adding lead to dilute sulphuric acid
B. Adding lead to copper(II) sulphate solution
C. Adding lead(II) oxide to diflute sulpheric acid
D. Adding lead(IN) nitrate solution to ditue sulphutc acid

C807 48

$1^{\text {st }}$ statement
$2^{\text {nd }}$ statement
Galvanized iron is used for making food cans.

CEOS_O4
Consider the ionic equation below:
$2 \mathrm{MnO}_{4}^{-}+x \mathrm{Sn}^{2+}+\mathrm{yH}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+x \mathrm{Sn}^{4+}+81 \mathrm{H}_{2} \mathrm{O}$
What is the value of x ?
A.
B.
C. 5
D. 7

CE08_10
Which of the following has the greatest number of ions?
A. 5 moles of inon(III) sulplate
B. 6 moles of aluminium fluotide
C. 7 moles of lead(II) nitrate
D. 8 moles of magnesimu sulphate

CE08_12
Green patches appear on the surface of a metalic statue in a museum. Tt can be deduced that the statue may contain
A. tin.
B. inon.
C. silver,
D. copper.

CE08_15
X and Z are metals. X reacts with $Z\left(\mathrm{NO}_{3}\right)$ s solution according to the following equation:

$$
X(s)+Z^{2+}(a q) \longrightarrow X^{2+}(\mathrm{aq})+Z(s)
$$

Which of the following deductions is correct?
A. Both X and Z can react will water.
B. The reactivity of Z is higher than that of X.
C. X acts as a reducing agent in the reaction.
D. Z acts as the negative pole when X and Z are used as electrodes in a chemical cell with sodium ciloride solution as electrolyle.

CE08 16

The oxidation number of metal M in its oxide is +2 . Complete reduction of 11.9 g of this oxide by
hydrogen gas produces metal M and 2.7 g of water. What is the relative atomic mass of M ?
Relative atomic masses: $\mathrm{H}=1.0,0=16.0$)
A. 9.3
B. 24.3
C. 63.3
D. $\quad 137.3$

CE08_26
Consider the following pieces of apparatus:

Which of the following processes can be performed by normal use of some or all of the above apparatus?
(1) reflluxing a reacting mixture
(2) separating two immiscible liquids
(3) pefforming a sinple distitlation
A. (1) and (2) oully
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) ลud (3)

CE08 31
Organic compound Q has the following composition by mass:

C: 37.5%

H: 12.5%
0: 50.0%
What is the possible chemical formula of Q ?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0,0=16.0$)
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. HCOOH
D. $\mathrm{CH}_{3} \mathrm{COOH}$

CE08_34

From which of the following processes can lead be obtained in a school laboratory?
A. Lead(II) oxide is heated strongly.
B. Lead(11) oxide is mixed with carbon
C. Dilute lead(II) nitrate solution is electrolyzed.
D. Zinc is added to dilute lead(II) nitrate solution.

CE08_50

f^{st} statement

When equal mass of Mg and Zn granules is added separately to excess dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, a greater amount of gas will be produced by Mg than Zn .

CE09 05
What is the percentage by mass of oxygen in $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$?
(Relative atomic masses: $\mathrm{H}=1.0 . \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}-23,0$)
A. 72.7
B. 55.9
C. $\quad 22.4$
D. 16.8

CE09 06
Which of the following rust prevention method does NOT match with the iron-made object? Rust prevention method Iron-made object
A. painting
B. greasing
C. zinc plating
D. chromium plating
machinery parts
food can
car bumper
CE09_08
Directions: Q. 8 and Q .9 refer to the following diagram

copper plate 1 M sulphuric acid

Which of the following observations can be made in the above setup?
A. There is no observable change.
B. Gas bubbles appear on the zinc plate.
C. Gas bubbles appear on tie copper plate.
D. The sulpharic acid gradually turns blue

CE09_09
What will occur when the circuit is closed?
A. Boti metal plates gradurlify dissolve.
B. The sulpharic acid gradually tums blee.
C. The hydrogen ions in the solution are reduced to hydrogen gas.
D. Electrons flow from the copper plale to the zinc plate in the extemal circuit.

CE09_20
Which of the following half equations are involved when iron rusts?
(1) $\mathrm{Fe} \longrightarrow \mathrm{Fe}^{3 \mathrm{z}}+3 \mathrm{e}^{-}$
(2) $\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$
(3) $\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}$
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE09 33
An oxide of metal M reacts completely with catbon to give 12.6 of oftetal M and $2.38 \mathrm{dm}^{3}$ of carbon dioxide measured at room tenperaure and pressure. What is the chemical formula of the oxide? (Relative atomic masses: $M=63.5,0=16.0$;
Molar volume of gas at room temperature and pressure $=24 \mathrm{dm}^{3}$)
A. MO
B. MO_{2}
C. $\mathrm{M}_{2} \mathrm{O}$
D. $\mathrm{M}_{2} \mathrm{O}$

CE0941

Anodized aluminium is more commonly used than iron for making window frames
This is because
(1) the cost for extracting aluminium is lower that the cost for extracting iron
(2) anodized aluminum is more corrosion resistant than iron.
(3) anodized aluminum is harder than irom.
A. (i) ouly
B. (2) ouly
C. (1) and (3) only
D. (2) and (3) only

CE09_46

Which of the following information is needed in order to deduce the molecular formula of a compound from its empirical formula?
(1) relative molecular mass of the compound
(2) percentage by mass of each constituent element
(3) relative atomic mass of each constituent element
A. (1) and (2) ouly
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE09_47
Which of the following stateneats concerning the anodization of an aluminium object are correct?
(1) The electrolyte used can be dilute sulphuric acid.
(2) A layer of aluminium oxide is formed on the surface of the object.
(3) The aluminium object should be comected to the negative terminal of the power supply.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CEIO_03
X^{2+} ion has an electronic arrangement of $2,8,8$. Which of the foliowing statements concerning the carbonate of X is INCORRECT?
A. It is a white solid.
B. It is insolible in water
C. It decomposes on heating.
D. It produces a briek red flane in flame test,

CE10_04

Assuming that the total yolume of 20 drops of watce is $1.0 \mathrm{~cm}^{3}$, what is the munber of molecules
in 1 drop of water?
(Avogadro's constant $=6.02 \times 10^{23} \mathrm{~mol}^{-1}$; density of water $=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$:
Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=(6.0)$
A. 1.7×10^{2}
B. 3.3×10^{21}
C. $\quad 3.0 \times 10^{22}$
D. 3.3×10^{22}

CE10 06
Which of the following components of air is NOT obtained indestrially from fractional distillation of liguid air?
A. Ar(g)
B. $\quad \mathrm{CO}_{2}(\mathrm{~g})$
C. $\mathrm{N}_{2}(\mathrm{~g})$
D. $\mathrm{O}_{2}(\mathrm{~g})$

CE10_08
Naturally occurting magnesiun has three isotopes: ${ }^{24} \mathrm{Mg},{ }^{25} \mathrm{Mg}$ and ${ }^{26 \mathrm{Mg}}$. The relative abundance of the ${ }^{25} \mathrm{Mg}$ isotope is 10%. What is the relative abundance of Hee ${ }^{26} \mathrm{Mg}$ isotope?
(Relative atonic mass; $\mathrm{Mg}=24.3$)
A. 10%
B. 15%
C. 23%
D. 85%

CE10 14
What mass of methane upon complete combustion gives 0.90 g of water?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
A. 0.40 g
B. 0.45 g
C. $\quad 0.75 \mathrm{~g}$
D. 0.80 g

CE10_16
A boiling fube contains hot saturated copper(II) sulplate solution. Large erystals of the salt can be obtained by
A. placing the boiling tube in a test tube rack on a bench.
B. placing the boiling tube under ruthing lap water.
C. phacing the boiling tube in a ice-water bath.
D. heating the solution to dryness.

CE10_21
Which of the following substances contain(s) mainly calcium carbonate?
(1) rock salt
(2) limestone
(3) oyster shel!
A. (1) only
B. (2) only
C. (1) and (3) orily \quad D. (2) and (3) only

CE10_22
Which of the following statements concerning potassitum and calcium is/are correct?
(1) The reducing power of potassiun is stronger than that of calcium.
(2) The hardness of potassium is higher than that of calcium
(3) The density of potassium is greater than that of calcium.
A. (1) only
B. (2) ouly
C. (1) and (3) only
D. (2) and (3) only

CE10 26
Which of the following safety measures should be taken when investigaling the reaction between sodium and water?
(1) Use forceps to piek sodium.
(2) Use a small piece of sodium,
(3) Use a small mmount of water.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) aud (3)

CE10_23
A certain oxide of manganese contains 49.5% of manganese by mass. What is the empirical formula of this oxide?
Relative atomic masses: $\mathrm{O}=(6,0, \mathrm{Mn}=54.9)$
A. MnO
B. MnO_{2}
C. $\mathrm{Mn}_{2} \mathrm{O}_{2}$
D. $\mathrm{Mn}_{2} \mathrm{O}_{7}$

CEIL_04
One mole of ethane and one mole of ethane have the same
A. mass.
B. number of atoms.
C. number of molecules.
D. number of bonded electrons.

CE11_08
An ore contains 80% of the zine sulphate by mass. Assuming that the other components in this ore do not contain zinc, what mass of the ore is required to extract 0.70 g of zinc?
(Relative atomic masses: $\mathrm{S}=32.1, \mathrm{Zn}=65.4$)
A. $\quad 0.88 \mathrm{~g}$
B. $\quad 1.04 \mathrm{~g}$
C. $\quad 1,30 \mathrm{~g}$
D. 1.76 g

CE11_23
In an experment, excess zine granules are added to a solution conlaining copper(II) ions and magnesium ions, After complete reaction, the reaction mixture is fitered. Which of the following statements concerning the experiment is/are correct?
(1) The residue contains magnesium metal.
(2) The residue contains copper metal.
(3) The filtrate contains zine tons.

A, (I) oaly
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE11_30

${ }^{\text {st }}$ statement

When excess magnesium ribbons are added to iron(II) sulplate solution, the solution gradually changes from pale green to yellow.

$2^{\text {mid }}$ statement

When magnesium ribbons are added to iron(il) sufplate solution, a displacement reaction occurs.

CE11_36
In order io prevent rusting, zinc blocks can be attached to the surface of stecl ships. This is hecause
A. zine is stronger oxidizing agent than iron.
B. zine prevents iron from losing electrons.
C. zine separates iron from air and water.
D. zine removes oxygen from rust.

CE11 38
Hydrocarbon X contains 80% of carbon by mass. What is the empirical formula of $X 7$
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0$)
A. CH
B. CH_{2}
C. CH_{3}
D. CH_{4}

CEII_46
Which of the following are the advantages of using anodized aluminium to make driak cans?
(1) The drink cans can be dyed more easily
(2) The hardness of the drink cans can be increased.
(3) The corrosion resistance of the drink cans can be entance.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSEIISP 05
Rust indicator containing potassiom hexacyanoferrate(III) solution was poured into the following glass distes to cover the iron nails, which were wrapped with different metal strips. The dishes were allowed to stand in air for some time.

silver strip
dish 1

zino strip
dish 2

copper strip dish 3

magnosium strip
dish 4

If the iron mait rusts, what would the color of the rust indicator be around the nail?
A. Yellow
B. Brown
C. Red
D. Blue

DSEIISP. 06
Rust indicator containing potassium hexacyanoferrate(III) sotution was poured into the following glass dishes to cover the iron nails, which were wrapped with different metal strips. The dishes were allowed to sland in air for some time.

silver strip
disht 1

zincsinip

opper strip

magnesima strip

In whicle pf the dishes would the iron nail rust?
A. Dish 1 only
B. Dish 2 only
C. Dish 1 and Dish 3 only

DSE11SP_15
Which of the following samples of gases contains the smallest number of molecules?
(Relative atomic masses : $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{~N}=14.0, \mathrm{O}=16.0, \mathrm{~S}=32.1$)
A. $\quad 10 \mathrm{~g}$ of NO_{2}
B. 10 g of CO_{2}
C. 10 g of $\mathrm{H}_{2} \mathrm{~S}$
D. 10 g of $\mathrm{C}_{2} \mathrm{H}_{4}$

DSE12PP 06

X, X and Z are three different metals. When these metals are placed scparately into an aqueous solution of tin(II) nitrate, a spongy layer of tin is formed only on \mathbf{X}. When each of the oxides of these metals is heated strongly, only the oxide of Y gives a metallic lestre. Which of the following represents the arrangement of these metals in decreasing order of reactivily?
A. $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
B. $X>Z>Y$
C. $\mathrm{Y}>\mathrm{X}>\mathrm{Z}$
D. $Z>X>Y$

DSE12 03
In an oxide of metal M, the mass percentage of M is 55.0%. What is the chemical formula of this oxide? (Relative atomic masses: $\mathrm{O}=16.0, \mathrm{M}=39.1$)
A. MO_{2}
B. $\mathrm{M}_{2} \mathrm{O}$
C. $\mathrm{M}_{2} \mathrm{O}_{2}$
D. $\mathrm{M}_{2} \mathrm{O}_{3}$

DSE12_09
Which of the following statements concerning an ahminum ore consisting mainly of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is correct?
(Relative atomic masses: $\mathrm{O}=16.0, \mathrm{Al}=27.0$)
A. Carbon can be used to extract aluminium from this ore
B. The abudance of this ore in the earth crust is very low.
C. This ore comains more than 55% of aluminium by mass.
D. Aluminium can be extracted from this ore due to the advancement of technology in apply electricity.

DSE12_16
Which of the following combinations is/are correct?

Object

Corresponding corrosion preyention method / principle
(I) Aluminium window frames
(2) Gaivanized iron buckets
(3) Tin-plated iron cans
A. (1) only
C. (1) and (3) only

DSE13 23
$1^{\text {st }}$ statement
When iron and copper are separated
Iron can be oxidized more readily than copper
immersed in hexame completely, iron corrodes faster than copper.

DSE13 05
Which of the following methods can be used to obtain magnesium from magnesium compounds?
A. Electrolysis of a molten magnesium compound
B. Electrolysis of an aqueous solution of a magnesium compound
C. Heating magnesium oxide with carbon
D. Heating magnesiun oxide strongly

OSEI3_07
Hoth the frame and gear system of a bicycle are made of steel. Which of the following combinations can be used to prevent these parts of the bicycle from rusting?

	Frame	Gear systenı
A.	painting	greasing
B.	painting	galvanzing
C.	tin-plating	greasing
D.	tin-plating	galvanizing

DSE13_13
Titanime (Ti) is a metal. 2.66 g of a sample of titanitun powder is heated in excess oxygen until the metal is complectely oxidized. The mass of the oxide formed is 4.44 g , which of the following is the empirical formula of the oxide formed?
(Relative atomic nasses : $\mathrm{O}=16.0, \mathrm{Ti}=47.9$)
A. Tro
B. $\mathrm{Ti}_{2} \mathrm{O}_{3}$
C. $\mathrm{Ti}_{3} \mathrm{O}_{4}$
D. TiO_{2}

DSE13_06
Which of the set-ups shown below can best be used to anodize an aluminum object?

dilute
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
B.

c.

D.

DSE13_19
Which of the following statements about limestone isfare correct?
(4) It gives a golden yellow flame in a flame test.
(5) If gives a colorless gas when heated strongly
(6) It dissolves in dilute sulphuric acid to give a clear solution.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE14_03
The diagram below shows three iron mails of the same size and shape ench immersed in a liquid.

X

Y

Z

Which of the following arrangements represents the ascending order of rate of cerrosion of the
iron nails?
A. $Z<Y<X$
B. $Y<Z<X$
c. $Z<X<Y$
D. $X<Z<Y$

DSE14_04
Refer to the following chemical equation:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$
N moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are aflowed to react with 2 N moles of CO under suitable conditions until the
reaction stops. How many moles of Fe are formed?
A. N
B. 2 N
c. $\frac{2}{3} \mathrm{~N}$
D. $\frac{4}{3} \mathrm{~N}$

DSE14_05
Hydrated sall $\mathrm{X} \cdot \mathrm{on}_{2} \mathrm{O}$ contains 51.16% of water by mass. Given that the molar mass of X is 120.3 g , what is n ?
(Relative atomic masses: $\mathrm{H}=\mathbf{1} \mathbf{0}, 0=16.0)$
A. 2
B. 5
C. 7
D. $\quad 10$

DSE14_18
In an experiment, a small piece of potassium is added to a trough of water containing
phenolphthatein. Which of the following statements concerning the experiment are correct?
(1) An exohiermie reaction occurs
(2) A colorless solution is formed.
(3) Tlie metal bums with a lilac flame.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE14_14
As shown in the diagram below, the glowing splint relights when solid Z is heated.

Which of the following chemicals may Z be?
A. Hg O
B. $\mathrm{Al}_{2} \mathrm{O}_{3}$
C. CaCO_{3}
D. MgCO_{3}

DSE15 02

Which of the following processes would NOT give oxygen?
A. Heating mercury(II) oxide strongly
B. Electrolysis of dilute sulphuric acid
C. Fractional distillation of liquefied air
D. Passing steam over heated magnesium

DSE15_05
A gel containing $\mathrm{NaCl}(\mathrm{aq}), \mathrm{K} 3 \mathrm{Fe}(\mathrm{CN}) s(\mathrm{aq})$ and plenolphthalein is yellow in color An iron nail is put into the gel and corrodes after a period of time. Which of the following colors would NOT be
A. Blue
B. Pink
C. Grey
D. Yellow

DSE15 07
Consider the following set-ups:
(I)

(2)

(3)

Which hook would corrode first?
A. Ironhook (1)
B. Iron hook (2)
C. Copiper hook (3)
D. Copperhook (4)

DSE15 21

Which of the following observations would be expected twhen sonse calcium granules are put in cold water inside a test tube?
(1) A cloudy mixture is formed.
(2) The test tube becomes warm
(3) Colourless gas bubbles are formed
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSB16 03
Consider the following information concerning metal X :
(1) Y reacts vigoronsly with water.
(2) Y forms an oxide with chemical formula $\mathrm{Y}_{2} \mathrm{O}$.
(3) An atom of Y has five occupied electron shells.
Y may be
A. silvet (Ag).
B. caesium (Cs).
C. strontium (Sr)
D. rubidium (Rb).

DSE16 04

Consider the foltowing experimental set-up:

Wich of the following would NOT be X ?
A. Iron
B. Zinc
C. Copper
D. Magnesium

DSE16 05

Tin plating is used to prevent iron cans from risting because
A. tin provides sacrificial protection to iron
B. tin layer prevent iron from exposure to air.
C. tin is higher than iron in the motal reactivity serics.
D. tin and iron form an alloy which does not corrode

DSE16_09
1 mol of a hydrocarbon req̧uires 9 mol of oxygen for complete combustion. Which of the following may be this hydrocarbon?
A. $\mathrm{C}_{6} \mathrm{H}_{6}$
B. $\mathrm{C}_{6} \mathrm{H}_{0}$
C. CH_{12}
D. $\mathrm{C}_{6} \mathrm{H}_{4}$

DSE16 23

${ }^{14}$ statensent

During anodization, the aluminium oxide on the surface of ahminium is redused to melal.

DSE17_03

A hydrocarbon burns completely in oxygen to give 17.6 g of carbon dioxide and 3.5 g of water. Which of the following is the empirical formula of the hydrocarbon?
A. CH
B. CH_{2}
C. $\quad \mathrm{C}_{2} \mathrm{H}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{5}$

DSE17_09
Which of the following processes would NOT produce metal?
A. Heating zinc oxide
B. Heating copper(II) oxide wifl carbon
C. Electrolysis of molten lithium chloride
D. Heating iron(III) oxide will carbon monoxide

DSE17_13

In which of the following cases would the iron nall corrode fastest?

DSE17_19
Which of the following statements concerning anhydrows copper(II) sulphate powder are correct?
(1) It is white in color
(2) It dissolves in water to give a blue solution.
(3) Il can be oblained from heating hydrated copper(II) sulphate crystals
A. (1) and (2) only
B. (1) and (3) only
D. (1), (2) and (3)
C. (2) and (3) only

The corrosion resistance of nluminium can be enlanced by anodization

B.

C.

D

(1), (2) and (3)

DSE18 03
A cerlain mass of a sample of $\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})$ is strongly healed in a test tube. Which of the following slows the relationships of the mass of the contents (m) in tho test tube with time (t) from the slart of heating?
A.

B.

c.

D.

DSEI8 04
If 8.0 g of sulphur dioxide gas contains n molecules, how many molecules does 2.0 g of oxygen gas coniain?
A. 2.0 n
B. $\quad 4.0 \mathrm{n}$
C. 0.25 n
D. 0.50 n

DSE18 06
Dilute sodium hydroxide solution is added to a 0.1 M solution until in excess. Which of the following combinations is correct?

	Solution	Observation
A.	Zine sulphate	White precipitate formed
B.	Culcium nitrate	White precipitate formed
C.	Lead(II) nifrate	Yellow precipitate formed

C. Lead(II) nifrate
D. Iron(III) sulphate

Ditly green precipitale formed

DSE18_07
Which of the following statements concerning iron and magnesiun is correct?
A. Iron is ductile but magnesium is not.
B. Iron corrodes less readily than magnesium.
C. The abundance of magnesiun is higher than that of tron in the earth cruts.
D. Both magnesium and iron can have more than one oxidation number in their oxides.

DSE18_09

X, Y and Z are different metals. When they are placed separately in $\mathrm{NaCl}(\mathrm{aq})$, only Y gives colorless gas bubbles. When each of thoir oxides is heated strongly, only the oxide of \mathbf{X} gives a colorless gas. Which of the following shows the decreasing order of reactivity of these three metals?
A. $\quad Y>Z>X$
B. $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
C. $\mathrm{Y}>\mathrm{X}>\mathrm{Z}$
D. $Z>Y>X$

DSE19 06
2.53 g of $\mathrm{NaHCO}_{3}(\mathrm{~s})$ was heated until no further changes and 1.59 g of a solid remained. Which of the following equations natches with the experimental result?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=[2.0,0=16.0, \mathrm{Na}=23.0$
A. $\quad \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{NaOH}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
B. $2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
C. $2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
D. $2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{CO}_{2}(\mathrm{~g})$

DSE19-08
39.2 g of an oxide of rubidium (Rb) contains 28.5 g of rubidium. What is the empirical fomula of this oxide?
(Relative atomic masses : $0=16.0, \mathrm{Rb}=85.5$)
A. RbO
B. RbO_{2}
C. $\mathrm{Rb}_{2} \mathrm{O}$
D. $\mathrm{Rb}_{2} \mathrm{O}_{2}$

DSE19_15
Which of the following methods can slow down the corrosion of an iron-made object?
(1) Connect it to a piece of lead.
(2) Plate a layer of copper coating completely onto its surface.
(3) Comect it to the cathode of a chemical cell.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE19_17

Which of the following metal oxides can be reduced to a metal when heated with carbon using a Bunsen burner?
(I) Lead(II) oxide
(2) Magnesium oxide
(3) Copper(II) oxide
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
7. Refer to the information in the table below :

Material	Rank order of Hardness $(1=$ hardest)	Density $/ \mathrm{g} \mathrm{gm}^{-3}$	Rank order of Price ($=$ cheapest)
P	4	8.9	4
Q	3	7.8	1
R	2	10.5	3
S	1	2.7	2

Which is the best material to make aircraft body?

8. Consider the following experimental ser-up :

In which of the following combinations would the fron nail rust the fastest?

	x	Y
A.	hydrogen	
${ }_{\text {B. }}^{\text {B. }}$	hytrogen	distilled water
D.	oxygen	distilled water

15. The observations of heating three metal carbonates are shown below:

Metal cartonate	Observationt
$\mathrm{X}_{2} \mathrm{CO}_{3}$	A gas was given out and \& shiny silvery solid was formed.
$\mathrm{X}_{2} \mathrm{CO}_{3}$	There was no observable change.
ZCO_{3}	A gas was given out and a yellow solid was formod.

Which of the following shows the decreasing order of reactivity of the metals?

```
A. 
c.
```

17. Which of the following ways is f are acceptable in the storage of the chemical concerned ?
(1) Store concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1) in a copper container.
(2) Store concentrated $\mathrm{AgNO}_{5}(\mathrm{aq})$ in a brown glass container
(3) Store concentrated $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (aq) in an iron container.
A. (1) only
B. (2) only
D. (2) and (3) only

DSE21. 04
4. M, Q and R are three different metals. When their oxides are separately heated, only the oxide of M gives a metalic lustre. When their carbonates are separately heated with a Bunsen bumer, oniy the carbenate of R gives no observable changes. Which of the following shows the increasing order of reactivity of th metals?
$\begin{array}{ll}\text { A. } & R<Q<M \\ \text { B. } & R<M<Q \\ \text { C. } & M<R<Q \\ \text { D. } & M<Q<R\end{array}$

DSF21_18
18. Both aluminium and iron form oxides on their surfaces when they are exposed in air. The oxide of aluminum can prevent the aluminum from further corrosion, but the oxide of iron cannot prevent the iron from further corrosion. What is / are the reason(s)
(1) The oxide of aluminium adheres fitmly on the aluminium surface while the oxide of fron adheres The oxide of alumninium is insoluble in water white the oxide of iron is soluble in water.
(3) The oxide of aluminium has a giant ionic structure while the oxide of forn does not.
A. (1) only
C. (1) and (3) only
C. (1) and (3) only
D. (2) and (3) only

Structural Questions
CE90_05a
The set-up below was used to investigate the corrosion of izor:

After some time, the solution from each tube was tested with potassium hexacyanoferrate(III) solution. It was found that corrosion of iron occured only in tubes A and B.
(i) State the colour change when the solution from tube Λ was tested with potassium hexacyanoferrate(III)solution.
(ii) When the iron mail in the tube B corroded,
(1) indieate what cation and anion were produced, and
(2) write the half equation to show the formation of each ion.
(iii) It which of the tubes would bubbles of gas be observed?

Write an equation for the reaction involved.
(iv) Explain why corrosion of iron did not occur in
(I) tube C
(2) tube D

CE91 020
Iron sheets can be tin-plated by electrolysis of either tin(II) or tin(IV) compounds before they are used to make food cans.
(iii) Give one reason to explain why ifon is first tin-plated before food cans are made from it.
(iv) If the tin-plated iron sheet has been scratched to expose the iron, can it slill be used to make a food can? Explain.

CE91 04a
A student used the following set-up to determine the empitical formula of an oxide of iron.

Before the experiment, the student was instructed to see whether the iron powder was rusty and to remove any rust from it.
After weighing a sample of pure iron powder, the student then heated it strongly in a crucible, opening and closing the lid from time to thime until the reaction was complete. He then reweighed the content after cooling
The following results were obtained:

Mass of cmible + lid	25.27 g
Mass of crivible + lid + iron powder before heating	26.16 g
Mass of cmoible + lid + content after cooling	26.50 g

(i) If the iron powder were nusty, describe briefly how the rust couid be removed chemically, Write an appropriate equation for the reaction.
(ii) Give TWO reasons why the crucible lid was opened and closed from time to time during heating.
(iii) Calculate the cmpirical formula of the oxide of iron from the above data. (Relative atomic mass: $\mathrm{O}=16.0, \mathrm{Fe}=56.0$)

CES2 016

The table below gives some information about three metals A, B and C:

Metal	Rate of corrosion in moist air	Elcetrical conductivity	Strength of netal	Cost per toune
A	Fast	Very good	Moderate	$\$ 13400$
B	Fast	Good	Good	$\$ 13800$
C	Slow	Very good	Moderate	$\$ 37000$

(i) Based on the information given above, explain which metal is most suifable for making
(1) electrical cable.
(2) window frames.
(ii) Suggest one method to reduce the rate of corrosion of metal in moist nir.
(iii) Why can metals conduct electricity?

CE92_04b
Silvery metal A rencts vigorously with water to form colourless solution B. When B is subjected to the flame test, it gives a persistent yellow flame. When B is added to copper(II) nitrate solution, precipitate \mathbf{C} is formed. \mathbf{C} changes into black solid \mathbf{D} upon strong heating,
(i) What is metal A? Write a balanced equation for the fraction between A and water.
(ii) Describe how the flame test on B can be carried out in the laboratory.
(iii) Write an ionic equation for the formation of C .
(iv) Give the name for \mathbf{D}.

CE93_01a

Aluminium and iron can be used in making witdow frames,
(i) Describe an experiment to show that aluminium is more reactive than iron.
(ii) Although aluminium is more reactive than iron, explain why most window frames are now made of anodized aluminium instead of painted iron.

CE93_05a
The following table lisis some reactions of iron(III) nitrale solution:

Reaction	Observation	Equation
(1) Zine powder was added to iron(III) nitrate solution.	-	$\mathrm{Zn}(\mathrm{s})+2 \mathrm{Fe}^{3+}(\mathrm{aq}) \underset{ }{\longrightarrow}$ $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Fc}^{2+}(\mathrm{aq})$

(i) What would be observed in reaction (1)7 Explain your answer,

CE94_01
The table below lists sone infornation about liree metals X, Y and Z .
The table below lists sone information about diree metals X, Y and Z.

Metal	X	Y	Z
Atomic number	12	20	-
Action of cold water	No apparent change	A colourless gas slowly evolves	No apparent change
Action of 0.1M hydrochloric acid	A colourless gas evolves	-	No apparent change

(a) To which group in the Periodic Table does Y belong?
(a) To which group in the Periodic Table does Y belong?
(b) (i) Write an equation for the reaction between X and 0.1 M hydrochloric acid. (An ionic equation will NOT be accepied for this question.)
(ii) Draw electronic structures for the TWO products fonned in (i) above, showing electrons in the outermost shell ONLY.
(c) What would be observed when Y is added to 0.1 M hydrochloric acid?
(d) Based on the results of the reaction given in the above table, arrange the three metals in descending order of reactivity. Explain your answer.

CE94_06a
The following experiment set-ty was used to determine the empirical fommla of an oxide of copper.

In the experiment, 8.58 g of an oxide of copper, after complete reaction, produced 7.62 g of copper.
(i) Deduce the empirical formula of the oxide of copper.
(ii) Write an equation for the reaction that occurred in the combustion tube.
(iii) State TWO potential hazards associated with this experiment, and suggest a salety precaution for each hazard.
(iv) At the end of the reaction, heating was stopped. However, it was necessary to continue pass the town gas through the combustion tube until the tube had cooled down. Explain why.
(Relative atomic masses: $\mathrm{Cu}=63.5, \mathrm{O}=16.0$)
(8 marks)

CE95_01

Rubidum (Rb) and potassium beiong to the same group in the Periodic Table. The relative atomic mass of rubidium is larger than that of potassium.
(a) Explain whether rubidium is more reactive than potassium.
(b) Write a chemical equation for the reaction between rubidium and water. (Slate symbols should be given.)
(c) Sugecst how rubidium can be stored safely in the laboratory.
(d) Suggest ONE safety precaution for handling rubidium in the laboratory.

(5 marks)

CE9S_06b
The table below gives some information about five metals.

Metal	Abundance in the earth's crust (\%)	Price per kg (\$)	Relative resistance of corrosion $(1=$ least resistant $4=$ most resistant $)$	Relative strength of netal (I= lowest $3=$ highest)
Al	8.1	170	3	1
Cu	0.0055	140	3	3
Au	0.0000004	1100000	4	2
Fe	5.0	20	1	3
Zn	0.007	160	2	2

(i) Although gold has a very low abundance in the earth's crust, gold was discovered by man long time ago. Why?
(ii) Which of the metals in the above table is the most suitable to make pipes for hot water? Explain your answer.
(iii) (1) Aluminium does not corrode casily. Why?
(2) Aluminium is a principal material for making areraft but its strengl/ is relatively low, Suggest how the strength of aluminium can be improved to make it suitable for making aircraft.
(iv) (1) Based on the information given in the table, suggest ONE factor that affect the price of a metal.
(2) Suggest ONE other factor (not indicated in the table) that can also affect the price of a metal.

CE96_04

Briefly describe an experiment, using the following apparatus and materials, to show that air is necessary for the rusling of fron.

2 test tubes, a test tube holder, a Bunsen bumer
2 clean iron mails, paraffin oil and tap water

CE97_01
For each of the tasks listed in the table below, decide which substance on the right is the best to use to accomplish the task. Explain your answer in each case.

Task	Substances	
(a) To tatacha substance to the		
iron hull of a tanker to		
prevent the full from		
rusting		Calcium,

CE98_01
Lithium is a group I element in the Periodic Table. It occurs naturally in two isotopic forms. The relative abundance of each of these isotopes is shown in the table betow:
relative ahundance of each of these isotopes is shown in the table below:

Isotope	${ }^{6} \mathrm{Li}$	${ }^{7} \mathrm{Li}$
Relative abundance (\%)	7.4	92.6

(c) A piece of fresily cut lithium metal is placed in air.
(i) What would be observed on the sutface of the metal after some time? Write the refevant chenical equation.
(ii) Draw the electronic diagram of the product in (i), showing electrons in the outermost shells only.
(3 narks)

CE98_085
The photograph below shows a can of frit juice. The body of the can is made of iron conted with another metal. The fop of the can and the right-pull are made of aluminium.

(i) (1) Suggest ONE reason why the iron body is coated with another metal.
(2) Name ONE metal commonly used for coating the iron body.
(ii) Suggest ONE reason why aluminium, rather than iron, is used for making the top of the can and the ring-pull.
(iii) Explain why it is not advisable to buy cans of fruit juice
(1) If the cans have scratches on the iron body;
(2) if the cans are swollen.
(iv) There is an increasing endency for manufacturers to use cans made entircly of aluminium for the storage of fruit juice. Suggest ONE advantage and ONE disadvantage of using aluminimm cans for the storage of fruit juice.
(9 marks)
CE99_02
For each of the following experimenis, state ONE observable change and write a chemical equation for the reaction invelved.
(b) A small piece of calcium is placed in a Bunsen flame.
(c) A mixture of copper(II) oxide and catbon powder is heated in a test tube.

CEOO_ 03

Consider the following materials:
Aluminitm, bronze, copper, lead, mitd steel and titanium
For each of the tasks listed below, cloose the ONE material which is best to accomplish the task. Explain your choice in ench case.
(a) making electrical wirits
(b) making overthead high voltage cables

CE00_09

X, Y and Z are three different metals. The table below shows the results of two experiments carried out using the metals or their oxides.

Experiment	X	Y	Z
Adding the metal to water	Effervescence	No observable change	No observable change
Heating the metal oxide	No observable change	Metal produced	No observable change

(i) Based on the above information, arrange the three metals in order of increasing reactivity.
Explain your answer.

CE01_05
Explain why nodization, sacrificial protection and tin-plating can protect metals from corrosion.

CE01_07c

The photograpin below shows a diamond ring:

(i) Explain why gold and diamond cach has a high metting point.
(ii) 18-carat gold is an alloy of gold. Suggest ONE reason why 18 -carat gold instend of pure gold is used in making the ring.
(You are NOT required to consider the price of the materiats.)
CE01 08a
(ii) A part of the Periotic Table is shown below:

Period	2	Group							
		1	11	IIt	IV	V	VI	YII	0
		Li	Be	B	C	N	\bigcirc	F	Ne
	3	Na	Mg	Al	Si	P	S	C	Ar
	4	K	Ca					Er	Kr
	s								Xe

For cach of the following pairs of elements, suggest ONE reaction in which both elements behave similarly. In each case, write a chemical equation for the reaction involving either onc of the elements.
(1) magnesium and calcium

CE02 01
Both ammoniun dihydrogenplosphate and ammonium sulphate are nitrogenons fertilizers.
(b) List all the elements in ammonium dilydrogenphosphate.
(c) (i) Calculate the percentage by mass of nitrogen in ammonium sulphate.
(2 marks)

CE02_02
For each of the following experiments, state an expected observation and write a chemical equation for the reaction involved.
(a) A nagnesium ribbon is placed in a Bunsen flame.

CE02 06a

Magnesium can be extracted from sea water which contains magnesium ions. The extraction of magnesium from sea water involves three stages.

Stage l: Add slaked lime to sea water to precipitate magnesium ions as magncsium hydroxide. Stage 2: Heat the magnesium hydroxide obtained in a stream of hydrogen chloride gas to give magnesium chloride.
Stage 3: Extract magnesium by clectrolysis of the molten magnesium chloride.
(i) What substance is mainly present in slaked line?
(ii) Write a chemical equation, with state synbols, for the reaction in Stage 2.
(iii) Explain why molten magnesium chloride can conduct electricity.

CE02_07a
Calcite is a mineral which contains mainly calcitum catbonate, An experinsent, consisting of the following five stages, was conducted to determine the percentage by mass of calcium carbonate in a sample of calcite.

Stage 1: Weigh the santple. Add dilute nitric acid to it until the acid is in excess.
Stage 2: Filter the mixture abtained in Stage 1 to remove any undissolved soitid.
Stage 3: Add excess sodium sulphate solution to the filtrate to precipitate out calcium sulphate. Stage 4: Collect the calcium suiphate precipitate and wash it with distilled water. Stage 5: Allow the calcium sulphate to dry and weigh it.
(i) Write a chemical equation for the reaction of calcium cabbonate with dilute nitric acid. Suggest how one can know that excess acid has been added in Sticge 1 .
(ii) Draw a labelled diagram of the set-up used in the filtration process in Stage 2.
(iii) Write the bonic equation for the reaction in Srace 3 ?
(iv) Explain why it is necessary to wash the precipitate with distilled water in Slage 4 .
(v) The results obtained in the experiment are listed below:

Mass of the calcite sample $\quad=7.98 \mathrm{~g}$
Mass of the calcium sulphate obtained $=10.52 \mathrm{~g}$
(1) Calculate the percentage by mass of calcium carbonate in the sample of calcite.
(2) State ONE assumption in the calculation.
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{~S}=32.0, \mathrm{Ca}=40.0$)

CE02_08b
Both carbon and silicon are Group IV edements in the Periodic Table.
(iv) Silicon can be obtained by heating silicon dioxide with carbon strongly.
(1) Write a chemical equation for the reaction involved.
(2) Suggest ONE use of silicon.

CE03_02
X, Y and Z are three different metals. The table below lists the results of three experiments carried out using the metals or their oxides.

Experiment	X	Y	Z
Alding motal to cold water	Formation of a colourless gas	No obscrvable change	No observable change
Adding metal to copper(II) sulphate solution	Formation of a colourless gas and a reddisli brown solid	Formation of reddish brown solid	No observable change
Heating metal oxide with catbon powder	No observable change	Formation of a solid with metallic lustre	Formation of a solid with metallio lustre

(a) What is the colourless gas formed when X is added to cold watcr? Suggest a test for the gas.
(b) Name the type of reaction that occurs when the oxide of Y is heated with carbon powder.
(c) Arrange the three metals in order of increasing reactivity. Explain your answer.
(d) Why is a colourless gas formed when X is added to coppcr(II) sulphate solution?

CE04_01

Calcium reacts with cold water to give a colonrless gas.
(a) Wite a chemical equation for the reaction.
(b) In a practical lesson, a student added a few pieces of calcium granules into a beaker of cold water.
(i) Draw a labelled diagram to show how the student could collect the gas prodiced.
(ii) The student recorded the following observation in his laboratory report:
'Evolution of the colonrless gas was af first slow but became faster after some time.' Suggest au explanation for the student's observation.
(c) Potassium also reacts with cold water. State TWO differences in observation when potassium and calcimm are adted separately to cold water.

CE04 08b

Corrosion of iron often results in the formation of rust on its surface.
(i) What is the chemical nature of rust?
(ii) State the essential conditions for the rusting of iron
(iii) For each of the following iron objects, suggest a suitable method to protect it from corrosion: (1) bicycle gear wheel
(2) underground water pipe
(iv) Explain why comeeting the body of a car to the negative terminal of the car battery can help protect the car body from corrosion,
(v) Although aluminhm occupies a higher position than iron in the electrochemical series, it is more resistant to corrosion than iron.
(1) Provide an explanation for the phenomenon.
(2) Suggest a method to enhance the corrosion resistance of aluminium.

CE05_02
(a) Upon strong heating, silver oxide ($\mathrm{Ag}_{2} \mathrm{O}$) undergoes decomposition as represented by the following word equation:
silver oxide \longrightarrow silver + oxygen
(i) Transcribe the word equation into a clemical equation.
(ii) Explain why the decomposition is a redox reaction.
(iii) Calculate the mass of silver that would be oblained when 3.50 g of silver oxide undergoes complete decomposition.
(b) Copper(II) oxide can be reduced to copper using the set-uy shown below:

(i) State an expected observation clange in this experiment.
(ii) Suggest ONE way to show that a metal is formed in this experiment.
(iii) Write a chemical equation for the reaction of copper(li) oxide with hydrogen.
(iv) Suggest why it is necessary to bum the residual hydrogen in the sel-up.
(c) Is it possible to deduce from the results of the experiments in (a) and (b) that copper occupies a higher position in the metal reactivity series than silver does?
Explain your answer.

CE05 08
Lead (Pb) is an clement in Group Γ of the Periodic Table.
(a) An oxide of lead, X, contains 90.6% of lesd by mass. Calculate the empirical formula of X.
(b) X is known to be a mixed oxide composed of PbO and PbO_{2}. Based on your answer in (a), deduce the mole ratio of PbO to PbO_{2} in X .

CE07_06

Read the paragraph below and answer the questions that follow.
Magneslum is a tseful metal. Sclentisis adopt different methods to extract magneslum from magnesium oxide. In 1828, a scientist oblained magnesium in fwo steps. In the first step, magneslum oxide recals with chloine and carbon to form magnesium chloride. In the second step, the magnesium chloride formed reacis with potassium to give magnesium. In 1951, some sclentlitis adopled another chemical process to oblain magnesium from magnesium chtoride. Polasslum is not used in this process, and there is even no need to use any other chemicals.
(a) Write a chemical equation for the reaction that occurred in the first step of the method used by lie scientist in 1828.
(b) Name the type of reaction between potassium ond magnesium chleride, Why can potassium react with magnesium chloride to give magnesium?
(c) (i) What would be the chemical process that can obtain magnesium from magnesium chloride, without using potassium or other chanicals, in 1951?
(ii) What property does magnesium clloride possess so as to make the chemical process possible?
(d) Suggest one use of magucsium in dally life.

CE08_03

Four ironmade objects are placed separately in gel with rust indicator solution containing potassium hexacyanoferrate(III), and allowed to stand in air for some time. Complete the following table by writing down the observation and giving the televant explanation for each of the cases

table by writing down the observation and giving the felevant explanation for each of the cases.
Case Observation Iron-made object fully plated with zinc Iron-made object fully plated with tin Iron-made object fully plated with zinc, but patt of the zinc scratched to expose the iron underneath Iron-made object fully plated wifh tin, but part of the tin scratched to expose the iron underneath

CE09_02

(a) Magnesium cati burn in air wuder strong heating.
(i) Slate the expected observation when magnesium burns in air,
(ii) Magnesium nitride is also formed when magnesium burns in air.
(1) Slate the chemical formala of magnesium nitride.
(2) Dtaw the electronic diagtam of magnesium nitride, showing electrons in the outermost shells only.
(b) Catbon can be used to exfract metals from certain metal oxides.
(i) Suggest how copper can be extracted from copper(1) oxide using carton. State the expected observation.
(ii) Explain whether carbon can also be used to extract magnesium from nagnesium oxide.

CE09_03
Iron powder can be used to make 'warm packs' for keeping users wams. A kind of warm pack is made by putting iron powder in a package which allows air to pass througli. The package also contanns other stbbstances for speeding up the production of heak.
(a) According to the given information, suggest why this kind of warm pack can produce heat.
(b) Explain why iron powerer, instead of a piece of iron with the (2 marks) pack. ade moist sodium chloride. Suggest why it can spee up the production of heat:

CE09_13
For question 13, candidates are required to give answers in paragraph form. For this question, 6 marks will bo awarded for chemical knowledge and 3 marks for effective communication,

Electrolysis can be applied to enthance the corrosion resistance of iron. Describe the chemicn principle involved in this application. Your description should include the cliemical reactions invoived, and the use of appropriate electrofies and electrolyte,
(Diagrams are NOT requited.)

CE10 01
Both bromine (Br) and chlorine (Cl) are Group VII elements in the Periodic Table.
(a) What is the name commonly given to this group of elements?
(b) The electronic arrangement of bromine is $2,8, p, q$. p is \qquad q is \qquad
(I mark)
(c) Explain, in terms of bondiag and structure, why the boiling point of bromine is higher than that of chlorine.
(d) Rubidium (Rb) is a Group I element in the Periodic Table. It reacts with bromine to form an ionic compound
(i) Write a chemical equation for the reation involved.
(ii) Write the clectronic arrangement of a ribidium ion.

CE10 04
$\mathrm{M}_{2} \mathrm{O}$ is an oxide of metal M . Upon heating, $\mathrm{M}_{2} \mathrm{O}$ decomposes to give M and oxygen only
(a) Suggest a method for lesting oxygen, and state the expected observation.
(1 mark)
(b) In an experitrent, 3.48 g of $\mathrm{M}_{2} \mathrm{O}$ completely decomposes to give 3.24 g of M . Calculate the relative atomic mass of M
(c) Explain whether M can react with dillute hydrochtoric neid,

CE11_02
Under same experimental conditions, the same mass of 'expired' and 'fresth' calcium gramules were separately put into water as shown in the diagrams below. The 'expired'calcium granules have been exposed in air for a long tine, while the 'fresh' calcium granules are newly brought.

Diagram 1

Diagram 2
(a) Name the gas collicted, and write a chemical equation for the reaction involved.
(b) Suggest why less gas was collected in the set-up of Diagram I than in that of Diagram 2.
(c) Would the pH of the content in the beaker increase, decrease or remain unchanged after the calcium granules were put into the water in Diagram 2? Explain your answer.
(d) Suggest TWO potential hazards in performing the above experiment.

AL02(II) 01

Devise an experiment, using chemicals and apparaius commonly available in a school laboratory to determine the number of water of crysialization per formula unit of CaSO_{4} in the sample of blackboard chalk.

AL04(1)_08d
(i) Explain why carbon dioxide extinguishers must not be used to pul out a piece of burning sodium.
(ii) Suggest a proper way to put out a piece of burning sodium in the laboratory

ALO4(II)_01 (Modifieid)

A gaseous compound A has the following composition by mass:

$$
\mathrm{N} 21.6 \%, \mathrm{O} \quad 49.2 \% \text { and } \mathrm{F} \quad 29.2 \%
$$

(a) Deduce the empirical formula of A.
(b) Ir the molecular mass of A is in the range of 60 to 70 and hence deduce its molecular formula

ALII(I)_07
(a) Copper(II) sulphate(VI) crystallizes from its aqueous solution as $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (s).
(i) The water of crystalization of the salt can be litberated upon heating. Suggest a chemical test to show that water is being liberated.
(ii) Outine an experimental method to establish that the sall is pentahydrate.
(iii) When $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(s)$ is leated slowly such that the temperature rises steadily, it will lose four water molecules at about $110^{\circ} \mathrm{C}$, and then the last water molecule at about $250^{\circ} \mathrm{C}$.
Using the axes below, sketcla the change of mass when a sample of $\mathrm{CuSO}_{4} \cdot \mathrm{SH}_{2} \mathrm{O}$ (s) is hented slowly

AL12(1) 01
The potassium salt of the iron(III) ethanedioate complex las the following composition by mass; $\mathrm{K}, 26.8 \% ; \mathrm{Fe}, 12.8 \% ; \mathrm{C}, 16.5 \% ; \quad 0,43.9 \%$
(etlanedioate: $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$)
Calculate the emipirical formula of this potassium salt.

ASLI2(II) 02
Melal M forms a water-soluble bromide MBr . The following gravimetric analysis experiment was conducted to determine the formula mass of MBr_{2}.
A solution of MBr_{2} was prepared by dissolving 0.400 g of $\mathrm{MBr}_{2}(\mathrm{~s})$ completely in deionized water. The solution was acidified wilth $\mathrm{HNO}_{3}(\mathrm{aq})$ and then treated with excess $\mathrm{AgNO}_{3}(\mathrm{ag})$. The $\mathrm{AgBr}(\mathrm{s})$ formed was separated from the mixture by filtration, washed and dried. Its mass was found to be 0.816 g .
(e) Given that the cation of M in MBr dees not react with $\mathrm{Ag}^{+}(\mathrm{ag})$ ions, calcufate the formula mass of MBr2.
(b) Calculate the relative atomic mass of M , and deduce what M is,
(2 marks)

AL13(II)_05
(b) Account for the difference in reactivity of $\mathrm{Ca}(\mathrm{s})$ and $\mathrm{Ra}(\mathrm{s})$ with water.

DSE11SP_03

X, Y and Z are three different metals. The table belos lists the results of three experiments cartied out using the metals or their oxides.

Experiment	X	Y	Z
Adding metal to cold water	formation of a colorless gas	no observable change	no observable change
Adding metal to copper(II) sulphate solution	formation of a colorless gas and a reddish brown solid	formation of a reddish brown solid	no observable change
Heating metal oxide with carbon powder	no observable change	fomation of a solid with metallic lusire	formation of a solid wifh metallic lustre

(a) What is the colourless gas formed when \mathbf{X} is added to cold water? Suggest a test for the gas.
(2 marks)
(b) Name the type of reaction that occurs when the oxide of \mathbf{Y} is heated with carbon powder.
(c) Arrange the three metals in order of increasing reactivity. Explain your answer.
(d) Why is a coloricss gas formed when X is added to copper(II) sulphate solution?

DSEIISP 08

For cach of the following experiments, state an expected observation and write a chemical equation for the reaction involved.
(a) adding dilute hydroctloric acid to zinc granule

DSE12PP_05

The fuel used in the torcl for the Beijing 2008 Otympic Ganes was an alkane X with the following composition by mass:
(a) Deduce what X could be.
C. 81.8%
H. 18.2%
(3 marks)

DSEI2 05

In order to prepare $50 \mathrm{dm}^{3}$ of $0.1 \mathrm{M} \mathrm{CuSO} \mathrm{A}_{4}(\mathrm{aq})$, an inexperienced electroplating worker added the required exact amotnt of $\mathrm{CuSO}_{4} * \mathrm{SH}_{2} \mathrm{O}$ (s) to water in a plastic container. He then stirred the mixture with an iron rod until the $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ dissolved completely. Finally, the seat a sample of the solution to the Quality Confrol Laboratory for atalysis, but found that the concentration of $\mathrm{CuSO}_{4}(\mathrm{aq})$ was lower hitan 0.1 M .
(a) With the aid of a chemical equation, explain why the concentration of the $\mathrm{CuSO}_{4}(\mathrm{an})$ prepared was lower than 0.1 M

DSE12_09

The diagram below shows an experimental set-up for investigating the factors affecting rusting,
jron mail A

ron nail C sealed with grease
(a) What would be observed if an iron nail in the above set-up rusts?
(1 mark)
(b) Suggest which of the iron nails in the above set-up would NOT rust during the experiment. Explain your answer.
(3 marks)
DSE13_03
Compound W contains carbons, hydrogen and oxygen only. The relative molecular mass of W is
88.0. Complete combustion of 1.32 g of W gives 2.64 g of carbon dioxide and 1.08 g of water.
(a) Deduce the molecular formula of W .
(relative atomic masses : $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)

DSE13 07
Thernite reactions broadly refer to exothennic oxidation-reduction reactions between a metal powder and a metal oxide. One example is the reaction of finely divided iron(H) oxide with aluminium powder. This reaction results in a very high temperature, and is commonly used in the welding of rail tracks for trains, At this very high temperalure, the molten iron formed joins the rail tracks together.
(a) (i) Complete and balance the chemical equation for the following thernite reaction

$$
\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\ldots \mathrm{Al}(\mathrm{~s}) \longrightarrow
$$

(ii) Sketch a labelled enthaipy level diagrams for this reaction.
(1 mark)
(1 mark)
(b) Copper powder CANNOT be used to replace aluminium powder in carrying out the thermite reaction wilh iron(III) oxide. Explain why.
(c) The extraction of iron from its ores also tnvolves the reduction of fron oxides.
(i) Suggest why aluminium is NOT used as the reducitg agent in iron extraction.
(ii) Suggest ONE reducing agent commonly used in iron extraction.

DSE14 04

With reference to the methods of obtaining copper, magnesium and silver from their oxides, deduc the order of reactivity of these three metals.

DSE15_03

Alumintum and iron are commonly used construction materinls
(a) Suggest why iron was used earlier than atuminium in history.
(1 mark)
(b) A compound contains iron and oxygen only. In an experiment for delermining the empitical formula of this compound, 2.31 g of the compound was heated with earbon monoxide. Upon complete reaction, carbon dioxide and 1.67 g of iron were fomed.
(i) Calculate the empirical formula of this compound.
(2 marks)
(ii) Write the chemical equation for the reaction involved in the experiment
(iii) Ascarbon monoxide is poisonous, suggest one neccssary safely precaution in out the experiment.
(1 mark)
(c) Explain why a galvanized iron object does not easily rust even if the zinc layer is broken.
(2 marks)
(d) Explain why anodization can prevent aluminum object from corrosion.

DSE16_01
Refer ta lie following infomation of phosphonus (P) and chtorine (Cl).

collowing infomation of prosphonus (P) and chlorine (C).
Alomic number 15 Cl Relative atomic mass 31.0 17

(c) A compound of phosphorus and chlorine has a relative molecular mass smaller than 250 . It contains 22.6% of phosphorus by mass.
(i) Deduce the molecular formula of the compound
(2 marks)
(ii) Draw the electron diagran for the compound, showing etectrons in the ontermost shells only.

DSE17_02

Water pipes used to carry drinking water are commonly made of copper instead of iron. Although lead-containing solder can be used to join these waier pipes, such use is prohibited.
(a) Suggest one chemical property of copper that makes it more suitable than iron for making water pipes. Explain your answer.
(b) (i) Suggest one reason of adding lead to soldering materials.
(2 narks)
(1 mark)
(ii) Explain why lead-containing solder is prohibited in joining these water pipes.

DSE18_01
(b) In an experintent, 1.25 g of lithium nitride is formed when a pieee of lithium is burnt in air. (i) Write a chemical equation for the reaction involved.
(ii) Calculate the mass of lilhium that reacted with nifrogen, (Relative atomic masses: $\mathrm{Li}=6.9, \mathrm{~N}=14.0$)
(c) Name another compound which will also be formed when lithiun is burn in ait

DSE18_05

Electroplating and rust prevention are common applications of electrochemistry:
(b) Suggest a metiod, besides painting of electroplating, that con prevent underground ironmade pipelines from rusting. Explain your answer.

DSE19 02

Sodium clibride crysial has a giant ionic sintuture.
(a) The diagram below shows a part of the structure of soditm chloride crystal with some ions missing.

- $=\mathrm{Na}^{+}$
$\mathrm{O}=\mathrm{Cl}^{-}$

Complete the diagram by using - as Na^{+}ion and O as Cl^{-}iou,
(b) From an experiment, it was found that there are $4 \mathrm{Na}^{*}$ ions and $4 \mathrm{Cl}^{-}$iots in a cube of sodium chloride crystal of volume $1.80 \times 10^{-22} \mathrm{~cm}^{3}$.
(i) Express the total mass of $4 \mathrm{Na}^{+}$ions and $4 \mathrm{Cl}^{-}$ions in terms of the Avagadro's constant L. (Relative atomic masses: $\mathrm{Na}=23.0, \mathrm{Cl}=35.5$)
(ii) Hence, calculate the Avogadro's constant L , given that $1.00 \mathrm{~cm}^{3}$ of sodium chloride crystal weighs 2.17 g .

DSE19_09

Iron cans used to store food products are commorly coated with a thin layer of tin.
(a) The thin layer of tin prevents iron cans from corrosion.
(i) Briefly describe the prineiple for this kind of corrosion prevention.
(ii) Explain whether these iron cans would corrode more readily once their surfaces are damaged by scratoluing.
(iii) Suggest why gatvanisation is not suitable to prevent corrosion in iron cans that are used to store food products.
(b) There (1 mark) storing food products.
(i) Explain why aluminum is more resistant to corrosion than iron, although it ocenpies a luigher position than iron in the reactivity series.
(ii) Name the process that increases the corrosion resistance of aluminium cans.
(iii) Other than corrosion resistance, suggest one adyantage of using aluminium cans.

2022

DSE21_03(c)(ii)
3. (c)

Under certain conditions, 1.0 g of SiO_{2} is allowed to react with 1.0 g of My . The equation for the reaction is shown below:

$$
\mathrm{SiO}_{2}+2 \mathrm{Mg} \rightarrow 2 \mathrm{MgO}+\mathrm{Si}
$$

Calculate the theoretical mass of Si that can be formed
(Relative atomic masses : $\mathrm{O}=16.0, \mathrm{Mg}=24.3, \mathrm{Si}=28.1$)

DSE21_06(d)(i),(ii)

(d) Lead can also be obtained from lead(II) oxide using carbon.
(i) Write a chemical equation for the reaction.
(ii) The diagram below shows an incomplete set-up for performing the reaction:

(l) Add suitable drawing (with label) to the diagram for completing the set-up.
(2) Name apparatus w.
11. In the electrolysis of $1.0 \mathrm{M} \mathrm{CuSO}_{4}(\mathrm{aq})$, copper cathode and carbon anode are used. Which of the following combinations is correct?

	Cathode	Anode
A.	Copper dissolves	Oxygen is formed
B.	Copper dissolves	Sulphur dioxide is formed
C.	Copper is deposited	Oxygen is formed
D.	Copper is deposited	Sulphur dioxide is formed

15. \mathbf{P}, \mathbf{Q} and \mathbf{R} are three different metals. When dilute $\mathrm{HCl}(\mathrm{aq})$ is added to these metals separately, only \mathbf{Q} and \mathbf{R} give a colourless gas. When zinc is added to aqueous solutions of their chlorides separately, only the chloride of \mathbf{R} shows no observable change. Which of the following shows the increasing order of the reducing power of the metals?

$$
\begin{array}{ll}
\text { A. } & \mathbf{R}<\mathbf{Q}<\mathbf{P} \\
\text { B. } & \mathbf{Q}<\mathbf{P}<\mathbf{R} \\
\text { C. } & \mathbf{P}<\mathbf{Q}<\mathbf{R} \\
\text { D. } & \mathbf{P}<\mathbf{R}<\mathbf{Q}
\end{array}
$$

2022

*8. Describe and explain the similarities and differences between the chemical principles involved in tin-plating and galvanising in the rusting prevention of iron-made objects.

The chemical kinetics of the following reaction at a certain temperature was studied :

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Several trials of an experiment were performed under the same experimental conditions, except varying the initial concentration of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$ (represented by $\left.\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})\right]_{0}\right)$, to measure the initial rate of formation of $\mathrm{S}(\mathrm{s})$ (represented by r_{0}). The following graph shows the experimental results obtained from these trials :
$\log \left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})\right]_{0}$

(i) What is meant by the term 'initial rate'?
(ii) The rate equation for the reaction is shown below :

$$
\begin{array}{ll}
\text { Rate }=\mathrm{k}\left[\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})\right]^{a}\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{b} \quad \begin{array}{l}
\text { where } \mathrm{k} \text { is the rate constant, } \\
\boldsymbol{a} \text { is the order of reaction with respect to } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \\
\text { and } \boldsymbol{b} \text { is the order of reaction with respect to } \mathrm{H}^{+}(\mathrm{aq}) .
\end{array}
\end{array}
$$

Given that the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ used was much higher than that of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$ in each trial, explain why the above rate equation can be modified as shown below :

$$
\text { Rate }=\mathrm{k}^{\prime}\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq})\right]^{a} \quad \text { where } \mathrm{k}^{\prime} \text { is regarded as a constant. }
$$

(iii) By using the dotted lines in the graph above, deduce the order of reaction with respect to $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$.
(3 marks)
(iv) The experiment was repeated at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ separately, while other experimental conditions were the same. The rate constant of the reaction at $25^{\circ} \mathrm{C}$ is k_{1} and the rate constant of the reaction at $35^{\circ} \mathrm{C}$ is k_{2}. The ratio of k_{2} to k_{1} is $1.9: 1.0$. Calculate the activation energy of the reaction, in $\mathrm{kJ} \mathrm{mol}^{-1}$
(Gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$; Arrhenius equation : $\log k=$ constant $-\frac{E_{a}}{2.3 R T}$)

Marking Scheme							
MCQ							
CE90_07	D	CE90_09	B	CE90_10	D	CE90 31	D
CE90-45	B	CE90 49	A	CE91_08	A	CE91_09	C
CE91_11	C	CE91_31	D	CE92 01	B	CE92_06	B
CE92_07	C	CE92-31	C	CE92_33	D	CE92_3 ${ }^{\text {a }}$	B
CE93 0	c	CE93_20	A	CE93_21	B	CE93-46	B
CE94_08	B	$\mathrm{CEP4}_{4} 18$	D	CEO4_44	D	CE9S_05	D
CE95_06	A	CE9S_18	B	CE95_45	D	CE96_08	A
CE96_35	C	CE96_47	C	CE97_28	C	CE97_32	D
CE97_41	A	CE97-47	B	CE27-48	A	CE98.02	B
CE98_10	C	CE98 11	D	CE98_19	C	CE98_20	C
CE98_27	A	CE98_44	B	CE99_02	c	CE99 08	A
CEE9 - 17	B	CE9\% 21	D	CE99 22	C	CES9_31	A
CR99_46	A	CE00_03	B	CE00 04	D	CEOO 33	C
CE00-50	C	CE01_26	c	CEOI_30	C	CEO1_38	B
CEOI_49	D	CE02_03	C	CE02_08	D	CE02_14	C
CE02 23	C	CE02_26	c	CEO2 27	B	CE03 01	C (64\%)
CE03_02	D 551%)	CE03_05	C (61\%)	CE03_-11	D (51\%)	CE03 28	A(41\%)
CE03_09	B (70\%)	CE03_42	D (59\%)	CE0SSP_08	B (49\%)	CEOSSP_21	C
CEOSSP 29	C	CLossp_32	D	CEOSSP_41	D	CE04_12	C (47%)
CEOA_16	A (62\%)	$\mathrm{CBO}_{2} 26$	C (83\%)	CEO4 35	B (59\%)	CE04_48	D (69\%)
CEOS_10	D 655%	CEOS_U	C (83\%)	CEO5_23	Λ (59\%)	CE06_08	$\mathrm{C}(41 \%)$
CE06 09	A (49\%)	CEOS_3	D (52%)	CEO6 18	C (47\%)	CE05_34	C (41\%)
CE06_37	B (58\%)	CE07_05	D (20\%)	CE07_07	A (83\%)	CE07_11	A (34\%)
CE07_34	C (67\%)	CE07_38	D (22\%)	CE07_48	C (58\%)	CE08 04	C (55%)
CE08_10	A (56\%)	CE08_12	D (40\%)	CE08_15	C (76\%)	CEOB 16	$\mathrm{C}(71 \%)$
CE08 26	B (65\%)	Cxo8_31	A (74\%)	CE08_34	D (56\%)	CE08_50	B (24\%)
CE09-05	A(72\%)	CE09_0f	C (76\%)	CBO9_08	B	CE09_09	$\mathrm{C}(68 \%)$
CEO9 20	C (36\%)	CE09_33	A(51\%)	CEO9 41	B (73\%)	CE09_46	B (38\%)
CE09 47	A (39\%)	CelO 03	B (51\%)	CE10_04	A (56\%)	CElo_06	B (48%)
CET0 08	A (63\%)	CEl0_14	A (66\%)	CE10_16	A (56\%)	CElo 21	D (53\%)
CEIO_22	A (72\%)	CE10_26	A (80\%)	CE10_33	D (72\%)	CEll 04	C (60\%)
CE11_08	C(51\%)	CEIE 23	D (62\%)	CE11 30	C(70\%)	CELI_36	B (57\%)
CEI1_38	C (79\%)	CE11_46	D (23\%)	DSELISP_0S	D	DSEIISP_06	C
DSEIISP_15	A	DSE12PP ${ }^{\text {O6 }}$	B	DSE12_03	A (78\%)	DSE12_99	D (81\%)
DSEI2_16	B (64\%)	DSE13_23	C (49\%)	DSE13 05	A (71\%)	DSE13_07	A (66\%)
DSEH3_13	D (74\%)	DSE13_06	B (51\%)	DSE13_19	B (65\%)	DSE1403	$\mathrm{A}(19 \%)$
DSE14_34	D (62\%)	DSEI4_05	C (84%)	DSE14_18	B (66\%)	DSE14_14	A (68\%)
DSE15-02	D (77\%)	DSEL5_OS	C (70\%)	DSE15_07	B (87%)	DSE15_21	D (55%)
DSE16_03	D (59\%)	DSEl6_04	C (75\%)	DSE16 05	B (86\%)	DSE16 09	$\mathrm{C}(77 \%)$
DSE16_23	C (77\%)	DSEI7-03	A (43\%)	ESE17 09	A (72\%)	DSEL7_13	D (55\%\%)
DSE17_19	D (60\%)	DSE18_03	D(78\%)	DSEI8_04	$\mathrm{D}(60 \%)$	DSE1806	B (65\%)

Structural Questions

CEDO_OSa
(i) from colourtess (or palc yellow) to blue. [1]
(ii)
Fe^{2+} (or iron(II) ions)
OH^{-}(or hydroxide ions)
(2) $\mathrm{Fe}(\mathrm{s}) \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{c}^{-}$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}(\mathrm{aq}) \quad$ [1]

- [1]
i
$\mathrm{Fc}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}^{2+}(\mathrm{aq})$
$O R, \quad \mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(iv) (1) zinc is more teactive than iron
$O R, \quad$ sacrifcial protection by zinc
(2) absence of water and oxygen [1]

CE 91 - 2 C
(iv) No. Iron is more reactive than tin.

Iron will tose electrons and corrode faster.

CE91_04a
(i) Heat the rusty iren with carbon.
$2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \longrightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(ii) The lid was opened to allow coming in of air.
(iii)

(iii) \begin{tabular}{|l|c|c|}
\hline \& Fe \& 0

\hline Mass \& | $26.16-25.27$ |
| :---: |
| $=0.89 \mathrm{~g}$ | \& | $26.50-26.16$ |
| :---: |
| $=0.34 \mathrm{~g}$ |

\hline Number of mole \& | $\frac{0.89}{56.0}=0.0159$ |
| :--- | \& | $\frac{0.34}{16}=0.02125$ |
| :---: |

\hline Mole ratio \& | $\frac{0.0159}{0.0159}=1$ |
| :---: |
| ≈ 3 | \& | $\frac{0.02125}{0.0159}=1.336$ |
| :---: |
| |\quad| ≈ 4 |
| :--- |

\hline
\end{tabular}

Enipirical fomula $=\mathrm{Fe}_{3} \mathrm{O}_{4}$

$$
1
$$[1]

(iii) Tin prolects iron from rusting because tin prevents the contact of iron with water and air. [1](iv) No. Iron is more reactive than tin1]

CE92_016
(i) (i) A is chosen because
conducts electricity very well:
A conducts electricity
The cost of A is low;
A can be protected fromit corrosion by adding plastic coatings.
OR, C is chosen because
C conducts electricity very well;
C has a high resistance to corrosion;
Although the cost of C is high, C can be used for a long time. [1]OR, Cis chosen becauseAlthough the cost of C is high, C can be used for a long time.
(2) B is chosen because (any two)
B is yery hard;
The cost of B is low;
B corrodes very fast but this can be prevented by painting.
OR, C is chosen because
C corrodes very slow;
Although the cost of C is high, C can be used for a fong time.
(ii) Anyone:

- Painting
- Connecting the metals with a more reactive metal (by sacrificial protection)
- By making alloy
- Adding plastic coating
- Electroplating
(iii) Metals have mobile electrons (or 'sea' of delocalized efectrons) for conducting [1] electricity.

CE92_04b
(i) A is sodium metal.
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \longrightarrow$
(ii) Step 1: Put a clean platimum wire into concentrated hydrochloric acic Slep 2: Dip the platimun wire into solution $B \quad[1]$ Step 3: Pat it to the Bunsen flame
(iii) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}\left(\mathrm{OH}_{2}(\mathrm{~s})\right.$
(iv) Copper(II) oxide
[Note: when copper(II) hydroxife is strongly heated, it turns to black copper(II) oxide
$\left.\mathrm{Cu}(\mathrm{OH})_{2} \longrightarrow \mathrm{CuO}+\mathrm{H}_{2} \mathrm{O}\right]$
Blue black
CE93 01a
(i) Adding Al and Fe metal in dilute hydrochtoric acid,

Al will react and give out colourless bubbles at a faster rate than that of Fe .
[Note: $2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$ (faster)
$\mathrm{Fe}+2 \mathrm{HCl} \longrightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$ (slower)]
$O R$, Al metal can displace iron from iron(II) sulphate solution
the solution changes from pale green to colourless and a silipery solid is formed.
$2 \mathrm{Al}(s)+3 \mathrm{Fe}^{2+}(\mathrm{aq})-2 \mathrm{~A}^{3+}(a q)+3 \mathrm{Fe}(\mathrm{s})$ (Displacement reaction)
(ii) Anodized aluminium contains a protective layer of $\mathrm{Al}_{2} \mathrm{O}_{3}$.

But the painting on iron is easily scratched off.

Therefore, iton corrodes much faster than aluminum.

CE93 05

(i) Fe^{3+} solution changes from yellow (or brown) to pale green.

It is a redox (displacement) reaction that $\mathrm{Fe}^{3+}(\mathrm{aq})$ is reduced by Zn to $\mathrm{Fe}^{2+}(\mathrm{aq})$
CE94_01
(a) Group II
(b) (i) $\mathrm{X}+2 \mathrm{HCl} \longrightarrow \mathrm{XCl}_{2}+\mathrm{H}_{2}$
$O R, \quad \mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
(i)

$\mathrm{H}(\mathrm{X})$
(c) A colourless gas rapidly evolves.
[Note: Y is Calcium
$\left.\mathrm{Ca}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})\right]$
(d) $\mathrm{Y}>\mathrm{X}>\mathrm{Z}$
Y is most reactive because only Y can react with cold water but X and Z cannot. Il
X is nore reactive than Z becabse X can react with HCl but Z camot.
CE94_06a
(i)

	Cu	0
Mass	7.62 g	$8.58-7.62=0.96 \mathrm{~g}$
Number of mole	$\frac{7.62}{63.5}=0.12$	$\frac{0.96}{16}=0.06$
Mole ratio	$\frac{0.12}{0.06}=2$	$\frac{0.06}{0.06}=1$

(ii) $\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$O R_{3} \quad \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \longrightarrow 2 \mathrm{Cu}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(iii) Firstly, town gas is toxic,
so the experiment should be done in fume cupboards. [1]
Secondly, bunting of a mixture of town gas and air is explosive,
the

CE95_01
(a) Rb is more reactive than K because Rb can release its foptennost) electron more readily.
(b) $2 \mathrm{Rb}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{b}) \longrightarrow 2 \mathrm{RbOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(c) Store under paraffin oit
(d) Any one: [I]

- Wear gloves
- Do not totici dirccily
- Use a pair of forceps
- Wear safety glasses
- Use a safety screcn
CE95_06b
(i) Gold is very unreactive which can be found free in nature. [I]
(ii) Copper / Cu
because: any two
- it does not cortode casily
- has a high metallic strenglh
- is relatively cheap
(iii) (1) Al reacts with oxygen in air to form a layer of aluminumn oxide
which is not permeable to oxygell and water. So it prevents tho metal from further [1] corrosion.
(2) Alloying (with other metals e.g. $\mathrm{Cu} / \mathrm{Mn} / \mathrm{Mg}$)[1]
(iv) (1) The price depends in its abundance in the earth's crust. [1]
(2) Any one:
- cost of extraction
- cost in mining
- supply and demand of the metal
CE96 04
Chemical knowledge
Stcp 1: Place some tap water in a fest tube to remove any undissolved oxygen (air)
Step 2: Place one nail in a test tube containing some tap water (Tube 1) and the ofter mail [2] in a test tube containing the boiled water (Tube 2)
Step 3: Add some paraffin oil on top of the boiled water in tube 2 to prevent air to dissolve into the water to get in contact with the nail.
Alter some time, reddish solid (rust) can be seen in thbe 1 but no change in tube 2 . [1]
Effective communication
(a) Zinc [!]
Both zinc and calcium are more reactive than iron. They can prevent iron from rusting by sacrificial protection.
However, calcium reacts readily with water, so it cannot be used.

CE98 01 c

(i) The metal surlace will turn dull
$4 \mathrm{Li}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})$[1]
(ii)

CE98 08b
(i) (1) Toprevenk iron from nusting. [1]
(2) $\operatorname{Tin}(\mathrm{Sn})$
(ii) Al is sofer lhan iron. The ring puli can be pulled off more easily. [1]
(iii) (I) Tin (Sn) is less reactive than iron (Fe). [1]

Iron exposed to air will wust faster. [1]
(2) Fruit juice in swollen cans has already deteriorated (tum bad),
(iv) Advantages:

- Al is ligher
- is more resistant to corrosion than Fe
- can be recycled more easily
- can be dyed more easily

Disadvantages:

- Al is more expensive
- is not so strong as Fe

CE99_02
(b) Calcium burns with a red (Brick red) flane and formation of white powder (solid) [1] $2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO}$
$\begin{array}{ll}2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO} & \text { [i] }\end{array}$
$\mathrm{CuO}+\mathrm{C} \longrightarrow \mathrm{Cu}+\mathrm{CO}$
$O R, \quad 2 \mathrm{CuO}+\mathrm{C} \longrightarrow 2 \mathrm{Cu}+\mathrm{CO}_{2}$
CEOO_03
(a) Copper [1]

Good electrical conductor [1]
(b) Aluminium - [1]

Low densily [1]

CE00@99a
(i) Reactivity: $\mathrm{Y}<\mathrm{Z}<\mathrm{X}$
Y is the least reactive because only the oxide of Y decomposes on heathe. The oxides of X and Z are stable to heat.
X is the most reactive metal because only X can react with water.

CEOI_0S

Chemical knowledge
Anodization is to thicken the layer of aluminium oxide on the sufface of ahuminum metal. [I]
The oxide layer is impervious (imperneable) to oxygen (water)/prevents the metal from [1] reaction with air.
Sacrificial protection is to attach a more reactive metal to a less reactive metal. [1]
The more reactive metal is more readily oxidized (forms cations) to gives out electrons,
Corrosion of the less reactive metal is prevented.
Tin-plating is to coat the surface of an iron object with tin.
Tin can protect the iron from rusting because fin laycr prevents oxygen and water from [I] contacting with iron for rusting to occur.
Effective comunication
CE01_07e
(i) Gold has strong metallic bond between atoms.

Diamond has a covalent network structure and strong covalent bonds exist between [1] carbon atoms.
(ii) 18-carat gold is stronger and not easily deformed.

CE01_08a
(ii) (1) Both Mg and Ca can burn in air.
$2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
$O R_{2} \quad 2 \mathrm{Ca}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CaO}$
Alternative answer:
Both Mg and Ca react with (hot) water
$\mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
$O R_{r} \quad \mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
CE02_01
(b) Nitrogen (N), hydrogen (H), phosphorus (P) and oxygen (O)
[Note: ammonium dihydrogenphosphate $\left.=\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}\right]$
(c) (i) Formula mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=(14+4) \times 2+32+16 \times 4=132$
\% by mass of $\mathrm{N}=\frac{14 \times 2}{132}=21.2$
(Accept 21, 21.2 and 21.21)
CE02_02
(a) Magnesium burns with a brilliant flame and a white solid (MgO) is formed.
$2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$ (white)

CE02_06a

(i) Calcium hydroxide / $\mathrm{Ca}(\mathrm{OH})_{2}$
(ii) $\mathrm{Mg}_{(\mathrm{OH}}^{2} 2(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(iii) Molten mangesium chloride contains mobile ions.

CE02_07a
(i) $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\left(\right.$ (aq) $+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
$O R, \quad \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
Evalution of CO_{2} stops
OR, Test the pH of the solution using pH paper, the pH should be less than 7 .
(ii) Diagram

(iii) $\mathrm{Ca}^{2+}($ aq) $)+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \longrightarrow \mathrm{CaSO}_{4}(\mathrm{~s})$
(iv) To remove any soluble impurities (or appropriate example)
(v) (1) mole of $\mathrm{CaSO}_{4}=\frac{10.52}{(40+32+16 \times 4)}=0,0774$

Mass of CaCO_{3} in the sample of calcite $=$ mole \times molar mass

$$
\begin{align*}
& =0.0774 \times(40+12+16 \times 3) \\
& =7.74 \mathrm{~g} \tag{1}
\end{align*}
$$

$\%$ by mass of $\mathrm{CaSO}_{4}=\frac{7.74}{7.98} \times 100 \%=97.0$
(Accept answers from 96.5 to 97.0)
(2) The sample does not contain ions which form insoluble sulphate, e.g. $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$ [I] $O R$. There is no loss of Ca^{2+} ions during the experiment
$O R, \quad \mathrm{CaCO}_{3}$ is the only calcium-containing compound present in the sample
CE02 08b
(iv) (I) $\mathrm{SiO}_{2}+\mathrm{C} \longrightarrow \mathrm{Si}+\mathrm{CO}_{2}$
$\mathrm{OR}, \quad \mathrm{SiO}_{2}+2 \mathrm{C} \rightarrow \mathrm{Si}+2 \mathrm{CO}$
(2) Any one:

- making computer chips
- electronic parts
- alloy
- semi-conductors
- silicone

CE03_02
(a) Hydrogen

It burns with a "pop' sound. [1]
(b) Redor.
(c) Reactivity: $Z<Y<X$ [1]

Y is more reacive than Z as Y can displace Cu from $\mathrm{CuSO}_{4}(\mathrm{aq})$ but Z cannot. [1]
X is inore reactive than Y as X can react with cold water but Y canuot.
(d) X is a reactive metal. If reacts with water in the copper(11) sulphate solution and the
colorless gas liberated is hydrogen.
[Note: copper(II) sulphate solution contails water. And water reacts will X ($\mathrm{Na}_{3} \mathrm{~K}$ or
Ca) to give hydrogen.
e.g. $\left.2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}\right]$

CE04_01
(a) $\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}\left(\mathrm{OH}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})\right.$
(b) (i)

(1 mark for a correct set-tip; 1 mark for the label of an appropriate gas collecting device)
(ii) The calcium metal is covered by a layer of calcium oxide.

Reaction between Ca and water starts only when the oxide layer dissolves.
OR, The reaction of calcium with water is exothermic.
The reaction becomes faster at elevated temperatures.
(Accept other reasotiable answers.)
(c) Any TWO of the following:

- Potassium floats / moves about on the surface of water while calcium sinks.
- Potassium melts (to form a silvery ball) white calcium does not.
- Potassium buns (with a lilac flame) while calcium does not catch fire.
- The reaction of potassium with water gives a hissing sound while that of calcium and water does not.
- The resction of calcium with water gives bubbles while that of potassium with water does not.
(Accpet other reasonable answers)

CE04_08b
(i) Hydnted iron(III) oxide $/ \mathrm{Fe}_{2} \mathrm{O}_{3} . \mathrm{XH}_{2} \mathrm{O}$
(ii) Conditions: oxygen (air) and water [1]
(iii) (1) Greasing / oiling
(2) Connect it to a more reactive metal (e.g. $\mathrm{Zn} / \mathrm{Mg}$) $\quad 11]$ (Also accept sacrificial protection.)
(iv) The battery stipplies clectrons to the car body to prevent it from oxidized. [I]
(v) (1) The stuface of aluminium is covered by a layer of oxide which is innpermeable to [1] ait and water.
(2) The thickness of the oxide fayer can be inereased by anodization. 11

CEOS 02
(a) (i) $2 \mathrm{Agz}_{2} \longrightarrow 4 \mathrm{Ag}+\mathrm{O}_{2}$
(ii) The oxidation no. of Ag decreases and the oxidation no, of O increases.
(iii) mole of $\mathrm{Ag}_{2} \mathrm{O}=\frac{3.50}{[2(107.9)+16]}$

No. of moles of $\mathrm{Ag}=2 \times$ no. of moles of $\mathrm{Ag}_{2} \mathrm{O}$
Mass of Ag that can be obtained $=107.9 \times$ no. of moles of Ag

$$
=\frac{2(107.9)}{231.8} \times 3.5=3.26 \mathrm{~g}
$$

(b) (i) The black oxide changes to reddish brown metal. [1]
(ii) The metal obtained can conduct electricity. [1]
(iii) $\mathrm{CuO}+\mathrm{H}_{2} \longrightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
(iv) Hydrogen is explosive / Alammale.
(c) No. The reactivity of Cu and Ag can only be compared using the same reaction.
(3)

	Pb	0
Mole ratio	$\frac{90.6}{207.2}$	$\frac{9.4}{16}$
	0.4373	0.5875
Simplest ratio	3	4

(b) Lel mole ratio of $\mathrm{PbO}_{\text {to }} \mathrm{PbO}_{2}$ be $x: y$
$\frac{\text { mole of } \mathrm{Pb}}{\text { mole of } 0}=\frac{x+y}{x+2 y}=\frac{3}{4}$
X is a mixure of PbO and PbO_{2} in a mole ratio or 2:1.
$O R, \quad \mathrm{X}$ is not a mixture. In X , two-dird of the lead exists in an oxidation number +2 , while one-flird in an oxidation nunber +4 .

CE07_06
(a) $\mathrm{MgO}+\mathrm{Cl}_{2} \div \mathrm{C} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{CO}$
$O R, \quad 2 \mathrm{MgO}+\mathrm{Cl}_{2}+\mathrm{C} \longrightarrow 2 \mathrm{MgCl}_{2}+\mathrm{CO}_{2}$
(b) Redox (reaction)/displacement (reaction)

Potassiun is a more powerful redtcing agent/more reactive than magnesium. [I]
(c) (i) Elcctrolysis
(ii) Magnesium chloride is an ionic compound / electrolyte / conduct electricity in [1] molten state / contains mobile ions.
(d) Sacrificiat protection / making alloy / firework / flash
CE08_03

Case	Observation	Explanation
Iron-made object fully plated with zinc	No observable changes	Iron does not rust without contact with water and oxygen/air
Iron-made object fully phated with tin	No observable changes	Iron does not rust without contact with water and oxygen/air
Iron-made object fully plated with zinc, but part of the zinc scmatched to expose the iron undemeath	No observable changes	Zine is more reactive /loses electrons more easily ilzan iron OR, sacrifictal protection
Iron-made object fully plated with tin, but part of the tin seratched to expose the iron underneath	Blue colour observed near the scratched area	The exposed iron rusts. Fe changes to Fe ${ }^{2+}$ which turns the indicator to blue $/ \mathrm{Fe}$ is more reactive than Sn

CE09_02
(a) (i) Brilliant light
(ii) (1) $\mathrm{Mg}_{3} \mathrm{NN}_{2}$

(b) (i) Mix carbon powder with copper(II) oxide, and heat the mixture strongly.

CE09_03
(a) Iron powder reacts with oxygen.

The reacion is exothermic.
b) Increase surface area / rate of reaction between iron and oxygen. / Speed up heat [t production.
(c) Provide mobile ions. / Provide electrolyte. Increase conductivity. / Increase rate of redox reaction, / Facilitate electron transfer.

CE09_13
Chemical knowledge
A description of electroplating of iron:
a. The protective layer plated on iron can be a metal such as nickel/chronium / copper/ [i] silver,
b. Electrolyte used is an aqueous salt solution of the metal. Example: nickel(II) sulphate [1] (solution).
c. The metal (e.g. Ni) should be made anode (positive electrode / connected to positive [1] pole of power supply).
d. The iron object should be made cathode (negative clectrode / comected to negative [1 pole of power supply),
e. The metal (e.g. Ni) (anode) is oxidized/loses electrons to form ions.
(Accept half equation: $\mathrm{Ni} \longrightarrow \mathrm{Ni}^{2+}+2 \mathrm{c}^{-}$)
f. The metal ions (e.g. Ni^{2+}) are reduced/gain electrons on iron (cathode) surface to form [1] metal (e.g. Ni)
(Accept half equation: $\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}$)
Effective conmunication

CEIO_01
(a) hatogens
(b) $\mathrm{p}: 18 ;$ q: 7
(c) Chlorine molecules attrack each other by van der Waals' forees / weak intermolecular II forces, so do bromine molecules.
Brontine has a bigger molecular size than clelorine, and thens the van der Waats' forces / [1] intermolecular forces between bromine molecules are stronger than that between chitorine molecules.
(d) (i) $2 \mathrm{Rb}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{RbBr}$ (ii) $2,8,18,8$

CE10_04
(a) Relights a glowing splint
(b) Let m be the relative atomic mass of M

Mass ratio M: $\mathrm{O}=2 \mathrm{~m}: 16=3.24:(3.48-3.24)$
$O R$, Mass ratio $M ; \mathrm{M}_{2} \mathrm{O}=2 \mathrm{~nm}:(2 \mathrm{nr}+16)=3.24: 3.48$
OR, Mole ratio $\mathrm{M}: 0=\frac{3.24}{\mathrm{~m}} ; \frac{3.48-3.24}{16}=2: 1$
OR, Mole ratio $\mathrm{M}: \mathrm{M}_{2} \mathrm{O}=\frac{3.24}{m} ; \frac{3.48}{2 m+16}=2: 1$ $\mathrm{m}=108$
(c) No. The reactivity of M is very low. / M is inwer than hydrogen in the electrochemical [1] series.

CE11_02
(a) Hydrogen
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \quad$ [I]
(b) Most of the 'expired' calcium had been oxidized by air to form calcium oxide. [I]
(c) The pH would increase [1]

It is because calcium hydroxide formed is alkaline. [I]
(d) Any TWO points, I nark for each point

- Hydrogen formed is explosive / flammable.
- Calcium / calciunt hydroxide formed is corrosive.
- Heat is given off from the reaction.

AL02(11)_0

Heat a sanple of the blackboard chalk (with a known mass) in a crucible until there is no [1/2] further reduction in mass. Assuming that the initial mass and the final mass of the sample are [1/2] m_{1} and m_{2} respectively.
No. of moles of $\mathrm{CaSO}_{4}=\frac{m_{2}}{40+32+16 \times 4}=\frac{m_{2}}{136}$
No. of males of $\mathrm{H}_{2} \mathrm{O}=\frac{m_{1}-m_{2}}{1 \times 2+16}=\frac{m_{1}-m_{2}}{18}$
No. of moles of water of crystallization per formula unit of $\mathrm{CaSO}_{4}=\frac{m_{1}-m_{2}}{18} \div \frac{m_{2}}{136}$

ALD4(I)_08d
(i) The high temperature of the piece of burning sodium may cause decomposition of CO_{2}. \quad 1] The sodiun will contime to burn.
(ii) Covering the piece of burning Na with sand/use dry powder extinguisher to put ont the fire.

ALO4(11)_ 01 (Modifieid)
(a)

Mole ratlo of $\mathrm{N}: 0: \mathrm{F}=\frac{21.6}{14}: \frac{49.2}{16}: \frac{29.2}{19}=1.543: 3.075: 1.537=1: 2: 1$
\therefore enpirical formula : $\mathrm{NO}_{2} \mathrm{~F}$
(b) Molecular formula of $\mathrm{A}:\left(\mathrm{NO}_{2} \mathrm{~F}\right)_{\mathrm{n}}$
$60<(14.0+16.0 \times 2+19.0) n<70$
$0.923<n<1.077$
$\mathrm{n}=1 \quad$ (n must be an integer)
Molecular formula: $\mathrm{NO}_{2} \mathrm{~F}$
AL11(1)_07
(a) (i) Trent the vapor with anlytrous $\mathrm{CoCl}_{3} /$ dry colvalt(II) chloride paper. A change of color from bhie to pink shows the presence of water.
OR, Treat the vapor with sulydrous CuSO_{4}. A change of color from white to blue shows the presence of water.
(ii) Weigh an empty crucible and its lid (m)

Put a sample of the satt in the erucible and weigh the crucible, its content and the $[1 / 2]$ lid (m_{2}).
Heat the crigible and its content, not completely covered by the lid, to allow [1/2] water vapor to escape until the sample thrns white.
Allow the crucible and its content to cool in a desiccator and then weigh the crucible, its content and the lid.
Repeat the heating and weighing processes until a constant mass (m 3) is reached. [1/2] No. of molecules of svater of crystallization
$=\frac{\left(m_{2}-m_{3}\right)}{\left(m_{3}-m_{1}\right)} \times \frac{(63.5+32.1+16 \times 4)}{(2 \times 1+16)}$
Shouid be equal to 5 .
(iii)

icmperature

(I mark for showing two 'steps' in the curve: I mark for showing that the heights of 'wo 'steps' are in $4: 1$ ratio.)

ASL12(II) 02

 No. of moles of \(\mathrm{MBr}_{2}\) used \(=\frac{0.004345}{2}=0.00217\)
 M is likely to be maguesium.
Ra is more reactive than Ca towards water. ($\mathrm{H}_{2}(\mathrm{~g})$ is formed. II [I]
Hydrogen $/ \mathrm{H}_{2}$ [I]
Redox/reduction-ox [I]
X is more rective than Y as X an react with cold water but Y cand $/$ oxid of X od [1] [1]
(A) zinc gramules dissolve / a colorless gas is prodiced / solution gets warm [1]

$$
\begin{aligned}
& \mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \\
& \text { OR, } \mathrm{Zn}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2}
\end{aligned}
$$ II [1]

 ,I
 $\therefore \mathrm{X}$ is propane $/ \mathrm{C}_{3} \mathrm{H}_{8}$ [1]

DSE12_05
(a) Displacement reaction occurred when the iron rod is dipped into the copper(II) sulphate solution. / Some copper(II) ions $\left(\mathrm{Cu}^{2+}\right)$ are reduced and deposited onto the surface of the iron rod as copper metal.
$\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Fe}^{2+}(\mathrm{aq})$
$\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{4}(\mathrm{aq})$
DSE12_09
(a) Yellow to Blue / yellow to Blue and pink / biue and pink colouration would be observed near the iron mail which rusts.
(b) Both iron mail B and iron nail C would not rust.

For iron nail B, as Mg is higher than iron in the metal reactivity scries (with funtier [1] explanation such as: the maguesium ribbon loses electrons more readily and will become $\mathrm{Mg}^{2+} / \mathrm{Mg}$ comodes more readily).
For iron nail B, the magnesium ribbon profects the iron nail from nesting by sacrificial [1] protection.
For fron nail C , as it is sealed with grease, the ien camot contact with water and / or air (oxygeni), so rusting cannot ocenr.

DSE13_03

(a) Atomic ratio of $\mathrm{C}: \mathrm{H}: 0=\frac{2.64}{44}: \frac{1.08}{18} \times 2: \frac{0,48}{16}=7: 4: 1$

Empirical formula is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
Molecular formula is ($\left.\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{\mathrm{n}}$
$1 \times(12 \times 2+1 \times 4+16 \times 10=88.0$
$n=2$
nolecular fornula of W is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$

Alternaive method:
No. of C atoms in $\mathrm{W}=\frac{2.64}{44} \times \frac{38}{1.32}=4$
No. of H atoms in $\mathrm{W}=\frac{1.08}{18} \times \frac{88}{1.32} \times 2=8$
No. of O atoms $\operatorname{in} W=\frac{88-12 \times 4-8 \times 1}{16}=2$
molecular formula of W is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
DSE13_07
(a) (i) $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow 2 \mathrm{Fc}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
(ii)

(b) Copper is less reactive than iron. [comparsive sense]

OR, Copper has a lower affinity for oxygen than iron.
$O R$, Copper is a weaker reducing agent than iron.
$O R$, Copper is lower than iron in the chemical reactivity series/electrochemical series. $\therefore \mathrm{Cu}(\mathrm{s})$ cannat reduce $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$.
(c) (1) Aluminium is more expensive llan iron. / Using atuminium to extract iron is [1] costly.
(ii) Coke / carbon / charcoal / carbon monoxide / CO

DSE14_04

- By heating oxide of silver direcly, silver can be obtained, while copper and magnesium
cannot be obtained by similar method.
- By heating with charcoal/carbon / hydrogen / carbon monoxide / town gas, oxide of [1] copper can be reduced to copper, while magnesium cannot olfained by similar method.
Magnesiun can only be obtained by electrolysix of its oxide in molten state.
- As more stable is the metal oxide, the more reactive is the metal. So the order of feactivity is : magnesiun > copper > silver
- Effective communication

DSE15_03

(a) Iron is less reactive than aluminium
$O R, \quad$ Compound/oxide/ore of iron is less stable
OR, Compound/oxide/ore of aluminum is more stable.
NOT accept answers like 'easy to extract", 'easier to extracl"
(b)

	Fc	0
Mass $/ \mathrm{g}$	1.67	0.64
Atom ralio	$\frac{1.67}{55.8}=0.03$	$\frac{0.64}{16}=0.04$

Empirical formula $=\mathrm{Fe}_{3} \mathrm{O}_{4}$
(ii) $\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{g}) \rightarrow 3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{CO}_{2}(\mathrm{~g}) \quad$ [I]
(iii) Perform the experiment in a fume cuploard. [I]
(c) Zn is more reactive /a stronger reducing agent than iron.

For galvanized objects with the surface layer of zino broken, iron will be protected from [1] corrosion as zine will be preferentially oxidized (react with oxygen).
$O R, \mathrm{Zn}$ is higher than Fe in the reactivity series or ECS .

OR. Zn is more electropositive than Fe .
NOT accept answers like "zinc sacrifices", "zinc corrodes".
OR, $\quad \mathrm{Zn}$ releases / loses electrons
(d) The surface of the aluminium object is oxidized to $\mathrm{Al}_{2} \mathrm{O}(\mathrm{s}) /$ aluminium oxide /oxide [1 of aluminium.
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ is impermeable to water/oxygen/air, Hus corrosion of alunimium is inhibited.
DSE16 01
(a) (i) number of moles of P : number of moles of Cl
$=\frac{0.226}{31.0}: \frac{0.774}{35.5}=1: 3$
Molecular formula is ($\left.\mathrm{PCl}_{3}\right)_{n}$
$(31.0+35.5 \times 3) n<250$
$\mathrm{n}=1$
Molecular formula is PCl_{3}
(ii)

DSE17_02
(a) Copper is not easily oxidized / corroded as iron

Accept: iron reacts will water / oxygen /air / acids but copper docs not.)
(Not accept: iron rust but copper does net / Copper does not so easily rust as iron.) Copper has a lower tendency to lose electrons than iron
OR, Copper occupies at a lower position than iron in the e.c.s. / metal reactivity series / Copper is less reaclive that iron.
(b) (i) To lower the melfing paint of soldering materials. (Not accept; The melting point of lead is low.)
(ii) Lead is / compounds of lead arc toxic / poisonous. (not accepi hanuful) (Accept: Lead will damage / is harmful to the central nervous syslem (or other intemal organs).)

DSE18_01
(b) (i) $6 \mathrm{Li}+\mathrm{N}_{2} \longrightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$
(State symbols not required) (Ignore incorrect state symbols)
(ii) $\frac{y}{6.9}=3 \times \frac{1.25}{34.7}$
$y=0.746 \mathrm{~g}$
(Also accept $0.745,0.75$; NOT accept 0.750) (Correct mit is required)
(c) Lithium oxide / lithium peroxide

DSE18_05
(b) Comect zinc / magnesium blocks (through connecting wires to the swrface of the [1] pipclines / scarification protection.
Zinc /magnesium can release electrons more readily than iron.
OR, Zinc and magnesium are more reactive than iron. / Zine and magnesium has greater reducing power than iron. / Zitne and magnesium is higher than iron in the ECS.
$O R$, Connect the negative electrode of a D.C. source (through connecting wires) to the surface of the pipelines (and the positive electrode to a platinum electrode)/Cathodic protection
The electrons provided by the D.C. source prevent iron from releasing clectrons.
(Do not accept wrapping with plastics / alloying / use stainless steel pipelines)
DSE19_02
(a)

$\mathrm{L}=\mathrm{L}=5.99 \times 10^{23}\left(\mathrm{~mol}^{-1}\right)$
(Accepl max. 3 decimal places)
(Accept answer without an unit, but NOT accept answer with an incorrcct unit.)

SECTION 4 Aelds and Base

Multiple-Choice Questions
CE90 07
The reacion between lead(II) nitrate solution and sodium hydrogencarbonate solution can be represented by the equation below:
$\mathrm{Pb}^{2+}(\mathrm{qq})+2 \mathrm{HCO}_{3}^{-}(\mathrm{aq}) \longrightarrow \mathrm{PbCO}_{3}(\mathrm{x})+\mathrm{H}_{2} \mathrm{O}(\mathrm{y})+\mathrm{CO}_{2}(\mathrm{z})$

	\underline{x}	y	\underline{z}
A.	aq	aq	aq
B.	aq	1	g
C.	s	aq	g
D.	s	1	

CE90_12
$50.0 \mathrm{~cm}^{3}$ of 3.0 M sodium hytioxide solution is mixed with $50.0 \mathrm{~cm}^{3}$ of 1.0 M sodium bydroxide solution. The concentration of the resultant solution is
A. $\quad 2.0 \mathrm{M}$
B. 2.5 M .
C. $\quad 3.3 \mathrm{M}$
D. $\quad 4.0 \mathrm{M}$.

CE90_14
Which of the following statements concerning $25 \mathrm{~cm}^{3}$ of m hydrochtoric acid and $25 \mathrm{~cm}^{3}$ of M hanoic acid is/are correct?
(1) They give the same colour change when the same quantity of universal indicator is added
(2) They react with marble chips at the same rate when the mitial temperature are the same.
3) They require the same number of mofes of sodium hydroxide for complete nearalization
A. (1) ouly
B. (3) ouly
C. (1) and (2) only
D. (2) and (3) only

CE90_22
X is a white solid. When dilate hydrochloric acid is added to X, a colourless gas is liberated. An aqueous solution of \mathbf{X} gives a white precipitate with silver nitrate solution. \mathbf{X} is probably
. ammonium cliloride
B. sodium ethanoate.
C. sodium carbonate,
D. calcian carbonate

CE90_26
Dry zine chloride solid is a non-conductor of electricity because
A. it is a non-electrolyte.
B. it exists as molecules.
C. its ions are not mobile.
D. metallic bonding is not present

CE90_3
Which of the following lyydroxide is insoluble in BOTH excess sodium lydroxide solution and excess aqueous ammonia?
A. $\mathrm{Ci}(\mathrm{OH})$
B. $\quad \mathrm{Zn}\left(\mathrm{HOH}_{2}\right.$
C. $\mathrm{Fe}(\mathrm{OH})_{2}$
D. $\mathrm{Al}(\mathrm{OH}) 3$

CE90 44
If dilute hydrochloric acid gets into a student's eye during an experiment, the first thing the student should do is to
A. dial 999 for hetp.
B. wash the eye wilh water.
C. wash the eye will dilute ammonia solution.
D. wash the eye wilh dilute sodium hydroxide solution.

CE90-46

$$
1^{s t} \text { statement }
$$

$2^{\text {nd }}$ statement
A solution of dry hydrogen chloride in Gaseous hydrogen chloride contains hydrogen methylbenzene turns blue litmus paper red, ions.

CE91_13
Which of the following grapls represents what would be obtained in a thermometric titration of 2 M hydrochloric acid with potassium hydroxide solution?
A.

B.

c.

D.

CE91_16
What volume of water should be added to $100 \mathrm{~cm}^{3}$ of 2 M hydrochloric acid to change the acid concenitration to 0.2 M ?
A. $100 \mathrm{~cm}^{3}$
B. $\quad 500 \mathrm{~cm}^{3}$
C. $\quad 900 \mathrm{cma}^{3}$
D. $1000 \mathrm{~cm}^{3}$

CE91_18
22 g calcium corbonate are allowed to react with $200 \mathrm{~cm}^{3}$ of 0.5 M hydrochloric acid until no further reaction occurs. What is the mass of calcium carbonate lef behind?
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Ca}=40.0$)
A. 2 g
B. 5 g
C. 12 g
D. 17 g

CE91 20
What is the number of moles of Fe^{3+} ions in $0.1 \mathrm{dm}^{3}$ of $0.5 \mathrm{M} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{3}$ solution?
A. 0.1×0.5
B. $2 \times 0.1 \times 0.5$
C. $0.1 \times 0.5 \times 6.02 \times 10^{23}$
D. $2 \times 0.1 \times 0.5 \times 6.02 \times 10^{23}$

CE91_21
Iron(II) sulphate solution is mixed with chlorine water. Excess aquens ammonia is then added to the mixture, What is the colour of the precipltate formed?
A. white
B. yellow
C. green
D. brown

CE91_23
1.55 g of a hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} * x \mathrm{H}_{2} \mathrm{O}$, react completely with $25 \mathrm{~cm}^{3}$ of 1 M liydrochloric acid. What is the value of x ?
(Relative atome masses; $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
A. 1
B. 2
C. 4
D. 10

CE91_39
In an experiment to study the rate of reaction, $100 \mathrm{~cm}^{3}$ of 2 M hydrochtoric acid are added to excess zinc granules al room temperature. Which of the following modifications would increase the initial rate of feaction?
(1) The concentration of hydrochloric acid is 4 M instead of 2 M .
(2) The volume of hydrochloric acid is $200 \mathrm{~cm}^{3}$ instead of $100 \mathrm{~cm}^{3}$.
(3) The hydrochloric acid is replaced by $100 \mathrm{~cm}^{3}$ of 2 M sulphuric acid.
A. (1) and (2) onty
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE91_45
Which of the following statements about hydrogen chloride is/are correct?
(1) It forms dense white funtes with ammonia gas
(2) It dissolves in methyibenzene 10 form H^{+}and Cl^{-}ions.
(3) It turns dry litmus paper red.
A. (1) only
B. (2) ouly
C. (1) and (3) only
D. (2) and (3) only

CE91_28
Hydrogen peroxide decomposes according to the following equation:
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
A student made use of the above reaction to study how the rate of decomposition of 1.0 mole of liydrogen peroxide varied with time. Which of the following graphs is a correct representation of the resull?
A.

Tinse \rightarrow

CE91_47

$1^{\text {st }}$ stafement

Distilled water is a poor condector of electricity.

CE91_so
1^{14} statement
Magnesium oxide dissolves faster in 1 M hydrochloric acid tlan in 1 M chanoic acid.
 Distilled water contains an equal number of $\mathrm{H}^{+}(\mathrm{aq})$ ions and $\mathrm{OH}(\mathrm{aq})$ ions.

路

$2^{\text {nd }}$ statement

$2^{\text {td }}$ statement
Hydrochloric acid is a stronger acid than ethanoic acid.

CE92 11
Consider the following diagram:

	Reactant X	Reactant Y
CuO(s)	$\mathrm{Cu}(\mathrm{s})$	$\mathrm{Cl}^{2+}(\mathrm{aq})$

Which of the following combinations is correct?

	Reactant X	Reactant Y
A.	$\mathrm{H}_{2}(\mathrm{~g})$	
B.	$\mathrm{CO}(\mathrm{g})$	dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$
C.	$\mathrm{NH}_{3}(\mathrm{~g})$	dilute HNO_{3}
D.	$\mathrm{C}(\mathrm{s})$	dilute HCl
		concentrated HCl

CE92_17
Directions: Q .77 and Q .18 refer to the following experiment:
A student measured the conductivity of a certain acid. When he added bartum hydroxide solution dropwise to the acid, he found that the conductivity of the acid gradually dropped to almost zero.
The acid is probably
A. hydrochloris acid
B. sulphuric acid.
C. nieric acid.
D. ethanoic acid.

CE92_18
Which of the following reasons accounts for the change in the conductivity of the acid?
A. Baritm hydroxide is a weak electrolyte.
B. The acid is a weak electrolyte.
C. The neutralization reaction between barium hydroxide solution and the acid is exothermic.
D. A precipitate is formed when barium hydroxide solution is added to the acid

CE92_19
Solution X is $45 \mathrm{~cm}^{3}$ of 1.2 M HCl and Solution Y is $60 \mathrm{~cm}^{3}$ of $0.9 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$. Which of the following statentent concerning X and Y is correct?
A. X has a higher pH than Y ,
B. Both X and Y need the same volume of 1 M NaOH for neutralization.
C. Both X and Y have the same electrical conductivity.
D. Y has a faster rate of reaction with marble chips than X.

CE92_26
Consider the following chemical equilibriun:

$$
\begin{array}{ll}
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons & 2 \mathrm{CrO}_{4}{ }^{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \\
\text { (orange) }) \\
\text { (yellow) }
\end{array}
$$

Which of the following statements is cortect?
A. Both dichromate ions and chronate ions are present in the reaction mixture.
B. On adding $\mathrm{NaOH}(\mathrm{aq})$ to the mixare, the solution becomes oramge.
C. On adding dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ to the mixture, the position of equilibrium shifts to the right.
D. On diluting with water, the solution becomes orange.

CE92_27

The following experinent results were obtained when 2 M HCl was allowed to react separately with 2 M NaOH and 2 M KOH :

Expt No.	Volume of acid	Volume of alkali	Rise in temperature
1	$100 \mathrm{~cm}^{3}$ of 2 M HCl	$100 \mathrm{~cm}^{3}$ of 2 M NaOH	$\mathrm{T}_{1}{ }^{\circ} \mathrm{C}$
2	$200 \mathrm{~cm}^{3}$ of 2 M HCl	$200 \mathrm{~cm}^{3}$ of 2 M KOH	$\mathrm{T}_{2}{ }^{\circ} \mathrm{C}$

Which of the following is correct?
A. $\quad \mathrm{T}_{1}=\mathrm{T}_{2}$
B. $\quad \mathrm{T}_{1}=2 \mathrm{~T}_{2}$
C. $2 \mathrm{~T}_{1}=\mathrm{T}_{2}$
D. $4 T_{1}=T_{2}$

CE92 28

It the above graph, curve X was obtained by the renction between $100 \mathrm{~cm}^{3}$ of 1 M HCl and excess zinc granules.
Which of the following changes would produce curve X ?
A. Increasing the temperature by $10^{\circ} \mathrm{C}$.
B. Adding the same amount of zine powder instead of zine granules.
C. Using $200 \mathrm{~cm}^{3}$ of 0.8 M HCl instead of $100 \mathrm{~cm}^{3}$ of 1 MHCl .
D. Using $50 \mathrm{~cm}^{3}$ of 1.5 M HCl instead of $100 \mathrm{~cm}^{3}$ of I M HCl .

CE92_29
After $50 \mathrm{~cm}^{3}$ of $0.60 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ have conpletely neutralized $100 \mathrm{~cm}^{3}$ of 0.6 M NaOH , the concentration of the resulting sodium sulphate solution is
A. $\quad 0.2 \mathrm{M}$
B. $\quad 0.3 \mathrm{M}$
C. $\quad 0.6 \mathrm{M}$
D. 1.2 M

CE92 36
Which of the following reagents form(s) a white precipitate with lead(II) nitrate solution?
(1) potassium carbonate solution
(2) dilute hydrochloric acid
(3) sodium sulphate solution
A. (3) only
B. (1) and (2) only
C. (1) and (3) only
D. (1), (2) and (3)

CE92_48

$1^{\text {sl }}$ statement

In the reaction between calcium carbonate and hydrochloric acid, the reaction rate decreases with time.

CE92 49

$1^{s i}$ statement

A solution of hydrogen chloride in mellyybenzene can turn blue litmus paper red.

CE93_07
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CaCO}_{3}(\mathrm{x})+\mathrm{H}_{2} \mathrm{O}(y) \longrightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right) 2(\mathrm{z})$
In the above chemical equation, which of the following conbination is correct?

	\underline{x}	y	z
A.	aq	1	$s q$
B.	s	$a q$	s
C.	s	I	s
D.	s	I	$a q$

CE93_11
The following substances were burnt in oxygen and the products were mixed with water. Which of these substances would produce a resulting solution with the highest pH value?
A. calcium
B. iron
C. sulphur
D. carbon

CEP3_21
Three different paits of metal wires are placed separately in petri dishes (as shown in the diagram below) containing a mixture of gelatin, potassiturn hexacyatoferrate(III) solution and phenolphthalein sofution.

Dish I

Dish 11

Dislt 111

In Dish II, which of the following coleurs will develop around the iron wite and the copper wire? iron wire copper wire
A. pink blue
B. blue piak
C. pink no colour
D. blue no colour

CE93 23
Which of the following statements about a solution of hydrogen chloride in water is correct?
A. The hydrogen chloride exists as molecules in the solution.
B. The hydrogen chtoride is highly ionized in water.
C. The pH value of the solution is greater than 7.
D. The reaction between the solution and aqueots ammonia is exothermic.

CE93_27

Which of the following solutions forms a precipitate with excess aqueons ammonia?
A. copper(11) chloride solution
B. aluminium nitrate solution
C. zinc sulphate solution
D. sodium chloride solution

CE94_31
A sulphuric acid solution is titrated against $25,0 \mathrm{~cm}^{3}$ of $3,0 \mathrm{M}$ sodium hydroxide solution. The results of the themometric titration can be represented by the following graph.

CE95 09
A student performed a titration experiment in which he added an acid from a burette to an alkali contained in a conical flask．The following diagrans show the intial and final readings of the burctte．

Initisl rending	Final reading
cm^{3}	cm^{3}
7 \＃	31 㒸
咅	－
8 \％	32 管
3	F
9 目	33 翏

What was the volume of the acid added from the burette to the conical flask？
A． $24.5 \mathrm{cml}^{3}$
B．$\quad 24.6 \mathrm{~cm}^{3}$
C．$\quad 24.7 \mathrm{~cm}^{3}$
D．$\quad 32.3 \mathrm{~cm}^{3}$

CE9S＿12
Which of the following pairs of solutions，when mixed，would give a neutral solution？
A． $10 \mathrm{~cm}^{3}$ of 1 M sulphuric acid and $10 \mathrm{~cm}^{3}$ of 1 M sodium hydroxide solution
B．$\quad 10 \mathrm{~cm}^{3}$ of 1 M sulphuric acid and $10 \mathrm{~cm}^{3}$ of 2 M soditun hydroxide solution
C．$\quad 10 \mathrm{~cm}^{3}$ of 2 M sulphuric acid and $20 \mathrm{~cm}^{3}$ of 1 M sodiam hydroxide solution
D． $20 \mathrm{~cm}^{3}$ of 2 M sulphuric acid and $10 \mathrm{~cm}^{3}$ of 2 M sodium hydroxide solution
CE9S＿16
What volume of water is required to dilute $100 \mathrm{~cm}^{3}$ of 8 M hydrechloric acid to a concentration of 2 M ？
A． $200 \mathrm{~cm}^{3}$
B． $300 \mathrm{~cm}^{3}$
C． $400 \mathrm{~cm}^{3}$
D． $700 \mathrm{~cm}^{3}$

CE95＿18
Metal X reacts with dilute hydrochloric acid to liberate hydrogen，but metal Y and metal Z have no reaction with dilute acid．The oxide of metal Y decomposes on heating bot the oxide of metal Z does not．
Which of the following arrangements represents the order of increasing reactivity of the threc metals？
A．$X<Y<Z$
B． $\mathrm{Y}<\mathrm{Z}<\mathrm{X}$
C．$X<Z<Y$
D．$Z<Y<X$

CE95＿24
Consider the following equation．

$$
2 \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{x}) \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{y})+\mathrm{SO}_{3}(\mathrm{z})+\mathrm{SO}_{2}(\mathrm{~g})+14 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which of the following combinations is correct？

	\underline{x}	\underline{y}	\underline{z}
A．	aq	s	g
B．	aq	s	1
C．	s	aq	s
D．	s	s	g

CE95＿27
A certain amount of silver oxide is heated in a test tube．Which of the following graphs represents the correct plot of the mass of the contents of the test tube against time？

B．

C．

D．

CE95＿35
Which of the following subslances，when mixed wilh lemon juice，would give oft gas bubbies？
（1）iron nails
（2）milk of magnesia
（3）polyethene wrap
A．（1）only
B．（2）only
C．（1）and（3）only
D．（2）and（3）only

CE95 30

Which of the following substances can conduct electricity?
(1) molten zinc chloride
(2) an aqueous solution of nagnesium sulphate
3) a mixture of ethanol and water
A. (1) and (2) only
B. (I) and (3) ouly
C. (2) and (3) only
D. (1), (2) and (3)

CE25 46
$1^{s t}$ statement
The basicity of ethatoic acid is four.
$1^{\text {tr }}$ statement
f a student accidentally spills some hydrochloric acid on his hand, the should mmediately wash his hand with sodium hydroxide solution,

CE96. 04
Consider the following chenical equation:

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{x}) \longrightarrow \mathrm{Ca}_{\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{y})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{z})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Which of the following combinations is correct?

	\underline{x}	y	\underline{z}
A.	aq	aq	1
B.	aq	aq	aq
C.	s	aq	1
D.	s	s	aq

CE96 06
Which of the following substances is used by famers to increase the pH of soil?
A. ammonhun nittate
B. calcium hydroxido
C. citric acid
D. patassium

CE96_10
A student added $16 \mathrm{~cm}^{3}$ of 2 M sodium fiydroxide solution, in $2 \mathrm{~cm}^{3}$ portions, to $10 \mathrm{~cm}^{3}$ of 2 M nitric acid. He measured the temperature of the mixture intmediately after each addition of the sodium hydroxide solution
Which of the following graphs represents the relationstip between the temperature of the mixture and the voitume of sadiun hydroxide solution added?
A.

C.

$\underset{\mathrm{NaOH}(\mathrm{nq}) \text { added }}{\text { volume of }} \rightarrow$
B.

D.

CE97_13
Which of the following statements concerning the reaction of aqueous ammonia with hydroctroric acid is correct?
A. The reaction is exothermic.
B. A white precipitate is formed.
C. Ammonitm chloride and chlorine are produced.
D. The product ammonium cbloride is a covalent compound

CE97 14
The formula of a metal carbonate is $\mathrm{X}_{2} \mathrm{CO}_{3}, 100 \mathrm{~cm}^{3}$ of a solution containing 0.69 g of the carbonmte requires $50 \mathrm{~cm}^{3}$ of 0.20 M hydrochloric acid for complete reaction. What is the relative atomic mass of metal X?
Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0$)
A. $\quad 19.0$
B. $\quad 23.0$
C. $\quad 39.0$
D. 78.0

CE97_31
Which of the following shatements concerning citric acid is/are correct?
(1) It is a strong acid.
(2) It is present in oranges.
(3) It exists as a solid at room temperature.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE97_37
Which of the following substances would renct wilh sodium hydroxide sofution?
(1) ammonium chloride solution
(2) copper(II) sulphate solution
(3) cthanoic acid
A. (1) and (2) ouly
B. (1) and (3) only
C. (2) and (3) ouly
D. (1), (2) and (3)

CE97_49

$1^{\text {s }}$ statement

When filling a pipette with a solution, a pipete filler is preferred to sucking with the mouth
$2^{\text {nd }}$ statement
It is more accurate to fill a pipette with a solution by using a pipelte filler than by sucking with the mouth

CE98 09
Which of the following substances has a pH fess than 7?
A. lemon juice
B. soap solution
C. glass cleane
D. milk of magnesia

CE98 13

In an experiment, $10 \mathrm{~cm}^{3}$ of 1 M hydrochloric acid is added slowly into $10 \mathrm{~cm}^{3}$ of 1 M sodium hydroxide solution. Which of the following siatements concenning this experiment is correct?
A. The emperature of the mixture increases.
B. The pH of the mixture increases.
C. The mixture doss not conduct electricity at the end of the experiment.
D. The concentration of sodium ions in the mixture remains unchanged.

CE98 16
The formula of a solid dibasic acid is $\mathrm{H}_{2} \mathrm{X} .2 .88 \mathrm{~g}$ of the acid is dissolved in some distilied water and the solution is then dilated to $250.0 \mathrm{~cm}^{3}$ with distilled water. $25.0 \mathrm{~cm}^{3}$ of lise diluted solution requires $16.0 \mathrm{~cm}^{3}$ of 0.40 M sodium hydroxide solution for complete neutralization. What is the molar mass of $\mathrm{H}_{2} \mathrm{X}$?
A. 22.5 g
B. $\quad 45.0 \mathrm{~g}$
C. $\quad 90.0 \mathrm{~g}$
D. $\quad 180.0 \mathrm{~g}$

CE98_18
Which of the following ions has the same number of protots as the hydroxide ion, OH^{-}?
A. O^{2-}
B. F^{-}
C. Na^{+}
D. Mg^{2}

CE98 23
Which of the following is NOT the appropriate subslance for preparing zinc sulphate by directly mixing with difute sulpturic acid?
A. zine
B. zinc carbonate
C. zinc hydroxide
D. zinc nitrate

CE98 25
Dilute sodium hydroxide solution is added successively to four different solutions. Which of the
following combinations is correct?

Solution	Olservation
ammoniun chloride	white precipitate
lead(II) nitrate	yellow precipitate
potassiun dichromate	orange precipitate
iron(II) sulphate	brown precipitate

CE98_31
What is the purpose of adding quicklime (calcimm oxide) to soil?
A. to neutralize the acidity of the soil.
B. to act as a fertilizer for the soil.
C. to kill micro-organisms in the soil.
D. to increase the amount of calcium ions in the soil.

CE98_43

Which of the following substances are commonly found in canned grapefruit juice?
(1) citric acid
(2) benzoic acid
(3) ettanoic acid
A. (1) and (2) only B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE99_06
The concentration of an aqueous solution of an acid is $1.0 \mathrm{M} .25 .0 \mathrm{~cm}^{3}$ of this acid solution requires $37.5 \mathrm{~cm}^{3}$ of 2.0 M sodium hydroxide solution for complete neuralization. What is the basicity of the acid?
A. 1
B. 2
C. 3
D. 4

CB99_20
Which of the following solutions would produce a white precipitate wilh sodium hydroxide solution?
A. lead(II) nitrate solution
B. iron(III) nitrate solution
C. copper(II) nitrate solution
D. potassium nitrate solution

CE99 25
In an experiment, 1.00 M sodium hydroxide solution was added to $25.0 \mathrm{~cm}^{3}$ of 1.00 M sulphuric acid until the acid was completely neutralized. What is the concentration of sodium sulphate (correct to two decimal places) in the resulting solution?
A. 1.00 M
B. $\quad 0.50 \mathrm{M}$
C. 0.33 M
D. 0.25 M

CE99 45

${ }^{n}$ statement

Sulphur is classified as a non-metal.

Sutphur does not react with dilute acids.

CE00_11
Different volumes of 2.0 M potassium hydroxide solution and 2.0 M sulphuric acid are mixed in a polystyrene cup. In which of the following combination would the temperature rise be the greatest?

	Volume of $2.0 \mathrm{M} \mathrm{KOH}(\mathrm{ag}) / \mathrm{cm}^{3}$	
A.	20.0	Volume of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{cm}^{3}$
B.	30.0	40.0
C.	40.0	30.0
D.	45.0	20.0
		15.0

CE00_29
Which of the following compounds would react with ammonium chloride on heating?
A. concentrated nitric acid
B. concentrated liydrociloric acid
C. soditum lydroxide solution
D. magnesium sulplate solution

CEOO_ 33
In an experiment, a piece of calcium metal was added to a beaker of water. Which of the following statements concerning the experiment is/are correct?
(1) The calcium motal sank to the bottom of the beaker
(2) The calcium metal bumt with brick red flame.
(3) At the end of the experiment, an alkaline solution was found in the beaker.
A. (1) only
B. (2) ouly
C. (I) and (3) only
D. (2) and (3) onty

CEOL OO

When potassium carbonate solution and calcium chloride solution are mixed, calcium carbonate is precipitated. Which of the following mixtures would produce the greatest anomat of precipitate?
A. $\quad 5 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+15 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{CaCl} 2(\mathrm{aq})$
B. $10 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+10 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{CaCl} 2(\mathrm{aq})$
C. $15 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+8 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{CaCl}_{2}(\mathrm{aq})$
D. $18 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+5 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{CaCl}_{2}(\mathrm{aq})$

CE01_07
Which of the following statements concerning water is correct?
A. It reacts with calcium to give a colourless gas.
B. It is a strong electrolyte.
C. It tums anhydrous cobait(II) chitoride from pink to blue.
D. It is immiscible with nethanol,

CEOI 15
A mixture consists of one mole of sodium carbonate and one mole of sodium hydrogencarbonate. What is the least number of moles of hydrochloric acid required to liberate all the available carbon dioxide from the mixture?
A. 1.5
B. 2.0
C. $\quad 3.0$
D. 4.0

CEOI_23
Phosphoric acid is a tribasic acid with formula $\mathrm{H}_{3} \mathrm{PO}_{4}$, which of the following formulae is INCORRECT?
A. $\mathrm{CaH}_{2} \mathrm{PO}_{4}$
B. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
C. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$
D. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$

CE01 34
In a titeation experiment, $25.0 \mathrm{~cm}^{3}$ of diluted vinegar is titrated against a standard solution of sodium hydroxide with phenolphthatein as indicator. Which of the following statements concerning this experiment is/are correct?
(1) The colsur of phenolphthatein clianges from colourless to pink at the end point.
(2) The colour of phenolphthalein changes from pink to colourless at the end point.
(3) A measuring cylinder is used to measure the volume of the diluted vinegar.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE02_02
Which of the following compounds, wheen dissolved in water, gives a green solution?
A. copper(II) sulphate
B. nickel(II) sulphate
C. cobalt(II)
D. iron(Il) sulphatc

CEO2_05
Consider the aqueous solutions listed below:
(1) 1 M cllanoic acid
(2) 1 M hydrochloric acid
(3) I M ammonia solution

Which of the following represents the increasing order of pH of the solution?
A. (1), (2), (3)
B. (2), (1), (3)
C. (3), (1), (2)
D. $(3),(2),(1)$

CE02_17
Which of the following solution does NOT react with sodium lyydroxide solution?
A. ammoniun cliloride solution
B. potassium carbonate solution
C. copper(II) nitrate solution
D. zine sulphate solution

CE02_32
A black powder is suspected to be carbon or a mixture of carbon and copper(II) oxide. Which of
the followitg methods can be used to identify the black powder?
(1) adding dilute sulphuric acid to the powder
(2) adding sodium hydroxide solution to the powder
(3) heating the powder strongly
A. (1) ouly
B. (2) ouly
C. (1) and (3) only
D. (2) and (3) only

CE02_42
In which of the following is ammonia used?
(1) the manufacture of nitric acid
(2) the making of fertilizers
(3) the making of antiacids
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE03 04
Which of the following statements concerning nitric acid is INCORRECT?
A. It is manufactured from ammonia
B. It is used to make explosives
C. It is used to make fertilizers.
D. It is a dehydrating agent.

CE03_26
$20.0 \mathrm{~cm}^{3}$ of 2.0 M aqueous ammonia required $16.0 \mathrm{~cm}^{3}$ of sulpharic acid for complete neutralization. What is the concentration for the sulphuric acid?
(Retative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{~S}=32.1$)
A. $61.3 \mathrm{~g} \mathrm{dm}^{-3}$
B. $122.6 \mathrm{~g} \mathrm{da}^{-3}$
C. $\quad 183.9 \mathrm{~g} \mathrm{dm}^{-3}$
D. $\quad 245.2 \mathrm{~g} \mathrm{dm}^{-3}$

CEO3 30
$40 \mathrm{~cm}^{3}$ of 2 M hydrochloric acid was mixed with $40 \mathrm{~cm}^{3}$ of 2 M sodium hydroxide solution in a polystyrene cup and the maximum rise in tenuperature was recorded. Which of the following pairs of solutions, tipon mixing, would produce a similat rise in temperature?
A. $40 \mathrm{~cm}^{3}$ of 2 M ethanoic acid and $40 \mathrm{~cm}^{3}$ of 2 M potassium bydroxide solution
B. $40 \mathrm{~cm}^{3}$ of 2 M ethanoic ncid and $40 \mathrm{~cm}^{3}$ of 2 M ammonia sofution
C. $40 \mathrm{~cm}^{3}$ of 2 M nitric acid and $40 \mathrm{~cm}^{3}$ of 2 M potassium hydroxide solution
D. $40 \mathrm{~cm}^{3}$ of 2 M nitric acid and $40 \mathrm{~cm}^{3}$ of 2 M ammonia solution

CE03 43
Which of the following pairs of solution would form a precipitate when they are mixed?
(1) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ and $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{qq})$
(2) $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (aq)
(3) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{1}(\mathrm{aq})$ and $\mathrm{CaCl}_{2}(\mathrm{aq})$
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE05SP 17
Consider the following equation:

$$
\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{Fe}(\mathrm{OH})_{2}(x) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(y)+4 \mathrm{H}_{2} \mathrm{O}(z)
$$

Which of the following combinations is correct?

	\underline{x}	$\underline{2}$	z
A.	s	s	1
B.	s	aq	aq
C.	$a q$	s	aq
D.	aq	aq	1

CE05SP_18

A white solid dissolves in water to give a colourless solution. The solution reacts with dilute hydrochloric acid to give a gas. The solid is probably
A. calcium oxide.
B. calcium carbonate.
C. potassium hydroxide.
D. potassium carbonate.

CE0SSP 36
A sample of conncted sulphuric acid has density of $1.83 \mathrm{~g} \mathrm{~cm}^{-3}$ and contains 94% of supphuric acid by mass. What is the concentration (correct to one decimal place) of sulphuric acid in the sample?
A. $\quad 17.5 \mathrm{M}$
B. $\quad 18.3 \mathrm{M}$
C. $\quad 18.7 \mathrm{M}$
D. $\quad 19.8 \mathrm{M}$

CE0SSP 45
In an experiment, zinc granules are allowed to react with $100 \mathrm{~cm}^{3}$ of 2 M sulphuric acid at roon temperature and pressure. In which of the following situations would the rate of reaction be ficreased at the initial sfage?
(1) using the same mass of zinc which is in powder form
(2) adding some ice to the reaction mixtare
(3) using $200 \mathrm{~cm}^{3}$ of 2 M sulphuric acid instead of $100 \mathrm{~cm}^{3}$ of 2 M sulphuric acid
A. (I) only
B. (2) only
C. (1) and (3) ouly
D. (2) and (3) only

CE04_08
Which of the following pairs of ions would react together to form a white precipitate?
A. $\quad \mathrm{Ca}^{2+}(\mathrm{aq})$ and $\mathrm{SO}_{4}{ }^{2-}(\mathrm{mq})$
B. $\mathrm{Cu}^{2+}(\mathrm{aq})$ and $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
C. $\mathrm{Ni}^{2+}(\mathrm{aq})$ and $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
D. $\mathrm{NH}_{4}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$

CE04_11
A white solid is found around the mouth of a reagent bottle containing linewater. The white solid is likely to be
A. calcium oxide.
B. calciun hydroxide.
C. calcium carbenatc.
D. anlcimn hydrogencarbonate.

CE04_14
Chlorine can be prepared from concentrated lyydrochloric acid and potassium permanganate according to the following equation:

$$
2 \mathrm{KMnO}_{4}+x \mathrm{HCl} \longrightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+y \mathrm{H}_{2} \mathrm{O}+z \mathrm{Cl}_{2}
$$

What is the value of x ?
A. 4
B. 5
C. 8
D. 10

CE04 20

Which of the following concerning aqueous ammonia is correct?
A. If contains both ammonia molecules and ammonium ions.
B. It is commonly used as the active ingredient in toilet cleaners.
C. It reacts with iron(III) sulphate solution to give a green precipitate.
D. II gives a colourless solution with phenolphthatein.

CE04_44
When solid acid is added to an aqueous solution of sodium hydrogencarbonate, the mixture fizzes.
Which of the following ions/ compounds are responsible for the fizz?
(1) sodiun ions
(2) hydrogencarbonate jons
(3) citric acid
(4) water
A. (1), (2) and (3) only
B. (1), (3) and (4) only
C. (2), (3) and (4) only
D. (1), (2), (3) and (4)

CE05 14
Which of the following compounds las the highest basicity?
A. HCl
B. HCOOH
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$

CEOS 22
$500 \mathrm{~cm}^{3}$ of calcium hydroxide contains 3.7 g of calcium hydroxide. What is the molarity of the solution?
A. 0.05 M
B. 0.10 M
C. $\quad 0.13 \mathrm{M}$
D. 0.26 M

CEOS_29

${ }^{\text {st }}$ statement

When citric acid is dissolved in water, citri acid molecules becomes mobile.

CE05 34

Which of the following statements concerning $20 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $10 \mathrm{cmin}^{3}$ of I $\mathrm{MH}_{2} \mathrm{SO}_{4}$ is correci?
A. They have the same pH values.
B. They have the same electrical conductivity.
C. They react with magnesium at the same rate
D. They require the same number of moles of sodium hydroxide for complete neutralization.

CE05_38

Which of the following pairs of substances would NOT react together?
A. copper, dilute ethanoic acid
B. copper(II) oxide, dilute ethanoic acid
C. copper(II) hydroxide, diluse stiphuric acid
D. copper(II) carbonate, dilute sulphatic acid

CE05_39
Directions: $Q .39$ to 41 refer to the following information.
In an experiment to determine the concentration of sulpiuric acid in a brand of toilet cleaner, $25.0 \mathrm{~cm}^{3}$ of the cleaner was first diluted to $250.0 \mathrm{~cm}^{3}$ with distilled waler. Upon titration wilh 0.950 M sodium fiydroxide solution using phenolphtizalein as indicator, $25.0 \mathrm{~cm}^{3}$ of the diluted cleaner required $27.1 \mathrm{~cm}^{3}$ of the sodium hydroxide solution to reach the end point.

Which of the following types of apparatus should be used to measure $25.0 \mathrm{~cm}^{3}$ of the toilet cleaner?
A. pipette
B. burette
C. measuring cylinder
D. volunetric flask

CE05 40

What is the colour change at the end point of the titration?
A. from colourless to pink
B. from pink to collourless
C. from yellow to red
D. from red to yellow

CE05_41
What is the concentration of sulphuric acid in the undiluted toilet cleaner?
A. $\quad 1.29 \mathrm{M}$
B. $\quad 2.58 \mathrm{M}$
C. $\quad 5.15 \mathrm{M}$
D. $\quad 10.3 \mathrm{M}$

CEOS_50

$1^{\text {st }}$ statement

2 M hydrochloric acid rencts faster wilit 1 g of zitue granules than will 1 g of zine powder.

CE06 07

Compound X is soluble in water. Addition of sodium hydroxide solution to a sofution of X gives a white precipitate. The precipitate does not dissolve upon the addition of excess alkali. X may be
A. MgCl_{2}
B. ZnCl_{2}
C. FeSO_{4}
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

CE06_10
Solution X is prepared by mixing $100.0 \mathrm{~cm}^{3}$ of $2.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ with $50.0 \mathrm{~cm}^{3}$ of 1.0 M NaNO_{3} (aq). What is the concentration of $\mathrm{Na}^{+}(\mathrm{aq})$ ions in X ?
A. $\quad 1.5 \mathrm{M}$
B. 1.7 M
C. $\quad 3.0 \mathrm{M}$
D. $\quad 3.3 \mathrm{M}$

CE06_28
$1^{\text {st }}$ statement
$2^{\text {nu }}$ statentent
Solid citric acid reacts with magnesium to Citric acid conlains ionisable hydrogen aloms. give lydrogen.

CE06 31
Oxalic acid is a dibasic acid. $10.0 \mathrm{~cm}^{3}$ of an aqueous solution of oxalic acid requires $30.0 \mathrm{~cm}^{3}$ of 0.10 M KOH (aq) for complete nentralization. What is the concentration of the oxalic acid solation?
A. $\quad 0.15 \mathrm{M}$
B. 0.20 M
C. $\quad 0.30 \mathrm{M}$
D. 0.60 M

CE06 39
Which of the following solutions when mixed with $50.0 \mathrm{~cm}^{3}$ of 1.0 M hydrochloric aeid would NOT result in a change in pH ?
A. $\quad 50.0 \mathrm{~cm}^{2}$ of 1.0 M sodium chloride solution
B. $\quad 50.0 \mathrm{~cm}^{3}$ of 1.0 M ellanoic acid
C. $50.0 \mathrm{~cm}^{3}$ of 1.0 M nitric acid
D. $50.0 \mathrm{~cm}^{3}$ of 1.0 M sulphuric acid

CEO6 47

In a titration experiment, which of the following apparatus should be rinsed with the solution it is about to contain?
(1) burette
(2) pipetle
(3) conical flask
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CEOG_48
${ }^{\text {st }}$ statement
Carbon dioxide can effeotively be prepared
Carbonate reacts with dilute acids to give carbon dioxide.
calciom carbonate.

CE07 15
What is the volune of 0.5 M hydrochloric acid required to react with 1.49 g of thitum oxide for complete neutralization?
A. $\quad 50 \mathrm{~cm}^{3}$
B. $\quad 100 \mathrm{~cm}^{3}$
C, $\quad 200 \mathrm{~cm}^{2}$
D. $260 \mathrm{~cm}^{3}$

CE07_17
$20 \mathrm{~cm}^{3}$ of calcium chloride solution contains 1.0×10^{-2} moles of $\mathrm{Cl}^{-}(\mathrm{ag})$ ions. What is the molarity of the solution?
A. $\quad 1.0 \times 10^{-4} \mathrm{M}$
B. $2.5 \times 10^{-4} \mathrm{M}$
c. $2.5 \times 10^{-5} \mathrm{M}$
D. $5.0 \times 10^{-1} \mathrm{M}$

C807_35
Different metals are dropped into water or diluie hydrochloric acid, Assuming that the experimental conditions are the same, which of the following comparisons concerning the inital rates of hydrogen formation is correct?

	Inital rate of hydrogen formation		
Initial rate of hydrogen formation			
A.	Ca and $\mathrm{H}_{2} \mathrm{O}$		Ba and HCl
B.	Fe and HCl	$>$	K and $\mathrm{H}_{2} \mathrm{O}$
C.	K and $\mathrm{H}_{2} \mathrm{O}$	$>$	Ca and $\mathrm{H}_{2} \mathrm{O}$
D.	Cs and $\mathrm{H}_{2} \mathrm{O}$	$>$	Ca and $\mathrm{H}_{2} \mathrm{O}$

CE07 47
A student pours two different acids respectively into two test tubes, cach centaining a piece of magnesium ribbon of the same mass, until the ribloots are comptetely covered by the acids. If she wishes to compare the relative strength of the acids by observing the initial rate of evolttion of gas, which of the following items should be the same?
(1) volume of acids
(2) concentration of the acids
(3) basicity of the acids
A. (I) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) aud (3)

CE08_01
Which of the following statements concerning acid rain is INCORRECT?
A. Acid rain refers to rain with pHt less than S.6.
B. Acid rain can corrode iron window frames and marble buildings.
C. One major air pollution that causes the formation of actid rain is carbon dioxide.
D. Acid rain will be formed when the gases disclarged by power stations using fossil fuels enter the atmosphere.

CE08_07
$30.0 \mathrm{~cm}^{3}$ of 0.10 M KOH is completely neutralized by $20.0 \mathrm{~cm}^{3}$ of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution. What is the molarily of the salt solution obtained?
A. $\quad 0.03 \mathrm{M}$
B. $\quad 0.05 \mathrm{M}$
C. $\quad 0.06 \mathrm{M}$
D. 0.10 M

CE08_17
The basicity of an acid is
A. a value to express the concentration of the acid.
B. the mumber of hydrogen atoms in one acid molecule.
C. the number of noles of any base which can completely react with one mole of fhe acid.
D. the number of hydrogen ions which can be produced by complete ionization of one acid molecule.

CE08_20
A small piece of potassium is dropped into a trough of water containing methyl orange. Which of the following observations is/are correct?
(1) The potassium moves about on the water surface with a hissing sound.
(2) The polasslum dissolves in water and the solution turns red.
(3) The potassium burns witti a golden yellow flame.
A. (1) only
B. (2) onily
C. (1) and (3) only
D. (2) and (3) only

CE08_30

$1^{\text {st }}$ statement

If concentrated hydrochloric acid is dripped onto
Concentrated ammonia solution is weak alkali.

one's hand, one should wash the hand immediately

${ }^{24 d}$ statement with concentrated ammonia solution

CE08_33
Wher calcium granules are added to water, colourless gas bubbles are formed. The mixture is then filtered to obtain a clear solution. Which of the following is correct if excess dilute fydrochloric acid is added to the clear solution?
A. Gas bubbles are formed
B. There is no visible change.
C. A white precipitate is formed.
D. The elcar solution tums brick red.

CE08_37
The following table shows some information on mixing hydrachloric acid with sodium hydroxide solution:

Mixture			Temperature rise $/{ }^{\circ} \mathrm{C}$
$25 \mathrm{~cm}^{3}$ of 1 M HCl		$25 \mathrm{~cm}^{3}$ of 1 M NaOH	w'
$50 \mathrm{~cm}^{3}$ of 1 MHCl	+	$50 \mathrm{~cm}^{3}$ of 1 M NaOH	x
$25 \mathrm{~cm}^{3}$ of 2 MHCl	$+$	$25 \mathrm{~cm}^{3}$ of 2 M NaOH	y
$50 \mathrm{~cm}^{3}$ of 2 M HCl	+	$50 \mathrm{~cm}^{3}$ of 2 M NaOH	z

Which of the following concerning the values of temperature rise is correct?
A. $w<x<y<z$
B. $w<x=y<z$
C. $w=y<x=$
D. $w=x<y=$

CE08 43

Which of the following pieces of apparatus should be used when an acid is titrated will an alkali?
(1) burette
(2) pipette
(3) conical flask
A. (1) and (2) only
B. (1) aud (3) onfy
C. (2) and (3) only
D. (1), (2) and (3)

CE08_45
In an expcriment, a solution containing 3 moles of KOH reacts with anther solution containing I mole of an acid for complete neutralization. Which of the following deduction is/are correct?
(1) 1 mole of the acid provides 3 moles of $\mathrm{H}^{+}(\mathrm{aq})$ ions.
(2) The acid is tliree times as concentrated as the KOHI(aq).
(3) The acid is a strong acid.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE09_10
X is an acid. $25.0 \mathrm{~cm}^{3}$ of 0.20 M solution X requires $30.0 \mathrm{~cm}^{3}$ of 0.50 M sodium hydroxide solution for complete neuralization. What is the basicity of X ?
A. 1
B. 2
C. 3
D. 4

CE09_14
Which of the following is NOT an industrial product made from sulphuric aciu?
A. fertilizer
B. paint additive
C. soapless detergent
D. sulphur dioxide preservative

CED9- 17
This question refers to the following micro-scale experiment.

Which of the following types of reaction is/are involved in the experiment?
(1) redox reaction
(2) nentralization
(3) thermal decomposition
A. (1) oilly
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE09_23

Which of the following substances can be used to distinguish between maguesium nitrate solution and silver nitrate solution?
(1) zinc strip
(2) Emmonium nitrate solution
(3) polassium chloride solution
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE09_29
${ }^{\text {tst }}$ statement
Copper(II) carbonate dissolves in water to give a blue solution.
$2^{\text {nd }}$ slatement
All solid compourds with copper(II) as the only cations are blue in colour

CE09_32
Which of the following chemiculs can best be used to remove the oil dirt inside the drainage pipe in kitchen?
A. yitrio acid
B. sodium chloride
C. hydrochlorie acid
D. sodiun hydroxide

CEOP 35
Directions: Questions 35 atad 36 refer to the following information.

The table below shows how solutions \mathbf{X} and Y are respectively nade from two monolrasic acids A and \mathbf{B}.

solution X	solution X
$40 \mathrm{~cm}^{3}$ of 0.2 M acid A	$20 \mathrm{~cm}^{3}$ of 0.4 M acid B
+	+
$10 \mathrm{~cm}^{3}$ of distilled water	$30 \mathrm{~cm}^{3}$ of distilled water

What is the conceniration of acid A in solution X
A. $\quad 0.2 \mathrm{M}$
3. 0.16 M
C. $\quad 0.01 \mathrm{M}$
D. 0.008 M

CE09_36
Two identical zinc strips are added to solutions \mathbf{X} and \mathbf{Y}. The diagrams below show how gas bubbles are given out when the zine strips are just added to the solutions

Which of the following deductions is correct?
A. Acid A is weaker than acid B.
B. Acid B is weaker than acid A.
C. The concentration of acid A in solution X is higher flan that of acid B in solution Y.
D. The concentration of acid B in solution Y is higher than that of acid A in solution X.

CE09 37
Comparing the same volume of $0.5 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ and $0.5 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$, which of the following is NOT correct?

0.5 M NaOHfag	0.5 MNH 3 (aq)
A. higher pH	lower pH
B. higher electrical conductivity	lower electrical conductivity
C. fomms precipitate with FeSO_{4} solution	does not form precipitate with FeSO_{4} solution
D. larger temperature rise when completely nentralized by 1 MHCl	smaller temperature rise when completely neutralized by 1 MFCl
CE09_48	
$1^{\text {tr }}$ statement	$2^{\text {nd }}$ statement

All salls are formed from newtralization.

CE10_19
Besides pipette, which of the following apparatus nust be used in order to prepare $250.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$?
A. burette
B. conical flask
C. volumetric flask
D. measuring cylinder

CE10_20
A mixtare of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{MgSO}_{4}(\mathrm{aq})$ is heated with excess $\mathrm{NaOH}(\mathrm{aq})$. Which of the fotlowing observations is correct?
A. No pungent gas is evolved and no precipitate is formed.
B. No pungent gas is evolved but a white precipitate is formed
C. A puingeit gas is cyolved bot no precipitate is formed.
D. A pungent gas is evolved and a white precipitate is fomed.

CE10 23
The oxide of motal Z reacts with dilute hydrochloric aeid to form a colourless solution. Which of
the following metals may Z be?
(1) zinc
(2) copper
(3) silver
A. (l) only
B. (2) only
C. (1) aud (3) only
D. (2) and (3) only

CE10_28
Solid citric acid can turn dry blue litmas Solid citric acid contatus hydrogen ions. paper red.

CE10 35
Solid acid Thas a relative molecular mass of 192.0 . A sample of 0.80 g of T is dissolved in water to form a solution which requires $25.0 \mathrm{~cm}^{3}$ of 0.50 M sodium hydroxide solution for complete neurralization. What is the basicity of \mathbf{T} ?
A. 1
B. 2
C. 3
D. 4

CE10_39
$20.0 \mathrm{~cm}^{3}$ of $1.0 \mathrm{M} \mathrm{NaCl(nq)} \mathrm{is} \mathrm{mixed} \mathrm{with} 10.0 \mathrm{~cm}^{3}$ of $2.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$. What is the cottcentration of $\mathrm{Na}^{+}($aq) ions in the resulting solution?
A. $1,3 \mathrm{M}$
B. $\quad 1.5 \mathrm{M}$
C. 2.0 M
D. 3.0 M

CE10 40
Which of the following steps should be involved in an experiment to prepare copper(II) sulphate crystals?
A. adding excess CuCl_{2} (s) to $\mathrm{H}_{2} \mathrm{SO}_{4}($ aq $)$
B. adding CuCl_{2} (s) to excess $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq)
C. adding excess $\mathrm{CuO}(\mathrm{s})$ to $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
D. Adding $\mathrm{CuO}(\mathrm{s})$ to excess $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

CE10-42
Which of the following hazard warning labels slould be displayed on a bottle of concentrated hydrochloric actd?
(1)

(2)

(3)

A. (1) only
C. (1) and (3) ouly
(2) only
D. (2) and (3) only

CE10 43
Solution Y is added dropwise to a solution of NaOH containing several drops of phenoiphthalein.
The mixture changes from pink to colourless. Which of the following substances may Y be?
(1) $\mathrm{HCl}(\mathrm{aq})$
(2) $\mathrm{KCl}(\mathrm{aq})$
(3) $\mathrm{Cl}_{2}(\mathrm{aq})$
A. (1) ouly B. (2) only
C. (I) and (3) ouly
D. (2) and (3) ouly

CE10_44
In an experiment, 10 g of zinc granules is added to $100 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{HCl(aq)}$) in a beaker. Which of the following changes to the experiment can increase the initial rate of the reaction?
(1) Use $200 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{HCl(aq)} \mathrm{to} \mathrm{replace} 100 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{HCl(aq)}$.
(2) Use $50 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ to replace $100 \mathrm{~cm}^{3}$ of $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$.
(3) 10 g of zinc granules of greater size are used instead.
A. (1) ouly B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE10_45
Which of the following reaction is/are neurralization?
(1) $\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}$
(2) $2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{MgO} \longrightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{Cll}_{2} \mathrm{OHI}=\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$
A. (1) only
B. (2) ouly
C. (1) and (3) only
D. (2) and (3) only

CEH_1?
Which of the foflowing statements concerning $\mathrm{KOH}(\mathrm{aq})$ is correct?
A. The reaction between $\mathrm{KOH}(\mathrm{aq})$ and dilute hydrochloric acid is exoflemic
B. There are more hyorogen ions than hydroxide ions in $\mathrm{KOH}(\mathrm{aq})$.
C. Adding water to $\mathrm{KOH}(\mathrm{aq})$ can increase the pH .
D. $\mathrm{KOH}(a q)$ cannot conduct electricity.

CEIL_19
What is/are the potential hazard(s) of mixing an acidic toilet cleancr wilh chlorite bleach?
(1) A toxio gas is liberated.
(2) A large anount of heat is given out.
(3) A flambable subutance is produced.
A. (1) ouly
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE11_20
Which of the following gases can be dried by using concentrated sulphuric acid?
(1) ammonia
(2) sulphur dioxide
(3) hydrogen ebloride
A. (1) only
B. (2) only
C. (1) and (3) ouly
D. (2) and (3) only

CE11 24
Gas \bar{Y} dissolves in water to form an acidic solution. Which of the following gases would Y be?
(l) oxygen
(2) chlorine
(3) sulphur dioxide
A. (1) only
B. (2) ouly
C. (1) and (3) only
D. (2) and (3) only

CE11 28
$1^{\text {st }}$ statement
Unpofluted rainwater can erode limestone.

CE11 29
$1^{\text {st }}$ statement
Dilute ethanoic acid can conduct electricty.

$2^{\text {nd }}$ statement

Carbon dioxide in air dissolves in mpofluted minwater to form carbonic neid.

I
In an experiment, $10 \mathrm{~cm}^{3}$ of 1.0 M sulphuric ncid is mixed with $30 \mathrm{~cm}^{3}$ of 0.5 M sodium hydroxide solution. Which of the following statements concerning this experiment is/are correct?
(1) 0.015 mole of water is formed.
(2) The pH of the resulting mixture is greater than 7 .
(3) After water is completely evaporated frou the resulting mixture, pure sodium suffhate solid can be obtained,
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

ASL05(1) 01
Which of the following substances can be used to dry $\mathrm{SO}_{2}(\mathrm{~g})$?
A. $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
B. $\mathrm{PbO}_{2}(\mathrm{~s})$
C. $\mathrm{P}_{4} \mathrm{OH}_{10}(\mathrm{~s})$
D. $\mathrm{CaO}(\mathrm{s})$

ASLI2(I)_03
Which of the foll
ous with pH greater than 7 at 298 K ?
A. $\quad \mathrm{NaNO}_{3}$
B. NaCN
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D. KCl

DSE11SP_08
The following hazard waning labels are displayed on the reagent bottle of an acid.

What infomation about this acid con be obtained from the labels?
A. It is very concentrated and flammable.
B. It is very concentrated and oxidizing.
C. It is flammable and corrosive,
D. It is corrosive and oxidizing.

DSE11SP_14

$500 \mathrm{~cm}^{3}$ of calcium hydroxide solution contains 3.7 g of calcium hydroxide. What is the molarity of the solution?
(Relative atomic masses : $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Ca}=40.1$)
A. 0.05 M
B. $\quad 0.10 \mathrm{M}$
C. $\quad 0.13 \mathrm{M}$
D. 0.26 M

DSEISP__16
In an experiment to determine the concentration of sulphuric acid in a brand of toilet cleaner, $25.0 \mathrm{~cm}^{3}$ of the cleaner was fitst diluted to $250.0 \mathrm{~cm}^{3}$ with distilled water. Upon titration witl 0.950 M sodium liydroxide solution using phenolphthalein as indicater, $25.0 \mathrm{~cm}^{3}$ of the diluted cleaner required $27.1 \mathrm{~cm}^{3}$ of the sodium hydroxide solution to reach the end point?
Which of the following types of apparatus showd be used to measure $25.0 \mathrm{~cm}^{3}$ of the toilet cleaner?
A. Pipetto
B. Burette
C. Measuring cyliuder
D. Volumetric flask

DSE11SP_17
In an experintent to determine the concentration of sulphturic acid in a bratu of toilet cleaner, $25.0 \mathrm{~cm}^{3}$ of the cleaner was first difuted to $250.0 \mathrm{~cm}^{3}$ with distilled water. Upon titration with 0.950 M sodium liydroxide solution using phenolphthalein as indicator, $25.0 \mathrm{~cm}^{3}$ of the diluted cleaner required $27.1 \mathrm{~cm}^{3}$ of the sodium hydroxide solution to reach the end point?
What is the color change at the end point of the titration?
A. From colorless to pink
B. Prom pink to colorless
C. From yellow to red
D. From red to yellow

DSELISP_18

In an experiment to determine the concentration of sulpharic acid in a brand of toilet cleaner, 25.0 cm^{3} of the cleaner was first diluted to $250.0 \mathrm{~cm}^{3}$ witl distilled water. Upon titeation with 0.950 M sodium hydroxide solution using phenolphthalein as indicator, $25.0 \mathrm{~cm}^{3}$ of the diluted cleaner required $27.1 \mathrm{~cm}^{3}$ of the sodium hydroxide solution to reach the end point?
What is the concentration of sulphuric acid in the undiluted toilct cleaner?
A. 1.29 M
B. 2.58 M
C. $\quad 5.15 \mathrm{M}$
D. $\quad 10.3 \mathrm{M}$

DSE11SP_20
A black powder is suspected to be carbon or a mixure of carbon and copper(il) oxide. Which of
the following methods can be used to identify the black powder?
(1) Adding difute sulphuric acid to the powder.
(2) Adting sodium hydroxide solution to the powder.
(3) Heating the powder strongly.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE12PP 08

At 298 K , the pH of 0.10 mol dni ${ }^{-3} \mathrm{HCl(aq)}$ is 1 . Which of the following statements is correct?
A. At 298 K , the pH of $0.20 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{qq})$ is 2 .
B. At 298 K , the pH of $0.20 \mathrm{~mol}^{-3} \mathrm{HCl}(\mathrm{aq})$ is 0.5 .
C. At 298 K , the pH of $0.01 \mathrm{~mol}_{\mathrm{dm}} \mathrm{m}^{-3} \mathrm{HCl(aq)}$ is 2 .
D. At 298 K , the pH of $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ is 0.1 .

DSE12PP_09
When $25 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ is mixed with $25 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}(\mathrm{aq})$, the temperature of the mixture rises by $6^{\circ} \mathrm{C}$. Which of the following reactants, when mixed under the same conditions, would give a stmilar temperature rise?
A. $25 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}(\mathrm{aq})$ and $25 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$
B. $50 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ and $50 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3} \mathrm{HCl}(\mathrm{aq})$
C. $50 \mathrm{~cm}^{3}$ of $0.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ and $50 \mathrm{~cm}^{3}$ of $0.50 \mathrm{~mol} \mathrm{dm} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$
D. $100 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ and $100 \mathrm{~cm}^{3}$ or $0.25 \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3} \mathrm{HCl}(\mathrm{aq})$

DSE12PP_13

$10 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol}_{\mathrm{dm}} \mathrm{m}^{-3}$ calcium nitrate solution is mixed wilh $40 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid. What is the concentration of nitrate ions in the resulting solution?
A. $0.18 \mathrm{~mol} \mathrm{dm}^{-3}$
B. $\quad 0.13 \mathrm{~mol} \mathrm{dm}^{-3}$
C. $\quad 0.080 \mathrm{~mol} \mathrm{dm}^{-3}$
D. $0.050 \mathrm{~mol} \mathrm{dm}^{-1}$

DSE12PP_19
Which of the following reagents would undergo neutralization with limewater?
(1) $\mathrm{HCl}(\mathrm{aq})$
(2) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
(3) $\mathrm{SO}_{2}(\mathrm{~g})$
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE12PP_20
A salt has the formula $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} * \mathrm{FeSO}_{4} \bullet 6 \mathrm{H}_{2} \mathrm{O}$. Which of the following is/are the expected observation(s) when an aqueous solution of this sale is treated with aquecous sodium hydroxide solution?
(1) formation of a dirty green precipilate
(2) formation of a brown precipitate
(3) evolution of a gas with a pungent odar
A. (I) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE12PP_24
Which of the foltowing methods can be used to distinguish between $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ and 0.1 mol dm ${ }^{-3} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})$?
(1) Add magnesium ribbon of the same length to each solution and compare the sate of evolution of gas bubbles.
(2) Add $10 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ to $10 \mathrm{~cm}^{3}$ of each solution and compare the temperature change.
(3) Use each solution as elcctrolyte in the set-up shown below and compare the brighthess of the bulb.

A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE12 02
A small amoun of a powder can dissolve in water to form a clear solution. When this solution is mixed with $\mathrm{K}_{2} \mathrm{CO}_{3}(a q)$, a white precipitate is obtained. What can the powder be?
A. Sodium sulphate
B. Calcitum sulphate
C. Sodium hydroxide
D. Calcium hydroxide

DSE12_04
Which of the following slatements concerning $\mathrm{CH}_{3} \mathrm{COOH}$ and HCl is correct?
A. $\mathrm{CH}_{3} \mathrm{COOH}$ is a stronger ecid than HCl .
B. The pH of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{mq})$ is lower than that of $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$.
C. Both $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$ react with $\mathrm{NH} 3(\mathrm{aq})$, each giving a salt.
D. Both $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$ react will $\mathrm{Ag}(\mathrm{s})$, each giving a colorless gas.

DSE12_10
A sample of 1.02 g of potassium hydrogenphtialate ($\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}$) is dissolved completely in distilled water, and then diuted to $250,0 \mathrm{~cm}^{3}$, What is the concentration of the solution oblained?
(Relative atonic masses : $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{~K}=39.1$)
A. $\quad 0.004 \mathrm{M}$
B. 0.010 M
C. 0.020 M
D. $\quad 4.080 \mathrm{M}$

DSE12_14
Which of the following pairs of reaclants would react in water to give out the largest amoum of heat?
A. 1 mol of HCl and 2 mol of KOH
B. 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 2 mol of KOH
C. 1 mol of (COOH$)_{2}$ and 2 mol of KOH
D. 1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ and 1 mol of KOH

DSEI2_19
In which of the following processes would a coloriess gas evolve?
(1) Magnesium is added to dilute sulphuric acid.
(2) Ammontum chioride is healed with calcium hydroxide.
(3) Water is added to a solid mixture of ciltic acid and sodium hydrogencarbonate.
A. (1) and (2) only
B. (I) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE12_20
Which of the following methods can be used to distinguish between $\mathrm{ZnCl}_{2}(a q)$ and $\mathrm{CaBr}_{2}(\mathrm{aq})$?
(i) Adding $\mathrm{NH}_{3}(\mathrm{aq})$
(2) Performing flame test
(3) Evaporating to dryness
A. (1) and (2) only
B. (1) and (3) only
A. (1) and (2) only
D. (1), (2) and (3)

DSEI3_03
Solid \mathbf{Y} is soluble in cold water. When an aqueous solution of \mathbf{Y} is added separately to sodium hydroxide solution and to acidified silver nitrate solution, a white presipitate is formed in both cases. Which of the following compounds might Y be?
A. Ammonium carbonate
B. Zinc carbonate
C. Lead(II) chloride
D. Magnesium clilorido

DSE13 08
Which of the following reaction routes can best be used to prepare barium sulplate from barium carbonate?
$\mathrm{A}, \quad \mathrm{BaCO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{nq})} \mathrm{BaSO}_{4}(\mathrm{~s})$
B. $\mathrm{BaCO}_{3}(\mathrm{~s}) \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{BaSO}_{4}(\mathrm{~s})$
C. $\mathrm{BaCO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{HCl}(\mathrm{aq})^{(}} \mathrm{BaCl}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})} \mathrm{BaSO}_{4}(\mathrm{~s})$
D. $\mathrm{BaCO}_{3}(\mathrm{~s}) \xrightarrow{\text { sone. } \mathrm{HCl}^{2}} \mathrm{BaCl}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})} \mathrm{BaSO}_{4}(\mathrm{~s})$

DSEI3_09
Which of the following statements about potassium hydroxide solution is INCORRECT?
A. When potassium hydroxide solution is added to iron(Im) sulphate solution, a dirty green precipitate is formed.
B. When polassium hydroxide solution is heated with ammonium chforide solution, ammonia gas is ifiberated.
C. Dilute potassium hydroxide solution contains $\mathrm{K}^{+}($aq $)$ions, H^{+}(aq) and $\mathrm{OH}^{-}(\mathrm{aq})$ ions.
D. Concentrated potassium hydroxide solution is corrosive

DSE13 10

Consider the four solution $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} listed below:
W: $0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HNO}_{3}(\mathrm{aq})$
X: $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
Y: $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}(\mathrm{aq})$
Z: $0.10 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KOH}(\mathrm{aq})$
Which of the following represents the four solutions arranged in increasing order of $\mathrm{p} H$?
A. W, X, Y, Z
B. $\mathrm{W}, \mathrm{X}, \mathrm{Z}, \mathrm{Y}$
C. X, W, X, Z
D. X, W, Z, Y

DSE13_11
Which of the following pairs of aqueous sofutions, when mixed, would give a precipitate?
A. Lead(II) nitrate and anmmonia
B. Copper(il) sulphate and sodian nitrate
C. Calcium chloride and sodium nitrate
D. Iron(II) sulphate and acidified potassium dichromate

DSE14. 06
$50.0 \mathrm{~cm}^{3}$ of $0.6 \mathrm{M} \mathrm{FeSO}_{4}(\mathrm{aq})$ is mixed with $150.0 \mathrm{~cm}^{3}$ of $0.2 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)$)(aq). What is the conccutration of $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ ions in the resulting mixture?
A. 0.3 M
B. $\quad 0.4 \mathrm{M}$
C. $\quad 0.6 \mathrm{M}$
D. 0.8 M

DSE14_07
Which of the following pairs of aqueous solutions, whon mixing, would thave the lowest efectrical conductivily?
A. $20.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{HNO}_{3}$
and
B. $20.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$
C. $20.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
D. $20.0 \mathrm{~cm}^{3}$ of 0.1 M HCl and and $20.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{Ba}\left(\mathrm{OH}_{2}\right.$ and $\quad 20.0 \mathrm{~cm}^{3}$ of 0.1 MNH and $\quad 20.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)

DSE14_13
Which of the following gases, after dissolyed in $1 \mathrm{dm}^{3}$ of water, would give a solution with the higlest pH ?
A. $0,002 \mathrm{~mol}$ of NO_{2}
B. 0.002 mol of SO_{2}
C. 0.002 mol of NH_{3}
D. 0.002 mol of HCl

DSE14_15

Which of the following hazard waming labeis should be displayed on both the reagent bottle storing concentrated sulphuric acid and the reagent bottle storing concentrated hydrochloric acid?
(1)

(2)

A. (I) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE14_21
Which of the following processes would show a blue color?
(1) adding litmus to $\mathrm{NaOH}(\mathrm{aq})$
(2) bixing CuSO (s) and $\mathrm{NH}_{3}(\mathrm{aq})$
(3) $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(\mathrm{aq})$ and $\mathrm{FeCl}_{2}(\mathrm{~Bq})$
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE15_01
Which of the following statements is correct?
A. Ali aqueous solutions contain $\mathrm{H}^{+}(\mathrm{aq})$ ions.
B. The pH of all acid solutions is greater than zero.
C. Allacidic compounds contain hydrogen as their constituent elements.
D. A'corrosive' hazard warning label must be displayed on all reagent bolles containing acid solution.

DSE15_04
Which of the foilowing salts CANNOT be prepared from the reaction of a metal with a dilute acid?
A. Zinc sulphate
B. Iron(II) chloride
C. Calcium chloride
D. Copper(11) sulphate

DSE15_08

In an experiment, $25.0 \mathrm{~cm}^{3}$ of $\mathrm{HCl}(\mathrm{aq})$ is measured with apparalus X and is placed in apparatus Y The $\mathrm{HCl}(\mathrm{aq})$ in Y is then titrated with a standard $\mathrm{NaOH}(\mathrm{aq})$. Which of the following combinations is correct?

X	Y
Measuring cylinder	Beaker
Measuring cylinder	Conical flask
Pipette	Beaker
Pipette	Conical flask

DSE1509
In an experiment to prepare calcium sulphate, excess dilute sulphurio acid is added to $10.0 \mathrm{~cm}^{3}$ of $0 \mathrm{~mol} \mathrm{dm}^{-3}$ calcium nitrate solution. Which of the following is the theoreticnl mass of the calcium sulphate obtained? (Relative atomic masses: $0=16.0, \mathrm{~S}=32.1, \mathrm{Ca}=40.1$)
A. 0.68 g
B. $\quad 1.36 \mathrm{~g}$
C. $\quad 2.72 \mathrm{~B}$
D. 4.08 g

DSEI6 06
The pH of a sample of supthuric acid is $2.6 .100 \mathrm{~cm}^{3}$ of this sample is mixed with $100 \mathrm{~cm}^{3}$ of water.
What is the pH of the resulting mixture?
A. 5.8
B. 2.9
C. 2.6
D. 1.3

DSE16_07
Consider the following experinental set-up
mixhro of zinc powder and

A colorless gas is given out when water is dropped to the mixture. Which of the following statements is correct?
A. Oxalic acid ionizes in water to give hydrogen ions.
B. Zinc ionizes in water to give zinc iots.
C. Water reacts with oxalic acid to give the colorless gas.
D. Water reacts with zinc to give the colorless gas.

DSE16_08

Which of the following pairs of substances, when mixed together, can be used to prepare copper(II)
sulplate crystals?
A. $\mathrm{CuO}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{nq})$
B. $\mathrm{CuO}(\mathrm{s})$ and $\mathrm{MgSO}_{4}(\mathrm{aq})$
C. $\mathrm{Cu}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
D. $\mathrm{Cu}(\mathrm{s})$ and $\mathrm{MgSO}_{\mathrm{s}}(\mathrm{aq})$

DSE16_18
Which of the following slatements concerning vinegar is/are correct?
(1) The process of forming hydrogen tons in vinegar is reversible.
(2) Neutralization occurs when sugar is added to vinegar.
(3) The pH of vinegar used in kitchen is around 1 .
A. (1) only B. (2) only
C. (l) and (3) only
D. (2) and (3) orly

DSE16_19

The hazard warning label below is displayed on a bottle containing chemical Z :
Which of the following chemicals may Z be?
(1) Sodium
(2) Trichioromethan
(3) Concentrated aqueous ammonia
A. (1) only
B. (2) only
C. (I) and (3) only
D. (2) and (3) only

DSE16_22
Which of the following processes are exothermic?
(1) Placing calcium oxide in water
(2) Placing a zine strip in a copper(ll) suiphate solution
(3) Passing hydrogen clatoride gas into a sodjum hydroxide solution
A. (1) and (2) only

B, (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE17_02

Which of the following slatements conserning hydrochioric acid is NCORRECT?
A. It is a mineral aoid.
B. It completefy ionizes in water.
C. It contains aqueous hydrogen ions.
D. It does not coutain aqueous bydroxide ious.

DSE17 06
Which of the following is NOT the appropriate substance for preparing magnesium sulphate by directly mixing it with dilute sulpharic acid?
A. Magnesium metal
B. Magnestum oxide
C. Magnesimm nitrate
D. Magnesium carbonate

DSE17_10
Calcium phosphate is insoluble in water. What is the theoretical number of moles of calcim phosphate oblained when $100.0 \mathrm{~cm}^{3}$ of $0.30 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CaCl}_{2}(\mathrm{aq})$ is mixed with $300.0 \mathrm{~cm}^{3}$ of 0.10
nol $\mathrm{dm}^{-3} \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{Aq})$?
A. $\quad 0.010$
B. 0.015
C. 0.020
D. 0,030

DSE17_11
Which of the following statements concerning zine is correct?
A. It foms a soluble oxide when placed in $\mathrm{NH}_{3}(\mathrm{aq})$.
B. It acts as a reducing agent when placed in $\mathrm{HCl}(\mathrm{ag})$.
C. It undergoes oxidation when placed in $\mathrm{MgCl}_{2}(a q)$.
D. It forms an acidic solution when placed in hot $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}$).

DSE17_17
Which of the following statements concerning $\mathrm{NaOH}(a q)$ and $\mathrm{NH}_{3}(\mathrm{aq})$ is/are correct?
(1) Both of them can react with MgCl_{2} (ag).
(2) Both of them can form a deep blue solution with $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$.
(3) $\mathrm{NaOH}(a q)$ can react with $\mathrm{CH}_{3} \mathrm{COOH}$, but $\mathrm{NH}_{3}($ aq $)$ cannot.
A. (I) ouly
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE17_21
Which of the following can distinguish a sample of $\mathrm{AgNO}_{3}(\mathrm{aq})$ from a sample of $\mathrm{NaNO}_{3}(\mathrm{aq})$?
(1) Adding $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)$ (aq) to the samples.
(2) Adding $\mathrm{HCl}(\mathrm{aq})$ to the samples
(3) Adding $\mathrm{KOH}(a q)$ to the samples
A. (1) and (2) ouly
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE18 06
Dilute sodium hydroxide solution is added to a 0.1 M solution until in excess, Which of the following combinations is correct?

Solution	Observation
Zinc sulplate	White precipitate formed
Calcium nitrate	White precipitate formed
Lead(II) nitrate	Yellow precipitate formed
Iron(III) sulphate	Dirty green precipitate formed

DSEI8_10
Which of the following reagents does NOT react with copper?
A. $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$
B. $2 \mathrm{MHNO}_{3}$
C. $16 \mathrm{MH}_{2} \mathrm{SO}_{4}$
D. $16 \mathrm{M} \mathrm{HNO}_{3}$

DSE18_11

Consider the solutions $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z below:
W $100 \mathrm{~cm}^{3}$ of $0.20 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$
X $50 \mathrm{~cm}^{3}$ of $0.20 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$
$100 \mathrm{~cm}^{3}$ of $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})$

Z	$50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{M} \mathrm{NaOH(aq)}$

Which of the following statements is correct?
A. The pH of Y equals $-\log 0.2$.
B. Mixing W and Z gives a neutral sofution.
C. The pH of the mixture of W and X is lower than that of W
D. The pH of the mixture of W and X is lower than that of the mixture of X and Y.

DSE18_24

Consider the following statements and choose the best answer:

1^{11} statement

To completely neutralize 1 mole of $\mathrm{HCl}(a q)$, $\quad \mathrm{NH}_{3}(a q)$ is a weaker alkalit than $\mathrm{KOH}(\mathrm{aq})$. the number of noles of $\mathrm{NH}_{3}(\mathrm{aq})$ needed is more than the number of moles of $\mathrm{KOH}(\mathrm{aq})$ needed

DSE19_04
$25.00 \mathrm{~cm}^{3}$ of $0.051 \mathrm{M} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})$ can completely neutralise $22.18 \mathrm{~cm}^{3}$ of $0.115 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$. What is the basicity of the acid $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$?
A. 1
B. 2
C. 3
D. 4

DSE19 05
$25.00 \mathrm{~cm}^{3}$ of 0.50 M lead(II) nitrate solution is mixed with $50.00 \mathrm{~cm}^{3}$ of 1.00 M sodium chloride sofution. Insoluble leadf(II) chloride is formed during mixing. What is the concentration of Cl^{-}(aq) in the mixture?
A. $\quad 0.33 \mathrm{M}$
B. 0.50 M
C. $\quad 0.75 \mathrm{M}$
D. 1.50 M

DSE19_16
Which of the following chemicals can be used to distinguislo concentrated hydrochloric acid from concentrated nitric acid?
(l) Sodium carbonate solid
(2) Silver nitrate solution
(3) Copper metal
A. (1) only
B. (2) only
C. (I) and (3) only
D. (2) and (3) onty

DSE19_21
The diagram below shows a common glass apparatus:

Which of the following statements concerning the fransfer of an acid using this apparalus are INCORRECT?
(1) The bulb should be firmly held in the hand when being filled with acid
(2) Exactly $20.00 \mathrm{~cm}^{3}$ of acid can be transferred using this apparatus.
(3) The apparatus should first be rinsed by distilled waler, then immediately followed by the transfer of acid.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3) only

DSE19_20
Aqueous calcium hydroxide can be used to
(1) neutralise acidic substances in soil.
(2) distinguish carbon dioxide from carbon monoxide.
(3) remove sulphur dioxide from a polluted air sample.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3) ouly

DSE2020:
4. Which of the following combinations would give a brown gas whea puting $X \mathbb{X}$ in Y ?

	X
A.	magnesium
B.	magnesium
C.	magnesium oxide
D.	magnesium oxide

rentrated nifric acid concentrated sulptharic acid concentrated sulpharic a concentrated nitric acid
11. A feaction occurs when water is dropped into the mixture in the setrip below. A colourless gas is given out.

What is the role of water in this reaction ?
A. Water reacts with sodium cartonate to give the colouriess gas. Water reacts with cirric acid to give the colouriess gas. Water is a medium for the formation of carbonate ions from sodum carbonate. Water is a medium for the formation of hydrogen ions from cirtic acid
11. A reaction occurs wher water is dropped into the mixture in the set-up below. A colourless gas is given out.

What is the role of water in this reaction?
A. Water reacts with sodium carbonate to give the colourlass gas
B. Water reacts with citric tcid to give the colourless gas.
C. Water is a medium for the formation of carbonate ions from sodium carbonate
D. Water is a mediun for the formation of hydrogen fons from citric acid.
17. Which of the following ways is / are acceptable in the storage of the chemical concerned?
(1) Store concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1) in a copper container.
(2) Store concentrated AgNOy) (aq) in a brown glass comtainer.
A. (i) only
C. (1) and (3) only
D. (2) and (3) only
18. Which of the following steps can be involved in preparing copper(II) chioride crystals?
(1) Add $\mathrm{CuCO}_{3}(\mathrm{~s})$ to $\mathrm{HCl}(\mathrm{aq})$.
(2) Add $\left.\mathrm{CuHO}_{3}\right)_{2}(\mathrm{~s})$ to NaCl(aq).
(3) $\mathrm{Add} \mathrm{Cu}(\mathrm{s})$ to $\mathrm{HCl}(\mathrm{ad})$
A. (1) only
C. (1) and (3) only
D. (2) and (3) only

DSE2021:
6. Refer to the information in the table below :

Solution	Contents	pH
X	$50 \mathrm{~cm}^{3}$ of $0.001 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$	3.0
Y	$25 \mathrm{~cm}^{3}$ of $0.001 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	2.7
Z	$50 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{CH}_{5} \mathrm{COOH}(\mathrm{aq})$	2.9

Which of the following statements is correct ?
A. $\quad X$ has a higher pH than Z because HCl is a stronger acid than CH COOH .
X has a lower pH than X because the volume of $\mathrm{H}_{2} \mathrm{SO}$. (aq) is smaller than that of
C. $\quad \mathrm{Y}$ has a lower pH than X because $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong dibasic acid but HCl is a strong
menobasic acid.
D. $\quad Y$ has a lower pH than Z because the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is lower than that of $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
5. $\quad 15.0 \mathrm{~cm}^{3}$ of $0.20 \mathrm{M} \mathrm{Ba}^{2}\left(\mathrm{NO}_{2}\right)$ (aq) is added to $25.0 \mathrm{~cm}^{3}$ of $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$. After the reaction is completed, which of the following ions has the highest concentration in the mixture?

A.	SO_{2}^{2} (aq)
B.	$\mathrm{NO}^{2}(\mathrm{aq})$
C.	Ba^{2} (aq)
D.	$\mathrm{Na}^{2}(\mathrm{aq})$

13. W, X, Y and Z, each represents one of the following solutions

$$
\begin{array}{llll}
\mathrm{HCl}(\mathrm{aq}) & \mathrm{NaOH}_{(a q)} & \mathrm{MgCl}_{2}(\mathrm{aq}) & \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})
\end{array}
$$

Given that:

- Mixing W and \mathbf{X} gives a white precipitate.

Mixing W and Y gives a white precipitate.
Mixing W and Z gives a clear colouriess solution
What is Z ?

```
HCl(ag)
NaOH(aq)
MgCl(aq)
```

B.	$\mathrm{NaOH}^{2}(\mathrm{aq})$
C.	$\mathrm{MgCl}_{2}(\mathrm{aq})$
D.	$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

16. A sample of sulphuric acid was completely neutratised by $25.0 \mathrm{~cm}^{3}$ of 0.200 M potassium hydroxide solution. The satt solution obtained was then made up to $100.0 \mathrm{~cm}^{3}$ with dioionised water. What is the conceniration of the resulting sali solution
```
A. }\quad0.0125\textrm{M
B. }\quad0.0250\textrm{M
```

$\begin{array}{ll}\text { c. } & 0.0375 \mathrm{M} \\ \text { D. } & 0.0500 \mathrm{M}\end{array}$
24. Conside: the following starements and choose the best answer:

A. Both statements are true and the 2nd statenient is a corTect explanation of the ist tratement.
C. The 1 st satement is faise but the 2nd statement is true.
D. Both staremenss are fais.

structural Questions

E90_02b

Two different samples of calcium carbonate (\mathbf{A} and \mathbf{B}), each weighing 0.8 g and containing inert imparities, were allowyed to react wilh excess hydrochloric acid under same laboratory conditions, The volumes of carbon dioxide gas evolved with time are shown in the graph below

(i) Draw a diagram to show how the above experiment can be performed in the laboratory.
(ii) Explain why the slopes of the curve for sample \mathbf{A} is steeper at \mathbf{X} than at \mathbf{X}.
(iii) From the two curves, deduce TWO differences between sample A and sample B.

CE90 03b

The formula of a weak alkanoic acid can be represented by

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{3}+\mathrm{CO}_{2} \mathrm{H}$ (where n is an integer)

A sample of the alkanoic acid weighing 0.355 g was dissolved in about $20 \mathrm{~cm}^{3}$ of water in a conical flask. The solution was then titrated against a 0.18 M sodium hydroxide solution. A total of 22.40 cm^{3} of the alkali was required for complese neutralization.
(i) Explain the meaning if the term 'weak acid'
(ii) Describe how the end-point in this lifration can be determined.

(iii) Calculate

(1) the number of moles of sodium hydroxide used for the titration.
(2) the relative molecular mass of the alkanoic acid.

CE91 02a

A student wisted to find out which of the two commercial brands of vinegar, A and B, was the better buy, i.e. of lower price per gram of ethanoie acid ($\mathrm{CH}_{3} \mathrm{COOH}$)
The following table listed some of the information about these two brands:

Brand	Price	Volume of vinegar	Concentration of ethanoic acid
A	$\$ 3.00$	$250 \mathrm{~cm}^{3}$	50 g dim
B	$\$ 5.00$	$500 \mathrm{~cm}^{3}$	UNKNOWN

The student carried out a fitration experiment to determine the concentration of ethanoic acid in Brand D as follows:
$25 \mathrm{~cm}^{3}$ of the vinegar was first diluted to $250 \mathrm{~cm}^{3}$ with distilled water. $25.0 \mathrm{~cm}^{3}$ portions of the diluted solution were then tilrated against 0.10 M sodum hydroxide solution, using a suitabie indicator, untll the end-point was reached.

The following results were obtained:

Titration/Burelte reading	1	2	3	4
Final reading $\left(\mathrm{cm}^{3}\right)$	25,50	25.70	26.20	25.90
Initinl reading $\left(\mathrm{cm}^{3}\right)$	0.00	1.00	1.30	1.10

Describe, giving the nomes of the apparatus used, thow $25.0 \mathrm{~cm}^{3}$ of the vinegar should be diluted to $250.0 \mathrm{~cm}^{3}$.
(ii) Suggest a suitable indicator for this titration and state its color change at the end-point.
(iii) Based on the titration results, calculate a reasonable average for the volume of the sodium hydroxide solution used.
(iv) Write the equation for this reaction. (Ionic equation will not be accepted.)
(v) Calculate the molarity of ethmoic acid in Brand B .
(vi) Show by calculation which brand of vinegar is the belter buy. (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0,0=16.0$)

CE92_01a
A student tried to prepare a sample of a solid salt by reacting copper(II) oxide with sulphuric acid in the laboratory as shown in the diagram on the right.

The studen wrote the following procedure of the experiment in her notebook:
I. Excess copper(II) oxide was added to $50.0 \mathrm{~cm}^{3}$ of 2.0
11. M sulphuric acid in a beaker.
ill. The mixture was heated for 2 minutes, and was stirred
IV. continuously during this time.

The remaining copper(II) oxide was filtered off.
The fillerate was allowed to cool for one day.
(i) Referring to the above diagran, write down TWO aspects that are considered UNSATE in the laboratory.
(ii) (1) Name the sall the stadent tried to prepare.
(2) Calcutate the theoretical mass of the salt that can be obtaited.
(iii) Explain why the student heated the reaction mixture in step II.
(iv) The student followed exactly the procedure written her notebook, but did not obtain any SOLID salt after one day. Suggest an explanation.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{~S}=32.0, \mathrm{Cu}=63.5$)

CE93_01b
Liquid wastes disclarged from some factories are acidic and need to be neutralized before discharging into the sea. A certain Eaclory used slaked lime (calcium hydroxide) io neutralize its Higuid waste, which consisted of 0.5 Mhydrochloric acid, discharging at a rate of $20 \mathrm{dm}^{3}$ per minete.
(i) Why are the liquid wastes neutralized before discharging into the sea?
(ii) Write an equation for the reaction between hydrocklotic acid and slaked lime.
(iii) Calculate the mass of slaked lime reguired per minute to neutralize the acid present in the liquid waste.
(iv) Although slaked lime is cheaper, fectories nowadays use sodium carbonate instead of slaked lime to neuralize their acidic wastes. Suggest a reason.
(Relative atomic masses: $\mathrm{H}=1.0 ; 0=16.0 ; \mathrm{Ca}=40.0$)
(6 marks)
CE93_04b
To determine the percentage by mass of calcium carbonte in egg stells, a student added $10,0 \mathrm{~cm}^{3}$ of 2 M hydrochloric acid to 0.3 g of egg shells in a container. After 30 mintues, all the egg shells dissolved and $67 \mathrm{~cm}^{3}$ of carbon dioxide were collected at room temperature and pressure.
(i) Write an equation for the reaction between calcime carbonate and hydrochtoric acid.
(ii) The rate of reaction between the egg shells and 2 M hydrochloric acid was slow. Suggest TWO methods to increase the rate of this reaction without using other chemicals. Explan your answer in each case.

CE94_01
The table below lists some information about three metals X, Y and Z.

Metal	\mathbf{X}	\mathbf{X}	\mathbf{Z}
Alomic number	12	20	-
Action of cold water	No apparent change	A colourless gas slowly cvolves	No apparent change
Action of $0.1 ~ M$ lydrochloric acid	A colourless gas evolves	-	No apparent change

(a) To which group in the Periodic Table does Y belong?
(b) (i) Write an equation for the reaction between X and 0.1 M hydrochloric acid, (An ionic equation will NOT be accepted for this question.)
(ii) Draw electronic stractures for the TWO products formed in (i) above, showing electrons in the outernost shell ONLY.
(c) What would be obscrved when Y is added to 0.1 M hydrochloric acid?
(d) Based on the results of the reaction give in the above table, arrange the three metals in descending order of reactivity. Explain your answer.

CE94_05a
A donestic drain cleaner mamed "RAINBOW" contains concentrated sulphuric acid as the active ingredient. A student carried out the following experiment to determine the concentration of sulphuric acid in "RAINBOW".
$1.0 \mathrm{~cm}^{3}$ of "RAINBOW" was diluted to $500 \mathrm{~cm}^{3}$ with distilled water, $25.0 \mathrm{~cm}^{3}$ of the diluted solution were measured and transferred to a conical flask. The solution in the flask required $18.2 \mathrm{~cm}^{3}$ of 0.10 M sodium hydroxide solution for complete neutralization.
(i) Name the apparatus used to neasure $25.0 \mathrm{~cm}^{3}$ of the diluted solution.
(ii) Calculate the molarity of sulphuric acid in "RANFBOW".
(iii) Suggest ONE disadvantage of using "RAINBOW" for cleaning drains.
(iv) State ONE safety precaution needed when using "RANBOW". Explain your answer.
(6 marks)

CE95_07

Effervescent Calcium	
Ench bolle contains to tablets.	
Exah tablet contains :	
Cnlcium carbonate	625 mg
Vitamin C	1000 mg
Citric ncid	1350 mg
Dosage: 1 tablet daily	
Administration: Dissolve one tablel in a glass of water.	
Waming : (1) Kceps out of reach of children. (2) Xeер	

(i) Effervescence occurs when a tablet of 'Effervescent Calcium' is added to water. Based on the information given on the label, explain why effervescence occurs. Write the ionic equation for the reaction that occurs.
(iii) On the label, some words are missing in the second warning statement. Complete the second waming stalemeat, veghining with the word 'keep'. Explain your answes:

CE96_09b
A student carried ouf a copper-plating experiment in the laboratory using the sel-up shown below:

In a copper-plating factory, the waste water is treated with sodium hydrexide solution to remove the copper(li) tons present before discharge.
(1) Suggest TWO reasons why it is necessary to remove the copper(II) ions from the waste water before discharge.
(2) $20.0 \mathrm{dm}^{3}$ of a sample of waste water requires $3.5 \mathrm{dm}^{3}$ of 8.0 M sodium hydroxide solution for complete removal of the copper(II) ions present.
Catculate the concentration, in mol dm ${ }^{-3}$, of copper(II) ions in the sample.

CE97_03
(a) Suggest ONE method to deternine the pH of an aqueous solution.
(b) Arrange the following substances in the order of increasing pH and explain your answer. IM ethanoic acid, IM hydrochloric acid, 1 M sulphuric acid

CE97 07a

Malachite is a mineral containing copper(II) carbonate and copper(II) hydroxide. It is insoluble in water but reacts with dilute sulphuric acid, The procedures for preparing copper(II) sulphate crystals from malachite is as follows:

Step 1	Pour $50 \mathrm{~cm}^{3}$ of 2 M sulphuric acid in a beaker and then warn the acid.
Step 2	Add small pertions of powdered malachite to the warm acid while constantly stirring, until effervescence stops and some powdered malachite renains in the beaker.
Step 3	Remove the remaining powdered malachite from the solution.
Step 4	Evaporate the solution slowly to obtain copper(1) sulphate crystals.

(i) Write a chenical soqu:on slowly to obtain copper(II) sulphate crystals.
(i) Why is it necessary to add powdered malachite until some of it remains in the beaker?
(iii) Draw a labelled diagram to show how the remaining powdered malachite can be renoved from the solution.
(iv) Calculate the theoretical mass of copper(II) sulphate crystals, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, that can be oblained.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{~S}=32.1, \mathrm{Cu}=63.5$)

CE98_06a
(i) A student prepared sodium nitate solution by reacting 1 M sodium hydroxide solution with dilute nitrie acid. The student carried out a titration to determine the amount of dilute nitric acid required to react with a known volune of 1 M sodium hydroxide solution.
(1) Write the chemical equation for the reaction.
(An ionic equation will NOT be accepted for ulis question.)
(2) Draw a labelled diagram for the set-tup of the titration.
(3) Phenolphthatein can be used to determise the end point of the titration, State the colont change at the end point.
(4) Suggest how the student can prepare a sodium nitrate solution using the titration results.
(ii) Sodium nitrate is a nittogenous fertilizer.
(1) Calculate the percentage by mass of nittogen in sodium nitrate.
(2) Explain why nitrogen is essential for the growth of plants.
(Relative atomic masses: $\mathrm{N}=14.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)

CE99_02

For each of lhe following experiments, state ONE observable change and write a chemical equation for the reaction involved.
(a) Dilute nitric acid is added to magnesiun carbonate powder in a beaker.

CEOO 02

The table befow lists some information about four elements, $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z :

Element	Atomic number	Relative atomic number
W	16	32.1
X	18	39.9
Y	19	39.1
Z	20	40.1

(a) What is the meaning of the term 'relative atomic mass'?
(2 marks)
(b) State, with explanation, which of the above clements
(i) should be stored under paraffin oil.
(ii) is used to fill a light bulb.
(iii) forms an oxide which dissolves in water to give a solution with pH less than 7 .
(6 narks)

CEOI_02

For each of the following experiments, state an expected observation and write a chentical eqpation for the reaction involved.
(a) Adding dilute lydrochloric acid to zine granules.
(b) Adding sodium hydroxide solution to iron(II) sulphate solution.

CEOL_04
A small piece of sodium is added to a tall jar contaiwing two layers of liquids, paraffin oil and water with a ferw drops of plenolphthalein, as shown in the diagram below. Describe and explain all expected observations.
(Density of sodiun $=0.97 \mathrm{~g} \mathrm{~cm}^{-3}$, density of paraffin oil used $=0.82 \mathrm{~g} \mathrm{~cm}^{-3}$)

CE01_06b

In an experiment, 0.933 g of a sample of washing soda $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} * \mathrm{xH}_{2} \mathrm{O}\right)$ was dissolved in some distilled water. The solution was titrated against 0.258 M hydrochloric acid with methyl orange as indicator $25.4 \mathrm{~cm}^{3}$ of the acid was required for the completion of the following reaction:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

(i) From the titration result, calculate the number of moles of sodium carbonate in the sample of washing soda.
(ii) Deduce the value of x in the formula of the washing soda.
(iii) State the colour change at the end-point of the titration.
(iv) Briefly describe the procedure that should be followed to prepare a burette containing the hydrochloric acid for the titration.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=[6.0, \mathrm{Na}=23.0$)

CEO2_01c
Both ammonium dihydrogenphosphate and ammoniun sulphate are nitrogenors fertilizers.
(i) Calculate the percentage by mass of nitrogen in ammonium sulphate.
(ii) The use of ammonium sulphate as a fertilizer adds acidity to the soil. If the soil is too acidic, it is not suitable for plant growth. Suggest ONE substance that is commonly used by farmers to reduce soil acidity, Explain your answer.
(4 marks)

CE02 06

Magnesitun can be extracted from sea water which contains magnesium ions. The extraction of magnesium from sea water involves threc stages:
Stage 1: Add siaked lime to sea water to precipitate magnesium ions as magnesium hydroxide.
Stage 2: Heat the magnesiun hydroxide obtained in a stream of hydrogen chloride gas to give magnesium chloride.
Stage 3: Extract magnesium by electrolysis of the molten magnesium chloride.
(i) What substance is mainly present in slaked lime?

Write a chemical equation, with state symbols, for the reaction in Stage 2.
(iii) Explain why moten magnesium chloride can conduct electricity.

CE02_07a

Calcite is a mineral which contains mainly calcium carbonate. An experiment, consisting of the following five stages, was conducted to deternine the percentage by mass of calcium carbonate in a sample of calcite.
Slage 3: Weigh the sample. Add dithte nitric acid to it until the acid is in excess. Stage 2: Filter the mixture obtained in Stage 1 to remove any undissolved solid Shage 3: Add excess sodium sulphate solution to the filtrate to precipitate out calcium sulphate. Slage 4: Collect the calcium sulphate precipitate and wast it with distilled water
Stage 5: Allow the calcium sulphate to dry and weigh it.
(i) Write a chemical equation for the reaction of calcium carbonate with dilute nitric acid Suggest how one can know that excess acid has been added in Slage 1 .
(ii) Draw a labelled diagram of the set-up used in the filtration process in Sfage 2
(iii) Write the ionic equation for the reaction in Slage 3.
(iv) Explain why it is necessary to wash the precipitate with distilled water in Slage 4.
(v) The results obtained in the experiment are listed below:

Mass of the calcite sample
 $=7.98 \mathrm{~g}$
 Mass of the calcium sulphate obtained $=10.52 \mathrm{~g}$

(1) Calculate the percentage by mass of calcium carbonate in the sample of calcite.
(2) State ONE assumption in the caiculation.

Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{~S}=32.0, \mathrm{Ca}=40.0$)

CE02_07c

Ammonia was once used to detect the leakage of chlorine in chemical plants. If there was a leakage, white fumes would be observed. The word equation below represents the reaction of cillorine with ammonia:
chlorine + ammonia \longrightarrow ammonium chloride + nitrogen
(i) Transcribe the word equation into a chemical equation.
(ii) Suggest what the white himes might have been.

C02 09a

Ammonia is a weak alkali. It is used as an active ingredient in domestic glass cleaners.
(i) (1) Write a clemical equation to represent the ionization of anumonia in water.
(2) Explain why an alkatine solution can help remove oily dirt on glass.
(ii) Suggest, with explanation, a precaution mecessary when using such glass cleaners.
(4 marks)

CE02_09b

In an experiment to determine the concentration of anmonia in a sample of glass cleaner, $25.0 \mathrm{~cm}^{3}$ of the sample was diluted to $250.0 \mathrm{~cm}^{3}$ in a volumefric flask. $25.0 \mathrm{~cm}^{3}$ of the diluted sample was transferred to a conical flask and was then titrated against 0.23 M hydrochloric acid. $28.7 \mathrm{~cm}^{3}$ of the acid was required to reach the end-point.
(i) Slate the liquid that should be used to citse the following pieces of apparatus used in this experiment.
(1) Volumetric flask.
(2) Conical flask.
(ii) Name the apparatus that should be used to transfer $25.0 \mathrm{~cm}^{3}$ of the diluted sample to the consical flask.
(iii) Calculate the concentration, in mol dn^{-3}, of ammonia in the sample of glass cleaner.
(You may assume ilat ammonia is the only substance in the sample that reacts with hydrochloric acid.)

CE03_08b
An experiment was carried out to determine the concentration of a nickel(II) sulphate solution. The experiment consisted on the foltowing three stages:
Stage I: $25.0 \mathrm{~cm}^{3}$ of 0.503 M sodium hydroxide solution was added to $25.0 \mathrm{~cm}^{3}$ of the nickel(II) sulphate solution to precipitate out nickel(II) hydroxide.
Stage 2: The mixture obtained in Stage 1 was fltered and the residue was wasied thoroughly with distilled water.
Stage 3: The excess alkali in the filtrate was titrated against 0.251 M hydrochloric acid with mettyl orange as indicator. $18.5 \mathrm{~cm}^{3}$ of the acid was required to reach the end-point.
(i) Write the ionic equation fer the reaction in Stage 1.
(ii) State the colour change at the end-point of the titration in Stage 3.
(iii) (I) Based on the tilcation result in Stage 3, catculate the number of noles of hydroxide lons present in the filtrate.
(2) Calculate the number of moles of sodium lyydroxide ihat was added in Stage I.
(iv) Why was it necessary to wash the residuc thoronglly in Stage 2 ?

CEO4_02b
For eadh of the following pairs of substances, suggest a chemical lest to distinguish one substance from the other and state the expected observations.
(b) ammonium chloride atd polassium chiloride.

CE04_07a

An experiment, consisting of the three stages listed below, was carried ont to determine the basicity of a solid acid.
Stage 1: 1.15 g of a sample of the acid was weighed.
Stage 2: The sample of acid was dissolved ins sone distilled water and then made up to $250.0 \mathrm{~cm}^{3}$ will distilled water.
Stage 3: $25.0 \mathrm{~cm}^{3}$ of the solution obtained in Stage 2 was titrated against 0.100 M sodium hydroxide solution using phenolphthalein as indicator. $25.7 \mathrm{~cm}^{3}$ of the sodium lyydroxide solution was required to reach the end point.
(i) Briefly describe how the $250.0 \mathrm{~cm}^{3}$ solution was made up in Stage 2.
(ii) State the colour clange at the end point of the titration in Slage 3.
(iii) (1) Calculate the number of moles of sodium hydroxide used in the titration.
(2) Given that the molar mass of the solid acid is 90.0 g . Calculate its basicity.

CE05 03
A student proposed the following methods to accomplish three tasks, (a), (b) and (c). The proposed methods were all considered inappropriate.
(a) Tosk: To neutralize acidic soil in a flower bed.

Proposed method: Add solid sodium hydroxide to soil.
(i) Siate ONE renson why the method is happropriate.
(ii) Suggest an appropriate method to accomplisik the task
(b) Task: To prepare hydrogen gas from an acid. Proposed method: Add copper to dilute hydrochitorie acid.
(i) Sate ONE reason why the method is inappropriate.
(il) Suggest an appropriate method to accomptish the task
(c) Task: To dilute concentrated sulphuric acid with water.

Proposed method: Add water to concentrated sulphuric acid and stir the mixture.
(i) State ONE reason why the method is inappropriale.
(ii) Suggest an appropriate method to accomplish the task

CE05 10
The information below was found on the label of a brand of effervescent vitamin C tablets:
Each tablet contains 1000 mg of vitamin C .
Other ingredients: sodium hydrogencarbonate, citric acid, sugar and colourant
(a) With the help of a chemical equation, explain why effervescence occurs when a tablet of the effervescent vitamin C is added to water.
(2 marks)
(b) An experiment was carried out to study the action of water on a lablet of the effervescent vitamin C using the set-up as shown below. The graph shows the results obtained in the experiment.

(i) Find, from the graph, the mass of gas liberated from the reaction of the tablet with water. (You may assume that the gas liberated is NOT soluble in water.)
(ii) At the end of the experiment, the sodium hydrogencarbonate in the fablet had been conpletely used up. Calculate the mass of sodium hydrogencatbonate present in the tablet.
(iii) Suggest ONE advantage of using a data-logger in this experiment.
(iv) The experiment was repeated using warm water inslead of cold water. Sketeh, on the same graph, the results that would be ebtained in the repated experinent.

CE06_04

An aqueous solution V is known to contain the following four cations:
$\mathrm{NH}_{+}{ }^{+}(\mathrm{aq}), \quad \mathrm{K}^{+}(\mathrm{aq}), \quad \mathrm{Fe}^{3+}(\mathrm{aq})$ and $\mathrm{Ag}^{+}(\mathrm{aq})$
The flow diagram below outlites a series of tests that can be used to detect the presence of two of the above cations in V :

(a) Write an onic equation, with state symbols, for the formation of W from V .
(b) Suggest an experimental meltod that can be used to separate X from W .
(c) Name Y . (1 mark)
(I mark)
d) Z still conains two of the above-mentioned cations. Is it possible to show experimentally the presence of each of these cations in Z? Explain your answer.
(2 marks)
(c) Based on the above information, suggest a colour for V.

CE06 09
'Soda ash' is crude sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ conmonly used in freating fresh water in water treatnent plants. The following experiment was carried out to determine the perceniage by mass of sodium carbonate in a sample of soda ash
2.00 g of the sample was dissolved in distilied water, and the solution was diluted and made up to $250.0 \mathrm{~cm}^{3}$. Four portions of the diluted solution of volume $25.0 \mathrm{~cm}^{3}$ each were tifrated against $0,18 \mathrm{M}$ hydrochloric acid using methyi orange as indicator. The table below lists the titration results obtained:

Butette reading	Tiration	1	2	3
Final reading $/ \mathrm{cm}^{3}$	21.00	21.10	25.20	4
Initial reading $/ \mathrm{cm}^{3}$	0.00	1.00	5.30	5.20

(a) A $25.0 \mathrm{~cm}^{3}$ portion of the above diluted solution was transferred to a slean conical flask. Briefly describe how the titration of this portion of the diluted solution should be cartied out
(3 marks)
(b) Based on the titration results, calculate
(i) a reasonable average for the volume of the hydrochloric acid used, and
(ii) the percentage by mass of sodium carbonate in the sample.
(You may assume that the sample does NOT contain any impurity that reacts with hydrochloric acid.)
(5 marks)
(c) Suggest another method for detecting the tifration end poimt without tie use of any acid-base indicator.
(d) Why is soda ash used for treating feesh water? Briffly describe the chemistry involved.

CE07_05

A solid sample contains zinc and copper only. The composition of the sotid sample was analyzed experimentally as oultined bolow:
2.00 g of the solid sample was added to excess dilute hydrochoric acid in a beaker. Upon completion of reaction, the mixture inside the beaker was filtered. The residue obtained was first washed with distilled water, and then dried. The mass of the dried residue was 1.75 g .
(a) Write a chemical egtation for the reaction involved.
(b) How can one know that the reaction has been completed?
(c) Explain why it is necessary to wash the residue obtained.
(d) Explain why it is NOT appropriate to dry the residue with a Bunsen flame after washing.
(e) Assuming negligible experimental crrors, calculate the percentage of ginc by mark) - egligible experimental crrors, calculate the percentage of ainc by mass in the solid sample.

(2 marks)

CE07 10
In an experiment to determine the concentration of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right), 10.0 \mathrm{~cm}^{3}$ of the acid was first diluted to $250.0 \mathrm{~cm}^{3}$ with distilled water. $25.0 \mathrm{~cm}^{3}$ of the diluted solution was then transferred to a conical flask and titrated with a 0.025 M sodium hydroxide solution using phenolphithatein as indicator. $17.60 \mathrm{~cm}^{3}$ of sodium hydroxide solution was needed to reach the end point.
(a) Describe briefly how $10.0 \mathrm{~cm}^{3}$ of phosphoric acid can be diluted $10250.0 \mathrm{~cm}^{3}$ with distilled water in the laboratory.
(b) Phosphoric acid reacts with sodium hydroxide in the fittation according to the following equation:

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Calculate the molarity of the original phosphoric acid before dilution.
(c) 'At the beguning of fitration, the solution in the conical flask turned pink upon the addition of sodium hydroxide solmtion but became colourless immediately upon swirly. However, near the end point, the solution took longer time to become colourless upoti swirling.'

Explain why the time needed for the solution to become colourless is different at the two stages mentioned above.
(i) What does the term 'standard solution' mean?
(ii) Comment whether it is appropriate to prepare a standard solution of sodiun hydroxide by the following procedire:
'Weigh a sample of solid sodium hydroxide, dissolve it some distilled water and make up to a known volume of solution.'

CE08 04

A test tube witl magnesium ribbons is immersed in a beaker of freshly opened carbonated water. Dilute hydrochloric acid is then added to the magnesimm ribbon as shown in the following diagram. magnesium ribbans

(a) State the expected cbservation inside the test tube, and give a relevant chemical equation.
(2 marks)
(b) When dilute hydrochloric acid is added to the magnesium ribbons, more gas bubbles are seen in the carbonated water outside the test tube. Explain.
(2marks)
CE08 11
Copper(II) sulphate crystals ($\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$) can be prepared in a laboratory by the following steps.
Step 1: Add excess copper(II) oxide to dilute sulphuric acid and warm the mixture.
Step 2: Remove the remaining copper(1) oxide from the solution obtained.
Step 3: Evaporate the solution unfil it becomes saturated.
Step 4: Allow the saturated solution to cool down to obtain copper(ii) sulphate erystals.
Step 5: Separate the crystals from the saturated solution.
Step 6: Dry the crystals obtained.
(a) (i) For Step 1 ,
(1) write a chemical equation for the renction involyed, and
(2) explain why copper(II) oxide should be added in excess.
(ii) For Step 2, suggest how to remove the remaining copper(II) oxide.
(iii) For step 4, explain why crystals would be obtained when the saturated solution is allowed to cool down.
(iv) For Step G_{1}
(1) explain why the crystals obtained should not he dried by heating, and
(2) suggest an appropriate method to dry the crystals.
(b) A student finally obtained 16.2 g dry copper(II) sulphate crystals through the above steps by reacting $150 \mathrm{~cm}^{3}$ of 1.0 M sulphuric acid with excess copper(II) oxide.
(i) Calculate the number of moles of copper(II) sulplate in the solution obtained in Step 1.
(ii) Calculate the number of moles of copper(II) sulphate crystals finally obtained.
(iii) Assuming the student dried the crystals in Step G by an appropriate method comment on whether there should be any difference between the answers obtained in (i) and (ii) above.

CE08_13

For question 13, canditates are required to give antswers in paragraph form. For this question, 6 marks will be awarded for chenical knowledge and 3 marks for effective communtication.

With reference to the propertics of $1 \mathrm{M}_{2} \mathrm{SO}_{4}$ and $1 \mathrm{M} \mathrm{HNO}_{3}$, suggest THREE methods based on different chemical principles to distinguish these fwo acids.
(You can use any common chenicals available in a sohool laboratory. Both the processes and the observations involyed are required in your answers.)

CEOSO

Limestone is an important earth resource.
(a) What is the mejor chemical constituent in limestone?
(b) State the expected observation when dilute hydrochloric acid is added to limestone, and write the ionic equation for the reaction involved.
(c) Limestone can be decomposed under strong heating.
(i) Write a chemical equation for the reaction involved.
(ii) Explain why limestone can be used as fire-proofing additive.

CE09 07

Describe briefly how you would accomplish the following tasks in a schoof laboratory.
(a) Obtain calcium sulphate from a solid inixiure of calcium sulphate and calciuan mitrate.
(b) Distinguisla potassium bromide solution from potassium chloride solution.

CE09_11
A drug tablet contains aluminium hydfoxide, $\mathrm{A}(\mathrm{OH})_{3}$, as the only active ingredient. A sluden performed the following experiment to determine the anount of aluminium fydroxide contained in the drag tablet.

Step	Experimental process	Renlarks
I	A drug fablet was dissolved in $50.0 \mathrm{~cm}^{3}$ of 1.0 M hydrochloric acid to form a solution.	As alumitrium hydroxide is insoluble in water, the drug tablet was dissolved in hydrochloric acid instcad. The amount of hydrochloric acid used was more than needed to react with aluminium hydroxide in the drug tablet.
11	The solution was then diluted to 250.0 cm^{3} with distilled water.	The solution, containing excess hydrochloric acid, was diluted for the fifration in Step Ill.
II	$25.0 \mathrm{~cm}^{3}$ of the dilated solution was tilrated with 0.20 M sodium hydroxide solution using a suitable indicator. 20.80 cm^{3} of sodium hydroxide solution was needed to reach the end point.	The amount of excess hydrochloric acid in the diluted solution could be calcutated from the data obtained in the titration.
	Write a chemical equation for the react	I.

(b) Describe how ihe dilution process in Step II should be performed by using suitable apparatus. (3 marks)
(c) Suggest a suitable indicator for the titration in Step III, and state the expected colour change at the end point.
(2 marks)
(d) (i) Calculate the number of moles of excess lyydrochloric acid in the $25.0 \mathrm{~cm}^{3}$ of the diluted solution from the data obtained in the titration
(ii) Hence, calculate the number of moles of atuminimm hydroxide in the drug tablet.
(3 marks)
CE10_02
Two experiments are performed using ammonium dichromate, $(\mathrm{NH})_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(a) Solid anmonium dichromate is dissolved in water to form a solution
(i) Sate the expected colour of the solution and suggest which ion leads to this colour.
(ii) Suggest a chemical test to show that the solution conains ammonium ions. State the expected ofseryation.
(b) Solid ammonium dichromate is heated in a test tube. It decomposes into solid claromiun(III) oxide, nitrogen gas and water vapour.
(i) Write a chemical equation for the decomposition of ammonium dichromate
(ii) Suggest a chemical test to show that water vapour is formed in the decomposition. State the expected observation.

CEIO OO

In an experiment, carbon dioxide is passed into limewater until excess.
(a) State the expected observations and write the chemieal equations for the reactions involved.
(3 marks)
(b) Explain whether the similar observations in (a) wonld be made if sodium hydroxide solution is used instead of limewater. dioxide.
(d) Carbon dioxide can be obtained from the reaction of solid sodium carbonate with dilut hydrochloric acid. Write an ionic equation for the reaction.
(1 mark)

CE10_10

In an experiment, $25,00 \mathrm{~cm}^{3}$ of sodium hydroxide solution is transferred to an expanded polystyrene cup. 0.50 M sulphuric acid is then added to the solution from a burelte, and the temperature of the mixture is measured with a data-logger. The graph below shows the experimental resalts:

(a) Name the apparatus that should be used to transfer $25.00 \mathrm{~cm}^{3}$ of solium hydroxide solution to the expanded polystyrene cup.
(b) Outline the procedure for cleaning the burcte before experiment.
(c) Wrife an ionic equation for the reaction involved.
d) With reference to (1 mark the experiment.
(e) Calculate the molarity of the sodium hydroxide solution used

CE10_13

For question 13, candidates are reguired to give answers in paragraph form. For this question, marks will be awarded for cliemical kaowledge and 3 marks for effective communication.

Using some suitable examples, discuss the factors that affect pH of acids.

CE11_0ib

Sall X is known to be one of the following substance
lead(II) nitrate, sodium sulphate, zinc sulphate, sodium mitrate
X gives a golten yellow flame in flame test. When a solntion of \mathbf{X} is mixed with calcium chloride solution, a white precipitate is formed, Deduce what X is.

CE11_09
An expcriment was performed to determine the concentration of an ammonia solution. Firstly, 25.0 cm^{3} of 2.0 M hydrochloric acid was diluted with distilled water to $250.0 \mathrm{~cm}^{3}$. After that, 25.0 cm of the diluted hydrochloric acid was titrated with the ammonia solution using methyl orange as the indicator. $22.90 \mathrm{~cm}^{3}$ of the ammentia solution was required to reach the end point.
(a) Name one piece of the glass apparatus that must be used in the dilition process.
(b) Calculate the concentration of the dilited hydrochloric acid.
(c) Draw a labelled diagram to show the sct-up used in the titration.
(d) State the expected colour change at the end point.
(e) Write a chemical equation for the reaction involved
(f) Calculate the concentration of the aminonia solution.

AL99(I) 04
The graph below shows the variation of pH when $25.0 \mathrm{~cm}^{3}$ of 0.10 M HCl (aq) is titated against $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$.

volume of $\mathrm{NaOH}(\mathrm{aq})$ aidded $/ \mathrm{cm}^{3}$
(a) On the above graph, sketch a curve to represent the variation of pH when 0.10 M $\mathrm{CH}_{3} \mathrm{COOH}(a q)$ is tittated agalist $0.10 \mathrm{M} \mathrm{NaOH}(a q)$.
(b) From the table below, choose an appropriate indicator for the titration in (a). Explain your choice.

Indicator	pH range of colour change
bromocresol green	$2.8-5.4$
bromothymol blue	$6.0-7.6$
thymolphthalein	$8.3-10.6$

AL99(1)_04

Constant bolling hydrochltric acid contains 20.2% by mass of HCl . Calculate the mass of constant boiling hydrochloric acid required to prepare $1.00 \mathrm{dm}^{3}$ of $\mathrm{HCl}(\mathrm{aq})$ of pH 2.0 at 298 K .

AL00(I) 02
Calculate the pH at 298 K of a solution prepared by mixing equal volumes of $0.105 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ and $0.095 \mathrm{M} \mathrm{HCl}(\mathrm{qq})$.
(2 marks)
AL.00(1) 02
A sample of nitric (V) acid conains 68.0% of HNO_{3} by mass and has a detsity of $1.42 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate the concentration, in mol dm^{-3}, of HNO_{3} in the sample.

ASLOO(II)_11
 Suggest a chemical test to distinguish one solution from the other in each of the following pairs. Equations should be given where approprinte.

$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ and $\mathrm{A}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$
(4 marks)

ASL00(II)_12

Some toothpastes contain baking soda $\left(\mathrm{NaHCO}_{3}\right)$ as ne active ingredient. Explain why baking soda can help prevent tooth decay.
(3 marks)

ALOM(1) 07

Office paper contains calcium carbonate (up to 50%) as an additive to enhance its brightness, whiteness and opacily. Devise an experiment to estimate the percentage by mass of calcium carbonate in a sample of office paper.

AL01(I)_07

Suggest how you would prepare a sample of dry hydrogen chtoride gas in a sehool laboratory. Draw a labeled diagram of the set-up of apparatus used in the preparation.

AL01(II)_04 (modificd)

Comment on the statement: 'The acids $\mathrm{HCl}, \mathrm{HBr}$ and HI are of comparable strength.
(1 mark)
AL03(1)_01 (modified)
Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq), a weak acid, ionizes in three slages to give $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}), \mathrm{HPO}_{4}^{2-(a q)}$ and $\mathrm{PO}_{4}{ }^{3-}$ (aq).
(a) Write an chemical equations to show the stepwise formation of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq), $\mathrm{HPO}_{4}^{2-(a q)}$ and $\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$.
(b) Explain why the ablity of phosphoric acid to dissociate $H^{+}(\mathrm{aq})$ in each step progressively decreases.
(c) Skeich the expected pH titration curve when $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{qq})$ is fitrated will $\mathrm{NaOH}_{\mathrm{a}} \mathrm{OH}(\mathrm{aq})$.

AL04(1)_07
A student proposed a method to detemine the concentration of citric acid in a sample of lemon juice by titration with stmofard sodium hydroxide solution. The method proposed consists of the following experimental procedures:

1. Prepare a standard sodiun hydroxide solution by dissolving a known mass of sodium hydroxide pellets in deionized water and then make it up $10250.0 \mathrm{~cm}^{3}$,
2. Trasfer a known volume of the sample of lemon juice to a clean conical flask.
3. Fill a burette, which has been well rinsed with deionized water beforehand, with the standard sodium hydroxide solution.
4. Titrate the lemon fuice in the flask with the sodium hydroxide solution using methyl orange as the indicator,
5. Using this titration result, calculate the concentrate of citric acid in the sample,

Poim out four inappropriate practices in the method. Explan why they arc inappropriate and suggest corrections for them.

ASL04(II)_11

A student was asked to suggest possible ways to distinguish concentraled HCl , concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, and concentrated $\mathrm{H}_{3} \mathrm{PO}_{4}$ from one antother.
The student suggested that concentrated HCl ean be distinguished from flie other acids by observing what would happen when stoppers of reagent bottles containing the acids are removed.
(a) State and explain the expected observation when the stopper of a reagent bottle containing colsentrated HCl is removed.
(b) Suggest a chenical test to confirm the identity of conccatrated HCl .

AL05(1) 08

The photograph below shows a person conducting a test in a laboratory to detect the presence of ammonium ions in a solid sample. He is holding a test tube containing a hot mixture of the sample and sodium hydroxide solution, and is frying to smell.

State three inappropriate laboratory practices of the person and suggest the proper actions that should be taken.

AL0S(II) 01

X is a trivalont metal. When treated with hydrocitoric acid, X(s) gives hydrogen, while its oxide $\mathrm{X}_{2} \mathrm{O}_{3}($ s) undergoes nentralization
(a) Write the chemical equation for ilic reaction of $\mathrm{X}(\mathrm{s})$ with $\mathrm{HCl}(\mathrm{aq})$ and that of $\mathrm{X}_{2} \mathrm{O}_{3}(\mathrm{~s})$ with $\mathrm{HCl}(\mathrm{aq})$
(b) 16.5 g of a mixture of $\mathrm{X}(\mathrm{s})$ and $\mathrm{X}_{2} \mathrm{O}_{3}(\mathrm{~s})$ is allowed to react will $6.0 \mathrm{M} \mathrm{HCl}(a \mathrm{~g}) .95 .4 \mathrm{~cm}^{3}$ of the acid is required for both the metal and its oxide to undergo complete reaction. Deduce respectively the greatest possible value and the smallest possible value of the relative stomic mass of X .
(c) With reference to the Periodic Table, deduce what X may be.

AL05(II)_04

Aluminium fydroxide is an active ingredient of antacid. Two paths for the protuction of aluninitum hydroxidc using $\mathrm{Al}(\mathrm{s}), \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$ as reactants are outined belosy

Path I: $\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq}) \rightarrow \mathrm{A}(\mathrm{OH})_{3}(\mathrm{~s})$
Paths II: $\mathrm{A}(\mathrm{s}) \longrightarrow \mathrm{Na}[\mathrm{A}(\mathrm{OH}) 4](\mathrm{aq}) \rightarrow \mathrm{A})(\mathrm{OH})_{3}(\mathrm{~s})$
(a) Use chemical equations to describe the reactions in Path 1 and in Path II va Path I and via Path II.
(I matk)
(c) Suggest, with explanation, whether Pallh I or Path II is recommended for the production of aluminium lydroxide.

AL06(I) 02

Hard water contains $\mathrm{Mg}^{2+}(\mathrm{aq})$ and $\mathrm{Ca}^{2+}(\mathrm{aq})$ ions.
(a) Name a mineral that provides $\mathrm{Ca}^{2+}(\mathrm{aq})$ ions in hard water:
(b) An experiment as described below was carried out to determine the toial hardness in a sample of hard water
" $50.0 \mathrm{~cm}^{3}$ of the sample was allowed to pass through an ion-exchange column, in which the metal ions present in the sample were totally exchanged by hydrogen ions. The etuen collected required $15.0 \mathrm{~cm}^{3}$ of $0.020 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}(a q)$ for complete neutalization."

Assuming that the metal ions present in the sample are $\mathrm{Mg}^{2+}(\mathrm{aq})$ and $\mathrm{Ca}^{2+}(\mathrm{aq})$ only, calculat the totat hardness, in mol dm^{-3}, of the sample.

ASL08(1) 08

Outine how you would prepare a sample of dry $\mathrm{CuSO}_{4} \cdot \mathrm{SH}_{2} \mathrm{O}$ crystals from copper turning in a laboratory.

AL09()_07c

Explain why water should NOT be added to concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in order to dilute the acid.
(1 mark)

ASL09(I) 03

In an experiment to determine the relative atomic mass of magnesium, 0.420 g of magnestun ribbon was added to $25,0 \mathrm{~cm}^{3}$ of $0.955 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$. When effervescence ceased, the resulting mixture was diluted to $250.0 \mathrm{~cm}^{3}$ with deinnized water. $25.0 \mathrm{~cm}^{3}$ portions of the diluted solution were withdrawn and timted against $0.0941 \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ using methyl orange as indicator. The mean litre was $16.48 \mathrm{~cm}^{3}$.
(a) State the color change at the end point of the titration.
b) Based on the tifration results, calculate the refative atomio mass of magnesium
() (4 marks)

Assuming that the experimental error is negligible, suggest ONE reason why the relative atomic mass of magnesium calculated in (b) is different from that found in the Periodic Table.
(1 mark)
ASLi0(1)_09 [Simitar to DSE17_01]
The diagram on the right shows the set-up of a titrimetric experiment involving the following reaction:

(a) What physical parameter of the reaction mixture is measured by this set-up?
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is added gradually to $\mathrm{Ba}(\mathrm{OH}) 2(\mathrm{aq})$ until in excess.

Sketch a graph to show the variation of measured physical parameter with the volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (ag) added. Explain your answer.

ALIO(1)_0
The hardness of a water sample is due to $\mathrm{Ca}^{2+}(\mathrm{aq})$ imns, Outline a method for deternining the lardness in mol dm^{-3} in the sample by using volumetric titrinetric method
Hint: $\mathrm{Ca}^{2+}(a q)$ in water sample can be replaced by $\mathrm{H}^{+}(\mathrm{aq})$ using proton-exchange resin column $\mathrm{Ca}^{2+}($ in sample $)+2 \mathrm{H}^{+}($(rom resin $) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{on}$ resin $)+2 \mathrm{H}^{+}($in sample $)$
(3 marks)
ALL!(1)_07
(b) For ench of the following pairs of species, suggest a chemical test to distinguish between them and write the chenical equation(s) of the reaction(s) involved
(i) $\mathrm{Ba}^{2+}(\mathrm{aq})$ and $\mathrm{Pb}^{2+}(\mathrm{aq})$
(ii) Cl^{-}(aq) and Br (aq)
(2 marks)
(2 marks)
ALII(I) 06
State the expected observation(s) in cach of the following experiments, and write the chemical equation(s) of the reaction(s) involved.
(c) $\mathrm{NaOH}(\mathrm{aq})$ is added dropwise to $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$ until in excess.

ASL13(I)_09a (modified)

In an experiment to prepare cyclohexanone from cyclohexanol, a houschold bleach, containing 5.25% of sodium chlorate(1) by mass, was used as the oxidizing agent.

Density:	$0.948 \mathrm{~g} \mathrm{~cm}^{-3}$	$0.947 \mathrm{~g} \mathrm{~cm}^{-3}$
Solability in water:	$3.6 \mathrm{~g} / 100 \mathrm{~cm}^{3}$	Very slightly soluble
Metting point:	$25^{\circ} \mathrm{C}$	$-16^{\circ} \mathrm{C}$
Boiling poins:	$160^{\circ} \mathrm{C}$	$156^{\circ} \mathrm{C}$

$5.0 \mathrm{~cm}^{3}$ of cyclobexanol and $3 \mathrm{~cm}^{3}$ of ethanoic acid were placed in a $250 \mathrm{~cm}^{3}$ conical flosk. A 25 cm^{3} portion of the houseliold bleach was added to the conical flask with vigorous stirring. Then additional $25 \mathrm{~cm}^{3}$ portions of bleach were sttecessively added into the reaction mixture until alt cyclohexanol had reacted
(i) Assuming that the density of the household bleach is $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the molarity of NaClO in the bleach used. (Formula mass of $\mathrm{NaClO}=74.5$)

Given that the mole ratio between cyclohexanol aud NaClO is 1 : a catoulat (1 mark) inimun cyclofexanol. (Relative molecular mass of cyclohexanol $=100.0$)

DSEIISP_01
State whether each of the following statements is true or false. Explain your answer in each case.
(b) When concentrated sulphuric acid is diluted, water should be added slowly to the acid.
(2 marks)
(c) A is a stronger acid than B, so that pH of an aqueous solution of A must be lower than that of B.

DSEIISP OB
For each of the following experiments, state an expected olscrvation and write a chemical equation for the reaction involved.
(a) adding difute hydrochloric acid to zinc granules
(b) adding sodium hydroxide solution to iroul(1) sulphate solution

DSE11SP_09

There arc four untabelled reagent bottles cach containing one of the white solids histed below: ammoniun chloride, ammonium nitrate, sodium hypochlorite and sodium suiplate
Suggest how you would carry out tests to distinguish the four solids from one anothen

DSEI2PP_01

An experiment on the preparation of hydrated zinc stlphate involves the following steps
Step 1: Warm $30 \mathrm{~cm}^{3}$ of dilute sulphuric acid in a beaker. Add zinc oxide to the acid until in excess.
Step 2: Filter the reaction mixture and collect the filtrate
Step 3: Heat the filtrate until it becomes saturated. Then allow it to cool to room remperature to crystalize out hydrated zinc sulphato.
Step 4: Filter off the crystals formed, and then wash them with a litte amount of cold distilled water.
Step 5: Dry the crystals.
(a) For Step 1,
(i) write the chemical equation for the reaction that occurs,
(ii) suggest how one can know that zinc oxide is in excess, and
(iii) explain why zinc oxids rather than sulphurte acid is used in excess.
(b) Suggest ONE way to show that a saturated solution has been obtained in Step 3.
(c) Explain why a little amount of cold distilled whater is tised to wash the crystals in Step 4
(1 mark)

The $\mathrm{KOH}(\mathrm{aq})$ was added slowly to the fertilizer and the mixture fomed was lieated gently. The ammonia liberated from the reaction between $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and KOH was first cooled in a condenser and then passed tirrough an inverted funnel to a solution containing 0.0485 mol of HCl . The solution was finally made up to $100.00 \mathrm{~cm}^{3}$ and labelled as ' $\$$ '.
(a) Write an ionic equation for the reaction between $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and KOH
(b) Suggest the potential lazatd of one of the chemicals used,
(I mark)
(d) $25.00 \mathrm{~cm}^{3}$ of 'S' was transferred to a conical flask, and then titrated with 0.100 (mark) NaOH (aq) using methyl orange as an indicator, $41.00 \mathrm{~cm}^{3}$ of the $\mathrm{NaOH}(\mathrm{aq})$ was required to reach the end point.
(i) Name the apparatus that should be used to transfer $25.00 \mathrm{~cm}^{3}$ of 'S'
(ii) State the color change at the end point of the titration.
(iii) Calculate the percentage by mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in this fertilizer.

Suggest a test to show the presence of a potassium-containing conpound in the fertilizar

DSE13_04
The structure of a dibasic acid with chemical formula $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is slrown below:
(b) A student expected a $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ standard $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ to have a pH of 1.0 however, the pH of the solution, when measured with a calibrated pH meter, was feund to be grealer than 1. Explain this observation with the aid of a chemichl equation.
(c) Sold sodum hydroxide is (2 marks) Solid sodium hydroxide is available in school laboratories. However, a slandard $\mathrm{NaOH}(\mathrm{aq})$ CANNOT be directly prepared by weighing $\mathrm{NaOH}(s)$ and then dissolving it in water. Explain why.
(d) In a titration experiment, $25.00 \mathrm{~cm}^{3}$ of a $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ slandard $\mathrm{H}_{2} \mathrm{C}$ O. (aq) mark) $\mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ and a few aps of phenolphtialein indicator were placed in a conical flask, $\mathrm{NaOH}(\mathrm{aq})$ of unknow concentration was then added from a burette into the flask. $17.20 \mathrm{~cm}^{3}$ of the $\mathrm{NaOH}(\mathrm{aq})$ wa required to reach the titration end point.
(i) State the color change at the titration end point.
(ii) From the titration results, calculate the concentration of the $\mathrm{NaOH}(\mathrm{ag})$, in mol dm^{-3}.
(e) The following were considered as INAPPROPRIATE practices when carrying out the experiment in (d). For each of them, explain why it would lead to inaccurate tifration results (i) Rinsing the conical flask with the standard $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ before transferring $25.00 \mathrm{~cm}^{3}$ of the acid solution to it.
(ii) Carrying out the titation with the fiter fiunct remained on top fil it to fill the burette with the $\mathrm{NaOH}(a q)$.

DSE14_05
Concentrated acids are common reagents feund in laboralorics.
(a) State a safety measure in handing concentrated acids in laboratories.
(b) Comment on the following statement:
'All concembated ache are strong acids.
(I mark)

DSE14_07

A bottle of concentrated hydrochloric acid $\mathrm{HCL}(\mathrm{aq})$ is shown below:

(a) According to the information on the label, calculate the concentration of the concentrated hydrochloric acid in mol dm^{-3}.
(b) (2 marks) To find out the concentration of the concentraled noid, a laboratory technician first drew from the bottle a sample of $10.00 \mathrm{~cm}^{3}$ of the concenirated acid and diluted it to $100.0 \mathrm{~cm}^{3}$ in a yolumetric flask. The diluted acid sample was then used to fitrate a standard sodium catbonate solution placed in a conical flask using methyl orange as on indicalor. $10.00 \mathrm{~cm}^{3}$ of $1.06 \mathrm{~mol} \mathrm{dmm}^{-3}$ sodium carbonate solution required $20.30 \mathrm{~cm}^{3}$ of the diluted acid sanuple to reach the end point.
(i) Briefly describe the procedure in preparing a standard sodium carbonate solution.
(2 marks)
(ii) Using the titration resulf, calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of the concentrated hydrochloric acid in the bottie.
(c) Suggest a possible reason why the concentration of the concentrated hydrocbloric acid in the botle obtained from (b)(ii) would be smatler than that obtained from (a) above.

DSEI4_09
Consider each of the experiments below and answer the questions that follow.
(a) Dilute sodium hydroxide solution is added to copper(II) sulphate solution.
(i) Slate the expected obscrvation.
(ii) Write the chemical equation for the reaction that occurs.

DSE15_02
For eacls of the following experiments, state the expected observation, and write the chemical equation(s) for the reaction(s) involved.
(a) Passing carbon dioxide gas into limewater until in excess.

DSE15 04

Lead-acid accumulator is a secondary cell containing sulpheric acid. It is commonly used in starting up motor vehicle engines.
(c) State one envirommental impact that would be imposed from the disposal of lead-acid accumulators.
(d) A student difuted a sample of concentrated sulphuric acid for making a lead-acid accumulator.
(i) Describe how concentrated sulphuric acid can be diluted in a laboratory. State a safely precaution needed during the dilution process.
(3 marks)
(ii) $5.00 \mathrm{cms}^{3}$ of solution in the lead-acid accumulator made contains 2.48 g of sulphuric acid. Calculate the molarity of the sulphurie acid in the solution. (Molar mass of sulphuric acid $=98.1 \mathrm{~g}$)

DSE15_05
Explain, with the gid of a chemical equation, why $\mathrm{NH}_{3}(\mathrm{aq})$ is regarded as a weak alkall. Suggest how you would show that $\mathrm{NH}_{3}(\mathrm{~g})$ is a weaker alkalit than $\mathrm{NaOH}(\mathrm{aq})$ through an experiment.

DSE16_06

Citric acid is a tribasic acid found in lennon. It is a white solid and soluble in water
(a) In the structure of citric acid shown below, circle ALL fonizable hydrogen aton(s) making it a tribasic acid.

(f mark)
(b) A solid sample contained citric acid and other soluble inert substances. 1.65 g of the sample was dissolved in deionized water and diluted to $250.0 \mathrm{~cm}^{3}$ in appatatus \mathbf{X}. After that, 25.00 cm^{3} of the diluted solution was withdrawn and titrated with $0.123 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ using thenolphthaleita as an indicator. $18.45 \mathrm{~cm}^{3}$ of the $\mathrm{NaOH}(\mathrm{aq})$ was required to reach the end point.
(Molar mass of citric acid $=192.0 \mathrm{~g}$)
(i) What is apparatus X ?
(ii) Calculate the percentage by mass of citric acid in the solid sample.
(1 mark)
(3 marks)
(c) A fev drops of lemon juice are added to sodium hydrogencarboante powder.
(i) State the expected observation.
(ii) Write the ionic equation for the reaction involved.
(1 mark)
(1 mark)

DSE16_09
Three unlabeled reagent bottles each contains one of the white solids listed below:

$$
\mathrm{ZnSO}_{4} \quad \mathrm{MgSO}_{4} \quad \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}
$$

Outine how you would carry out tests to distinguish these three solids.

DSE16 11

Under certain conditions, a pink compound X react with $\mathrm{NaOH}(\mathrm{aq})$ to give a colorless product. Three trials of an experiment were conducted to study the kineties of the reaction. Firstly, thre $\mathrm{NaOH}(\mathrm{aq})$ solutions were prepared by mixing different volume of $2.0 \mathrm{M} \mathrm{NaOH}(a q)$ and $\mathrm{H}_{2} \mathrm{O}(1)$ at $25^{\circ} \mathrm{C}$. after that, one drop of X was added top each of the them antd the tinte needed for the pink color to disappear was recorded. The relevant data is shown below

	Volume of	Volume of	Time needed for the
	$2.0 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ used $/ \mathrm{cm}^{3}$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{used} / \mathrm{cm}^{3}$	pink color to disappear/s

(a) Why is it necessary to make the fotal volume of the reaction mixtures the same for the trials?
b) Given that at $25^{\circ} \mathrm{C},\left[\mathrm{H}^{+}(\mathrm{aq})\right][\mathrm{OH}(\mathrm{aq})]=1.0 \times 10^{-i 4} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$, calculate the pH of the $\mathrm{NaOH}(a q)$ solulion prepared in Trial 2.
(2 marks)
DSE17_01 [Similar to ASLIO() 09]
Barium (Ba) is an elentent in Group II of the Periodic Table. Its chemical properties are similar to those of calcium.
(b) A gas with a pungent smell is formed when $\mathrm{Ba}(\mathrm{OH})_{2}(s)$ is heated with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$. State the reason why the gas CANNOT be collected by each of the following methods.
(i)

Reason:

(ii)

(1 mark)
(c) An experiment was carried out to study the clange in electrical conductivity of the mixture formed when a dilute $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ was added gradually to a fixed volume of a dilute $\mathrm{Br}(\mathrm{OH})_{2}$ (aq). The graph below shows the results of the experiment.

(i) State the expected observation when dilute $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is added to dilute $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{ac})$
(ii) Explain the clange of electrical conductivity in the following stages:
(I) From A to B
(2) From B to C

DSEL7_02
Water pipes used to carry drinking water are commonly made of copper instead of iron. Althotigh lead-containing solder can be used to join these water pipes, such use is prohibited.
(c) A city stipulates that the concentration of lead lons in drinking water shoufd net exceed $1.0 \times 10^{-8} \mathrm{~g} \mathrm{~cm}^{-3}$. Express this concentration in mol dm^{-3}. (Relative atomic mass : $\mathrm{Pb}=207.2$)

DSE17. 06
Concentrated sulphuric acid is a reagent commonly found in laboratories.
(a) Circle TWO hazard warning labels that should be displayed on a botte of concentrated sulphuric acid:

(b) In order to determine the concentration of a sample of concentrated sulphuric acid, $5.00 \mathrm{~cm}^{3}$ of the sample was diluted to $1000.0 \mathrm{~cm}^{3}$ with deionized water. Portions of $25.00 \mathrm{~cm}^{3}$ of the diluted sample were titrated with $0.189 \mathrm{~mol}_{\mathrm{min}}{ }^{-3} \mathrm{NaOH}(\mathrm{ac})$ using methyl orange as an indicator. An average or $22.20 \mathrm{~cm}^{3}$ of $\mathrm{NaOH}(a q)$ was used to reach the end point.
(i) Explain why concentrated sulphuric acid should NOT be titrated directly with $\mathrm{NaOH}(\mathrm{aq})$.
(ii) State the color change it the end point of the titration.
(1 mark)
(iii) Calculate the concentration of the sample of concentrated sulphuric acid, in $\mathrm{mol}_{\mathrm{dm}^{-3}}$. (3 marks)

DSE18 02

This question involves the preparation of ammonia gas and the investigation of the properties of ammonia gas in a laboratory.
(a) Solid calcium hydroxide reacts with solid ammonium chloride to form ammonia gas. Draw a labelled diagran to show the set-up involved and how ammonia gas is collected

(2 marks)

(b) An experiment was performed to investigate the properties of ammonia gas with the set-up shown below:

The round-bottomed flask was initially full of dry ammonia gas. Several drops of water were injected into the flask from the dropper. The water containing phenolphthatein was then automatically sucked into the flask through the glass fube.
(i) Briefly explain why the water containing phenolphthatein was sucked into the flask.
(2 marks)
(ii) State, with explanation, an observation related to phenolphthalein in the flask.
(2 marks)

DSE18_07

An experiment was performed to determine the number of water of crystallization, n, in a sample of hydrated sodimm tetraborate ($\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \times \mathrm{n} \mathrm{H}_{2} \mathrm{O}$) 0.0 .452 g of the sample was dissolved completely in about $50 \mathrm{~cm}^{3}$ of deionized water in an apparatus X . The solution obtained was alkalinc and was imenediately titrated in X with $0.125 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ using methyl arange as an indicator. it is required $18.98 \mathrm{~cm}^{3}$ of the acid to teach the end point.
(a) Name X .
(b) State the color change at the end point of the titration.
(c) It is known that in the reaction during the titration, the mole ratio of $\mathrm{BrO}_{4} \mathrm{O}^{2-}(\mathrm{aq})$ to $\mathrm{H}^{+}(\mathrm{aq})$ is 1:2. Calculate the number of water of crystallization, n.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{~B}=10.8, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
(d) It is known that hydrated sodium tetraborate can be used to prepare standard solutions.
(i) What is meant by the term "standard solutions"?
(ii) Suggest one use of standard solutions.

DSE18_08

(a) HCl is a strong acid. What is meant by the term 'stiong acid'?

DSE19_03

An experiment was carried out as shown below:

With the help of a chemical equation, suggest and explain what gas X may be

DSEI9_08

Several trials of an experiment were performed for determinting the enthalpy change of neutralisation for a reaction. For each triat, a total volume of $100.0 \mathrm{~cm}^{3}$ of a solution was obtained from mixing specified volumes of a $\mathrm{HCl}(\mathrm{aq})$ and $1.0 \mathrm{M} \mathrm{NaOH(aq)} \mathrm{as} \mathrm{showa} \mathrm{below} \mathrm{in} \mathrm{an} \mathrm{expanded}$ polystyrene cup. The $\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$ werc kept at the same initial temperature before muxing.

Trial	1	2	3	4	5
Volume of the $\mathrm{HCl}(\mathrm{aq})$ used $/ \mathrm{cm}^{3}$	90	70	50	30	10
Volume of $£ .0 \mathrm{M} \mathrm{NaOH}(\mathrm{aq}) \mathrm{used} / \mathrm{cm}^{3}$	10	30	50	70	90

For each trial, the mixture was stirred and its inaximum temperature reaclied was recorded, A graph of the maximum temperature reached for each trial is shown below :

(a) It is estimated from the graph that $58.0 \mathrm{~cm}^{3}$ of $\mathrm{NaOH}(\mathrm{aq})$ (and $42.0 \mathrm{~cm}^{3}$ of $\mathrm{HCl}(\mathrm{aq})$) is required for obtaining the possible naximum temperature reached in this experiment Show how this estimation can bo done in the above graph.
(b) Calculate the number of moles of $\mathrm{NaOH}(a q)$ feacted with $\mathrm{HCl}(\mathrm{aq})$ in (a). Hence, find the concentration of the $\mathrm{HCl}(\mathrm{aq})$.

DSE19 0

Solid potassium hydrogenphthatate can be used to prepare standard solutions. His structure is shown below:

(a) You are provided with 1.12 g of solid potassium hydrogenpluitalate
(i) Describe briefly how a $250.0 \mathrm{~cm}^{3}$ of standard solution containing 1.12 g of potassium hydrogenphthalate can be prepared in a laboratory.
(ii) Calculate the molarity of the slandard solution obtained in (i) (Formula mass : polassium hydrogenphthalate $=204.1$)
(b) At room conditions, the pH of a 0.060 M of potassium hydrogenphthalate solution is 3.30 . Based of this informatien and appropriate calculation, comment whether the -COOH group in potassium hydrogenphthatate is completely iotised.
(2 marks)
DSE19_10
You are provided with common laboratory apparatus and the following chemicals:
iron powder zine powder aqueous ammonia distilled water

Describe how zinc sulphate crystals can be obtained from a solid sample of zinc sulphaie comainin copper(II) sulphate as impurity. (Not all chemicals must be used.)
DSE20_01ci
(4+1 marks)
(c) An experiment for Y and Z is performed as shown it the setup betow. Dilute hydrochioric acid is added to the $\mathrm{K}_{2} \mathrm{SO}_{3}$ cystals, then the whole set-up is covered with a hid.

(11) State the expected observation in Container (1) and write an ionic equation for the reaction involved.
4. Egehtells mainly contan calcitum carbonate and a small amount of organc substances. The percentage by mass of calcura cartonate in a sumple of vgrghell was deterninec by the following steps:

Step (I): The sample was ground into powder.
Step (2): 0.204 g of the powder was put into a conteal flask. After that $25.00 \mathrm{~cm}^{3}$ of 0.200 M HClyaq) and $5 \mathrm{~cm}^{3}$ of ethanol were added.
The mixture was beated for 15 minutes.

(a) Explain why the sample was ground into powder in Step (1)
(1 mark)
(b) Suggest why cthanol was added in Step (i).
(mark)
(c) Suggest why the mixture was heated for 15 mivures in Step (3)
(d) The mixure turned from colourless to pale pink at he end point of titation in Step (4). Name indicator \mathbf{X}.
(e) $16.85 \mathrm{~cm}^{3}$ of $\mathrm{NaOH}(\mathrm{aq})$ was needed to feach the end point of titation in step (4). Calorlate tive percentage by mass of calcium carbonate in the sample.
(Refative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Ca}=40.1$)

DSE20 05a
5. The moteculat formula of an organie comporad $\mathrm{W}_{\mathrm{i}} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$. It it soluble in water.
(a) When a piece of magnusum ribbon is placed into an aquecous solution of W, hydrogen ens eyolves. According to this observation, susgest functional group that w may contain.

DSE20_07ab

7. An experiment is performed to study the following reaction :
$\left.\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})+*+\mathrm{BaCl}_{2}(3)+1 \mathrm{OH}_{2} \mathrm{Ol}\right)+2 \mathrm{NH}_{2}(\mathrm{~g})$
(a) When the two solid reactants are mixed and stired in a conical hask, anmona gas with a chatacteristic pungent mell is formed. Exphin how ammonia gas can be fested.
(b) $\mathrm{Ba}(\mathrm{OH})$ a $\cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is an alkali. What is meant by the term 'alkalit'?

SSE21_07(a),(b),(c),(d)

The steps for determining the concentration of a sample of hydrochloric acid are listed betow :
Step (1): A 0.1038 M standard sodium carbonate solution was prepared by dissolving 2.750 g o anhydrous sodium cerbonate solid in deionised water and made up to 250.0 cm .
Step (2): $25.0 \mathrm{~cm}^{3}$ of the standard solution obtained in Step (1) was transfered to a clean conical flast
tep (3): The sample of hydrochloric acid was put into a burette. The standard solution in the conical The sample of hydrochloric acid was put int
flask was tírated with the hydrochloric acid.

Step (2) and Step (3) were reprated for several times. The table below shows the results of the itrations:

	Trial	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
Final burette reading $/ \mathrm{cm}^{3}$	30.85	28.75	28.30	31.35	27.25
Imitial burette ereading $/ \mathrm{cm}^{3}$	2.00	1.50	1.00	3.00	0.00

(a) Describe the procedure in preparing the standard sodium carbonate solution in Sten (1).
(b) State the colour change at the end point of the titration.
(c) Calculate a reasonable average for the volume of the hydrochloric acid used in the titrations.
(d) Calculate the concentration of hydrochloric acid (in $\mathrm{g} \mathrm{dm}^{-3}$) in the sample. (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{Cl}=35.5$)
4. Which of the following is an INCORRECT procedure in titration ?
A. Rinse the pipette with the solution to be delivered before titration.
B. Rinse the conical flask with the solution to be held before titration.
C. Take the burette readings with eyes on the same level as the meniscus.
D. Make sure that there are no air bubbles in the burette filled with the titrant.
20. A small piece of sodium is added to water containing a few drops of universal indicator. Which of the following statements is / are correct?
(1) Sodium moves quickly on the water surface.
(2) The resulting solution shows a red colour.
(3) This reaction is exothermic.

A.	(1) only
B.	(2) only
C.	(1) and (3) only
D.	(2) and (3) only

22. Both \mathbf{A} and \mathbf{B} are monobasic acids. The pH of $0.10 \mathrm{M} \mathrm{A}(\mathrm{aq})$ is 1.0 and the pH of $0.10 \mathrm{M} \mathrm{B}(\mathrm{aq})$ is 3.0 . Which of the following statements are correct?
(1) $\quad \mathbf{A}$ is a stronger acid than \mathbf{B}
(2) Some \mathbf{B} molecules are present in $\mathbf{B}(\mathrm{aq})$.
(3) Complete neutralisation of $25.0 \mathrm{~cm}^{3}$ of $0.10 \mathrm{M} \mathrm{A}(\mathrm{aq})$ and complete neutralisation of $25.0 \mathrm{~cm}^{3}$ of $0.10 \mathrm{M} \mathrm{B}(\mathrm{aq})$ require the same number of moles of $\mathrm{NaOH}(\mathrm{aq})$.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

2022

Antacid is a drug for neutralising stomach acid. A sample of an antacid contains $\mathrm{NaHCO}_{3}(\mathrm{~s})$ and other soluble inert substances. 1.52 g of the antacid sample was completely dissolved in deionised water to give a weakly alkaline solution. The solution was then titrated with $0.644 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ using a suitable indicator $25.20 \mathrm{~cm}^{3}$ of the $\mathrm{HCl}(\mathrm{aq})$ was required to reach the end point.
(a) Write the chemical equation for the reaction between $\mathrm{NaHCO}_{3}(\mathrm{~s})$ and $\mathrm{HCl}(\mathrm{aq})$.
(b) Calculate the percentage by mass of $\mathrm{NaHCO}_{3}(\mathrm{~s})$ in the antacid sample. (Relative atomic masses : $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
(1 mark)

The pH of the solution at the end point of the titration was found to be between 3 and 4 .
(i) Suggest a suitable indicator for this titration and state the colour change at the end point.
(ii) Suggest an instrument to measure the pH of the solution accurately.
(d) State one advantage of taking antacids containing $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$ over those containing $\mathrm{NaHCO}_{3}(\mathrm{~s})$.
7. An experiment was performed to determine the enthalpy change of neutralisation between $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$ and $\mathrm{HCl}(\mathrm{aq}) .100 .0 \mathrm{~cm}^{3}$ of $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ was placed in an expanded polystyrene cup. The temperature of the contents in the cup was measured at half-minute intervals. Right at the third minute, 0.502 g of $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$ was added to the cup with thorough stirring. The recordings of temperature are shown in the graph below :

(a) Write a chemical equation for the reaction between $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$ and $\mathrm{HCl}(\mathrm{aq})$.

Section A Industrial Chemistry
Answer ALL parts of the question.

1. (a) Answer the following short questions :
(i) Under certain conditions, ethanoic acid can be manufactured by the following reaction :

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{CO}(\mathrm{~g}) \xrightarrow{\mathrm{Rh}, \mathrm{HI}} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})
$$

(1) Suggest one reason why this reaction is considered to be green.
(2) Suggest one reason why this reaction is NOT considered to be green.
(ii) A factory manufactures catalytic converters with a catalyst coating on a porous structure
(1) Suggest one advantage of using a porous structure in the catalytic converters
(2) Explain why the effectiveness of the catalyst may decrease after prolonged use.
(iii) Which one of the following items is NOT manufactured from petrochemicals?
nylon rope, glass bottle, soapless detergent
(1 mark)
(b) The diagram below shows a membrane electrolytic cell used in the chloroalkali industry. Brine and liquid \mathbf{X} are continuously added into the membrane electrolytic cell to produce gas \mathbf{A}, gas \mathbf{B} and sodium hydroxide solution.

(i) What is \mathbf{X} ?
(ii) Gas \mathbf{A} is formed at the anode of the membrane electrolytic cell.
(1) What is \mathbf{A} ?
(2) Explain why \mathbf{A} is formed.
(iii) Gas \mathbf{B} and sodium hydroxide solution are formed at the cathode of the membrane electrolytic Gas
(1) Write a half equation for the formation of \mathbf{B}
(2) Explain why sodium hydroxide solution is formed and why it does not contain sodium chloride.
(iv) Suggest a chemical that can be manufactured from the reaction between \mathbf{A} and sodium hydroxide solution.
(1 mark)

Marking Scheme							
MCQ							
CE90_07	D	CEsO_12	B	CE90_14	B	CE90_22	c
CE93-26	c	CESO_35	C	CE90_44	в	CE90_46	D
CE91_13	c	CE91_16	c	CE91_18	D	CE91_20	B
CE91_21	D	C691_23	A	CE91_39	B	CE91_45	A
CE91_28	A	CESI_47	B	CE91_50	A	CE92_11	B
CE92_17	3	CE92_18	D	CE92_19	B	CE92_26	A
CE92 27	A	CE92_28	C	CE92_29	A	CE92_36	D
CE92-48	A	CE92_49	D	CE93_07	D	CE93_ 11	A
CE93-21	B	CE93_23	D	CR93-27	B	CE93_37	C
CE93 38	A	CE93_39	B	CE93-40	c	CE93 49	D
CES4_05	c	CES4_09	C	CE9§_11	D	CE94 16	D
CE94_26	c	CE94_27	D	CE94_38	B	CE94_30	B
CE94 31	A	CE94_33	B	CE94_43	B	CE9S_08	D
CESS_09	B	CE95_12	B	CE95_16	B	CE95_18	g
CE9S_24	D	CE9S 27	C	CES5 35	A	CE95-39	A
CE95_46	c	CE95_49	c	CE96_04	c	CE96. 06	B
CE96 10	c	CE96 12	B	CE96 49	D	CE97-06	B
CE97_12	A	CE97_13	A	CE97_14	c	CE97_31	D
CE97-37	D	CE97_49	c	CE98_09	A	CE98_13	A
CE98_16	C	CE98_18	B	CE98_23	D	CE98-25	D
CE98.31	A	CE98 43	A	CES9_06	c	CE99_20	A
CE99_25	C	CE99 4S	B	CEOO 11	c	CE00_29	C
CE00_33	C	CEOL 06	B	CE0I_07	A	CE01_15	c
C801_23	A	CEOI_34	A	CE02_02	B	CEO2_05	B
CE02_17	B	CE02_32	c	CEO2 42	A	CEO3_04	D (69\%)
CE03_26	B (47\%)	CE03 30	C (63\%)	CE03_43	C (54\%)	CEOSSP_17	A
CEOSSP_18	D	CEOSSP_36	A	CEOSSP_45	A	CE04_88	A (56\%)
$\mathrm{CEO4}_{7} 11$	C (60\%)	CE04_14	B (66\%)	CEO4_20	A (37\%)	CE04_44	C (58%)
CE05_14	$\mathrm{C}(69 \%)$	CEOS_22	B (65\%)	$\mathrm{CROS}_{-} 29$	B (26%)	CEO5_34	$\mathrm{D}(57 \%)$
CEOS 38	A (72\%)	CE05_39	A 665%)	CE05 40	A (64\%)	CE0S 41	C (51\%)
CEOS_50	C(82\%)	CE06 07	A(59\%)	CE 06.10	C (42\%)	CEO6_28	C 566%)
CEOE 31	A (43\%)	CE06_39	C (33\%)	CE06_47	A (45\%)	CEO6_48	C (25\%)
CE07_15	$\mathrm{C}(54 \%)$	CE07_17	C (46\%)	C207-35	D (62\%)	CE07_47	C (20\%)
CE08_01	C(73\%)	CE08_07	A (52\%)	CE08_17	D (71\%)	CE08_20	A (74\%)
CE08_30	$\mathrm{C}(66 \%)$	C208 33	$\mathrm{B}(54 \%)$	CE08_37	D (36\%)	CE08_43	D (62\%)
CE08_45	A(35\%)	CE09_to	c(77\%)	CEO9_14	D (37%)	CE09 17	A(35\%)
CE09_23	B (64\%)	C809 29	D (60\%)	CE09_32	D(75\%)	CEO9_35	B (69\%)
CE09_36	A (52\%)	CEOO 37	C(60\%)	CEO2_48	$\mathrm{D}(67 \%)$	CE10 19	C (70\%)
CE10_20	D (62\%)	CE10 23	A(72\%)	CE10 28	D	CE10-35	c(72\%)
CEIO 39	C (49\%)	CEIO 40	C(50\%)	CL10 42	A (7\%\%)	CE15 13	C (48%)
CEIO_44	B (55%)	CE10_45	日 (68%)	CE11_12	A (86\%)	CE11_19	A (71%)

CE11 20	D (48\%)	CEII_24	D (86\%)	CE11_28	A (34\%)	CEI 1.29	A
CE11_43	A (31\%)	ASLO5(0)05	C	ASL12(n_03	B	DSEHSP_08	D
DSEIUSP-14	B	DSETHP_ 66	A	DSELISP_17	A	DSEIISP_18	C
DSE11SP_20	C	DSEI2PP_88	c	DSEL2PP.-09	B	DSE12PP_13	A
DSE12PP_19	c	DSE12PP_20	C	DSEI2PP_24	D	DSE12_02	D (54\%)
DSE12_04	C(71\%)	DSE12_10	C (88\%)	DSE12_14	B(83\%)	DSE12_19	D (59\%)
DSEL2_20	A(71\%)	DSEE3_03	D (64\%)	DSEI3_08	C(41\%)	DSE13_09	A (64%)
DSE13_10	c (75\%)	DSE13_11	A (6\%\%)	DSEI4_06	$\mathrm{C}(64 \%)$	DSEI4_07	B (32%)
DSE14_13	c (06\%)	DSE14_15	B (70\%)	DSEI4_21	D (32\%)	DSEL5_01	A(46\%)
DSEIS O4	$\mathrm{D}(74 \%)$	DSE15 08	D (88\%)	DSE15_09	B (87\%)	DSElg_06	B (59\%)
DSE16_07	A (58\%)	DSE16_08	A(66\%)	DSE16_18	A (85\%)	DSElg_19	C (27%)
DSE16 22	$D(49 \%)$	DSE17.02	$\mathrm{D}(64 \%)$	DSE17_06	C(55\%)	DSET7_10	A (57\%)
DSE17_11	$\mathrm{B}(64 \%)$	DSE17 17	A (59\%)	DSE17.21	C (68\%)	DSE18_06	B (65\%)
DSE18_10	A (63\%)	DSEI8_11	D (50%)	DSE18_24	C (48\%)	DSEl9 04	B
DSEI9_05	A	DSE19 16	D	DSE19_21	A	DSE19_20	D
$\begin{aligned} & \text { DSE2020: } \\ & \text { 4_A } \end{aligned}$	1_D	16_C 17	18				

Structural Questions

CE90_02b
(i)

At X , the rate is faster. Concentration of acid for the reaction is higher and the mass of calcium carbonate is larger.
(iii) More carbon dioxide gas is collected from $\mathbf{B}\left(120 \mathrm{~cm}^{3}\right)$ than from $\mathrm{A}\left(96 \mathrm{~cm}^{3}\right)$

Thus, sanple B has a ligher purity (or less impurities) than sample A .
The initial rate of sample A is greater than that of sample B (steeper sfope for A than B). [1] Thus, more sufface area/smaller particle size in A than in B.

CE90_03b
(i) A weak acid is partially (slighty) ionized
to produce hydrogen ions.
$O R, \quad \mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{COOH} \rightleftharpoons \mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{COO}^{-}+\mathrm{H}^{+}$
A few drops of phenolphthalein
changes from colourless to pink.
(1) moles of NaOH used $=0.18 \times \frac{22.4}{1000}=0.004032$
(2) $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
mole ratio $\mathrm{C}_{r} \mathrm{H}_{2 n+1} \mathrm{COOH}$: $\mathrm{NaOH}=1: 1$
So , number of mole of $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+1} \mathrm{COOH}$ used $=0.004032$ mole
molar mass of $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{COOH}=\frac{0,355}{0,004032}=88.05$
So, relative molecular mass of $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{COOH}=88,05$

CE91_02a
(i) First, use a plpette to draw $25.0 \mathrm{~cm}^{3}$ of vinegar to a $250.0 \mathrm{~cm}^{3}$ volumetric חask.
(ii) Use phenolphithalein as indicator.

Al end point, the colour changes from colourfess to red.
(iii)

Titration/Burelte reading	1	2	3	4
Final reading $\left(\mathrm{cm}^{3}\right)$	25.50	25.70	26.20	25.90
Initial reading $\left(\mathrm{cmn}^{3}\right)$	0.00	1.00	1.30	1.10
Volune of NaOH used	$25.50-0.00$ $=25.50$	$25.70-1.00$ $=24.70$	$26.20-1.30$ $=24.90$	$25.90-1.10$ $=24.80$

1^{n} triat would not be counted since the value is largely different from others.

Reasonable average volunc of NaOH used $=\{24.70+24.90+24.80) / 3$
(iv) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
(v)
mole of $\mathrm{NaOH}=0.10 \times \frac{24.80}{1000}=0.00248$
$\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
Mole ratio $\mathrm{NaOH}: \mathrm{CH}_{3} \mathrm{COOH}=1: 1$
For diluted vinegar, so, number of mole of $\mathrm{CH}_{3} \mathrm{COOH}=0.00248$ mole
$\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]($ diluted $)=\frac{0.00248}{\frac{25}{1000}}=0.0992 \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]$ (undluted) in $\mathrm{B}=0.0992 \times \frac{250}{25}=0.992 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
(vi) Givent better buy $=$ lower price per gram of $\mathrm{CH}_{3} \mathrm{COOH}$
mass of $\mathrm{CH}_{3} \mathrm{COOH}$ in $250 \mathrm{~cm}^{3}$ of vinegar $\mathrm{A}=50 \times \frac{250}{1000}=12.5 \mathrm{~g}$
mole of $\mathrm{CH}_{3} \mathrm{COOH}$ in $\mathrm{B}=0.992 \times \frac{500}{1000}=0.496$
mass of $\mathrm{CH}_{3} \mathrm{COOH}$ in $\mathrm{B}=0.496 \times(12+1 \times 3+12+16 \times 2+1)=29.76 \mathrm{~g}$
For Brand $\mathrm{A}, \$$ per g of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{3.00}{12.25}=0.24$
For Brand $\mathrm{B}, \$$ per g of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{6.00}{29.76}=0.20$
Brand B is better buy.
CE92_01a
(i) Any two:

The hair of the girl is not tied up. [1]
The $\mathrm{H}_{2} \mathrm{SO}_{4}$ bottle is too close to the edge of the bench.
The $\mathrm{H}_{2} \mathrm{SO}_{4}$ botte is not stoppered.
(ii) (1) Copper(II) sulphate
(2) $\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(excess)
1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives 1 mole of CuSO_{4}
mole of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ mole of $\mathrm{CuSO}_{4}=2.0 \times \frac{50.0}{1000}=0.10$
mass of $\mathrm{CuSO}_{4}=0.1 \times(63.5+32.1+16 \times 4)=15.59 \mathrm{~g}$
(iii) Heating can increase the rate of reaction.
$O R$, Heating can make the reaction faster.
(iv) 11 is because the $\mathrm{CuSO}_{4}($ aq $)$ sofution obtained is unsaturated.

CE93_01b
(i) Acids in liquid waste will cause setious water pollution which is hammful to aquatic [1] species.
(ii) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \cdots \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$O R, \quad \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
moles of HCl discharged per minute $=0.5 \times 20=10$ mole $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ required to react all $\mathrm{HCl}=\frac{10}{2}=5$ mole
(iv) It is because $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts much faster with acids than that of slaked time. [1]

OR, $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}$ has a much higher solubility in water than that of slaked lime.
CE93 04b
(i) $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(iii) Mcthod I:

Crush the egg shell into small piece
to increase the reacting surface area. [1]
Method 2:
Also, heating
can increase the energy of the paricles of reactants. [1]
CE94_01
(a) Group II
(b) (i) $\begin{aligned} & \mathrm{X}+2 \mathrm{HCl} \longrightarrow \mathrm{XCl}_{2}+\mathrm{H}_{2} \\ & \mathrm{OR}\end{aligned} \mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MiCl}_{2}+\mathrm{H}_{2} \longrightarrow$ [1]
$O R, \quad \mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
(ii) $[x]^{2 N}\left[(\underset{\sim}{c}]^{\text {and }}(\underset{\sim}{4})\right.$
(c) A colourless gas rapidiy evolves. [1]
(d) Y, X, Z, Y, Y ine

Y is the most reactive because only Y can react with cold water but X and Z cannot.
X is more reaclive than Z because X can react with HCl but Z cannot.
CE94_05a
(i) pipette

mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $500 \mathrm{~cm}^{3}=9.1 \times 10^{-4} \times \frac{500}{25}=0,0182$
$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ in Rainbow $=\frac{0.0182}{\frac{1}{1000}}=18.2 \mathrm{M}$
(iii) It will dissolve metal drains.
(iv) The worker should wear safety glasses [1]
because conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is highly corrosive. [1]
CE95 07
(i) Citric acid / vitamin C (ascorbic acid) when dissolves in water gives H^{+}(aq) [1]
which reacts with calcium carbonate to give gas (CO_{2}) bubbles. [i]
$\mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(iii) Out of moisture (water) / in a dry place.

Reason; The amount of active ingredients will decrease/
the tablet will lose function/
the active ingredients of the tablet will react in the presence of water.
OR, Out of heat/ in a cool place.
Reason: at high temperature, vitamin C deteriorate /
CaCO_{3} undergoes decomposition /
the amount of active ingredients will decrease /
the tablet will lose function.
OR, Away from sunlight
Reason: vitamin C may decompose /
CaCO_{3} can be decomposed by sunlight.
CE96 06b
(i) A is 2 M ammonin $/ 2 \mathrm{M} \mathrm{NH}_{3}$

Ammonia solution is alkaline. When ammonia ionizes in water to give OH^{-}which tums [i] red litmus paper blue. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
(iii) (1) Add a piece of $\mu \mathrm{H}$ paper / a few drops of universal indicator to the reagent. [1]
(2) HCl will give a lower $\mathrm{pH} /$ a deeper red colour

Because HCl ionize to a greater extent than $\mathrm{CH}_{3} \mathrm{COOH}$. HCl is a stronger acid and [I] HCl has a higher concentration of H^{t}
$O R$ (1) Add a piece of Mg ribbon $/ \mathrm{Zn}$ granules $/ \mathrm{CaCO}_{3}(\mathrm{~s})$ to the reagent
(2) HCl will give gas bubbles ala a faster rate

Because HCl ionize to a greater extent than $\mathrm{CH}_{3} \mathrm{COOH}$. HCl is a stronger acid and HCl has a higher concentration of H^{+}

OR (1) $\mathrm{Add} \mathrm{AgNO}_{3}(\mathrm{aq}) / \mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{aq})$ to the reagent
(2) HCl will give a white precipitate white $\mathrm{CH}_{3} \mathrm{COOH}$ will not Because $\mathrm{AgClPbCl}_{2}$ is insoluble in water

OR (i) Allow the vapostic of the reagent fo react with $\mathrm{NH}_{3}(\mathrm{~g})$
(2) HCl will give dense white fume while $\mathrm{CH}_{3} \mathrm{COOH}$ will not Because $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ is fomed when $\mathrm{HCl}(\mathrm{g})$ reacts with $\mathrm{NH}_{3}(\mathrm{~g})$
$O R$ (1) Measure the electrical conductivity of the solutions.
(2) HCl has a higher conductivity

Because HCl ionize to a greater extent than $\mathrm{CH}_{3} \mathrm{COOH}$. HCl is a stronger acid / HCl has a higher concentration of H^{+}

OR (1) Measure the pH of the solutions will a pH meter.
(2) HCl has a lower pH

Because HCl ionize lo a greater extent than $\mathrm{CH}_{3} \mathrm{COOH} . \mathrm{HCl}$ is a stronger acid and HCl has a higher concentration of H^{+}

OR (1) Warm the reagent with ethanol in the presence of a fow drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(2) $\mathrm{CH}_{3} \mathrm{COOH}$ gives a pleasant smell while HCl is not Because an ester is formed when $\mathrm{CH}_{3} \mathrm{COOH}$ reacts with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

CE96_09b(iv)
(i) To recover copper metal / To produce the loss of copper metal
Cu^{2+} ions can cause water pollution/death of (barmful to) marine fives
(2) 1 mole of Cu^{2+} iens react with 2 mole of NaOH
$\mathrm{OR}_{3} \quad \mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}$
mole of $\mathrm{NaOH}=8.0 \times 3.5=28$
mole of $\mathrm{cu}^{2+}=\frac{28}{2}=14$
$\left[\mathrm{Cu}^{2+}\right]=\frac{14}{20}=0.7 \mathrm{M}$
CE97_ 03
(a) Using pH paper / universal incicator/ pH meter
(b) $\mathrm{pH}: 1 \mathrm{M}$ sulphuric acid $<1 \mathrm{M}$ hydrochloric acid $<1 \mathrm{M}$ ethanoic acid

Eithanoic acid is a weak acid, it undergoes incomplele ionization. It has the highest pH . [1] Botin hydrochloric acid and sulphuric acid are strong acids. It undergoes complete [I] ionization. It has lower pH than ethanoic acid.
Sulphuric acid is dibasic while hydrochloric acid is monobasic. $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ contains a higher concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions than 1 M HCl .
So, pH of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is lower than HCl at same concentration.

CE97_07
(i) $\mathrm{CuCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow$ II]
(ii) To ensure that all the sulphuric acid has been used up/malachite is in excess
(iii) //

(iv) mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=2 \times \frac{50}{1000}=0.1$

Since CuCO_{3} is in excess,
mole of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=$ mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=0.1$
Theoretical mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=0.1 \times 249.6=24.96 \mathrm{~g}$
Formula mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=63.5+32.1+16 \times 4+5(1.0 \times 2+16.0)=249.6$
(Also nccept 25.0 g and 25 g ; deduct 1 mark for wrong/ no unit)
CE98_06a
(i) (i) $\mathrm{NaOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(2)

(1 nark for a diagram showing the set-up for the titration experiment; 2 marks for labelling the apparatus and reagents)
(3) from ted to colourless
(4) Add dilute nitric acid to 1 M sodiun hydroxide solution in the same volume ratio [1] as that in the titration result, withou adding the indicator. OR, repeat the tifration procedure wilhout adding the indicator.
(ii) (i) Formula mass of $\mathrm{NaNO}_{3}=23+14+16 \times 3=85$

$$
\begin{equation*}
\% \text { by mass of } \mathrm{N}=\frac{14}{85} \times 100 \%=16.5 \% \text { (or } 16.47 \% \text {) } \tag{1}
\end{equation*}
$$

(2) Nitrogen is used in plants to produce amino acids / proteins / chlorophyll.

CE99 02
(a) Effervescence / colourless gas bubbles / magnesium carbonate dissolves / heat evolves $\mathrm{MgCO}_{3}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Mg}_{\left(\mathrm{NO}_{3}\right)_{2}}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ $O R, \quad \mathrm{MgCO}_{3}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

CEOO 02
(a) The relative atomic mass is tile average mass of an atom of the element on the ${ }^{12} \mathrm{C} \quad[2]$ ($=12.000$) scale.
(b) (i) $\mathrm{Y} / \mathrm{potassium} \mathrm{(K)} \mathrm{[1]}$
Y is a reactive metal and reacts readily with oxygen / water in air.
(ii) $\mathrm{X} / \operatorname{argon}(\mathrm{Ar}) \quad$ [1]
X is chemicaily inert/is a noble gas/will not react with the hot tungsten flament. [1]
(iii) W/ sulphur (S)

Sulphur can form SO_{2} or SO_{3}, which, when dissolved in water, give $\mathrm{H}_{2} \mathrm{SO}_{3}$ or [1] $\mathrm{H}_{2} \mathrm{SO}_{4}$ which are acidic solution.

CEO1 02
(a) Zinc granules dissolve / a colourless gas is evolved / solution gets warm. [1]
$\mathrm{Zn}+2 \mathrm{HCl}-\mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
$O R, \quad \mathrm{Zn}+2 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2}$
(b) The green colour of the solution becomes paler (colourless) and green precipitate is [1] formed.
$\mathrm{FeSO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Fe}\left(\mathrm{OH}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$
$\mathrm{OR}, \quad \mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{2}$
CEO1_04
Chemical knowledge
Any SIX of the following:
The piece of sodium
because sodium is denser than parafin oil but less dense than water.
Sodium reacts with waler to give a colourless gas (hydrogen) / The size of sodium [1] decreases.
The colourless gas carries the sodium metal to the surface of paraffin oil.
When hydrogen gas is discharged, the piece of sodium metal sinks again. [1]
The colour of the aqueous layer thens pink
Or, due to the formation of OH^{-}ions to give an alkaline solution.
Effective communication

CEO1_06B
(i) mole of HCl used $=0.258 \times \frac{25.4}{1000}=0.00655$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Molc ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{HCl}=1: 2$
moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.00655}{2}=0,003275$ mole
(ii) Formula mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}=23 \times 2+12+16 \times 3+18 \mathrm{x}=106+18 \mathrm{x}$
number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}=\frac{\text { mass }}{\text { molar mass }}$

$$
\begin{align*}
0.003275 & =\frac{0.933}{106+18 x} \tag{1}\\
x & =10
\end{align*}
$$

(iii) From yellow to orange [1]
(iv) Step:

1. rinse the burette with distitied water / deionized water [1]
2. then with liydrochloric acid [I]
3. fill the burefte with the hydrochloric acid, making sure that there is no air bubble [1] in the burette and the meniscus is not above the zero mark.

CEO2_OIO
(i) Formula mass of $\left(\mathrm{NH}_{5}\right) 2 \mathrm{SO}_{4}=(14+4) \times 2+32+16 \times 4=132$
$\%$ by mass of $\mathrm{N}=\frac{14 \times 2}{132}=21.2$
(Accept 21, 21.2 and 21.21)
(ii) Calcium hydroxide/calciun oxide / calcitm carbonate / ammonia solution
(Accept formula and common name.)
Calcium hydroxide / ealciun oxide / calcium carbonate/ammonia solution reacts with [1] H^{+}in soil to neatrnlize acid in soil.

CE02_06a
(i) Calcium hydroxide/ $\mathrm{Ca}(\mathrm{OH})_{2}$ [1]

CE02_07a
(i) $\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

OR. $\quad \mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Evolution of CO_{2} stops after reaction
(ii) Diagram:

(1 mark for the diagram; 1 mark for labefling the funnel and filter paper) (iii) $\mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-} \longrightarrow \mathrm{CaSO}_{4}$
(iv) To remove any soluble impurities (or appropriate example)
(v) (1) mole of of $\mathrm{CaSO}_{4}=\frac{10,52}{40+32+16 \times 4}=0.0774$ mole

Since all Ca^{2+} from CaSO_{4} are from CaCO_{3},
so mumber of mole of $\mathrm{CaCO}_{3}=0.0774$ mole
mass of CaCO_{3} in the sample of cafcite $=0.0774 \times(40+12+16 \times 3)=7.74 \mathrm{~g}$
\% by mass of $\mathrm{CaCO}_{3}=\frac{7.74}{7.98} \times 100=97.0$
(Accept answers from 96.5 to 97.0)
(2) The sample does not contain ions which forms insoluble sulplate, e.g. $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$

OR, There is no loss of Ca^{2+} ions during the experiment
$O R, \quad \mathrm{CaCO}_{3}$ is the only calciun-containing compound present in the sample
CE02_07\%
(i) $3 \mathrm{Cl}_{2}+8 \mathrm{NH}_{3} \longrightarrow 9 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{N}_{2}$
(ii) ammonium chloride $/ \mathrm{NH}_{4} \mathrm{Cl}$

CE02 09~
(i) (1) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
(2) Oils react with alkalis to give water soluble substances.
(ii) Wear safely glasses
because ammonia solutions altack eyes.

$O R \quad$ The glass eleaner should be used in a well-ventilated envitonment

 because ammonia has a pungent smell / is toxic.OR. Wear gloves
because alkaline solutions can attack skin.
(i) distilled water / deionized water [1]
(2) distilled water / deionized water [1]
(iii) $\mathrm{NH}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NH}_{4}{ }^{4}+\mathrm{Cl}^{-}$
mole of $\mathrm{AH}_{3}=$ moles of HCl used $=0.23 \times \frac{28.7}{1000}=6.60 \times 10^{-3}$ mole
mole of NH_{3} in $250 \mathrm{~cm}^{3}$ diluted sample $=6.60 \times 10^{-3} \times \frac{250}{25}=0.066$
$\left[\mathrm{NH}_{3}\right]$ in $25 \mathrm{~cm}^{3}$ ghass cleaner $=\frac{0.066}{\frac{25}{1000}}=2.64 \mathrm{~mol} \mathrm{dm}{ }^{-3}$

CE03_08b
(i) $\mathrm{Ni}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Ni}(\mathrm{OH})_{2}$ [1]
(ii) yellow to crange [i]
(iii) (l) $\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ [i]
mole of $\mathrm{OH}^{-}=$mole of HCl used $=0.251 \times \frac{18.5}{1000}=4.64 \times 10^{-3}$
(2) mole of NaOH used $=0.503 \times \frac{25}{1000}=0.0126$
(3) mole of NaOH that has reacted with Ni^{2+}
$=0.0126-4.64 \times 10^{-3}=7.96 \times 10^{-3}$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$
mole of $\mathrm{Ni}^{2+}=\frac{7.96 \times 10^{-3}}{2}=3.98 \times 10^{-3}$
$\left[\mathrm{N}^{2+}\right]=\frac{3.98 \times 10^{-3}}{\frac{25}{1000}}=0.159 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
(iv) To renove OH^{-}- ions which stuck on the sufface of the residua.

CE04_02b
Warm the stbstance will $\mathrm{NaOH} / \mathrm{CaO} / \mathrm{KOH}$
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ reacts with $\mathrm{NaOH}(\mathrm{aq})$ to give an alkaline gas / a gas with a pungent odour, while [1] $\mathrm{KCl}(\mathrm{s})$ does not.
$O R$, Heat substances in a lest tube. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ sublimes upon heating while $\mathrm{KCl}(\mathrm{s})$ does not.

CE04 07a
(i) Transfor the solution to a $250 \mathrm{~cm}^{3}$ volnmetric flask. (All washings should also be [1] transferred to the volumetric flask.)
Add distilled (deionized) water to the flask until the bottom of the meniscus reaches the mark of the hask
(ii) From colourless to pink / red,
(iii) (1) mole of NaOH used $=0.100 \times \frac{25.7}{1000}=2.57 \times 10^{-3}$
(iii) (1) mole of NaOH used $=0.100 \times \frac{25.7}{1000}=2.57 \times 10^{-3}$
(2) mole of ionizable iyydrogen $=2.57 \times 10^{-3} \times 10$
mole of solid acid used $=\frac{1.15}{90}=0.0127$
Basicity of solid acid $=\frac{2.57 \times 10^{-2}}{0.0127}=2.01=2$ (an integer)

CE05 03
(a) (i) Sodium hydroxide is very corrosive.
[1]
(ii) Use calcium hydroxide instead.
(b) (i) Copper cannot displace $\mathrm{H}^{+}($(aq) from $\mathrm{HCl}(\mathrm{aq})$. [1]
(ii) Add $\mathrm{ZnA} \mathrm{Ag} / \mathrm{Fe}$ to $\mathrm{HCl}(\mathrm{aq})$.
(c) (i) When water is added to concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ a a lot of heat is produced. This heat [1] can cause splashing out of the corrosive acid solution.
(ii) Add concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ to water slowly and stir the mixture.

CEOS 10
(a) When dissolved in water, citric acid gives $\mathrm{H}^{+}(\mathrm{aq})$ which reatts with $\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ to give [1] $\mathrm{CO}_{2}(\mathrm{~g})$.
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{IICO}_{3}^{-}(\mathrm{aq}) \cdots-\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mid \mathrm{CO}_{2}(\mathrm{~g})$
(b) (i) 0.098 g
(ii) No . of moles of $\mathrm{NaHCO}_{3}=\mathrm{NO}$. of moles of CO_{2}
(ii) No. of moles of $\mathrm{NaHCO}_{3}=\mathrm{No}$. of moles of CO_{2} $=\frac{0.098}{12+16 \times 2}=2.23 \times 10^{-3}$
Mass of $\mathrm{NaHCO} \mathrm{C}_{3}=2.23 \times 10^{-3} \times(23+1+12+16 \times 3)=0.187 \mathrm{~g}$
(iii) Any ONE of the following:

- during the experiment, the change of mass is very small
- mere accurate / sensitive
- experiment results in the form of grapls can be obtained immediately, time can be saved for the interpretation of experimental results
(iv) Graph
(During the reaction, the slope of the graph stould be greater than the original one indicating increase in rate. The reaction time needed is shorter. When the reaction stops, the mass should be the same as that indicated by the original one.)

CE06_04

(a) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s}) \longrightarrow \quad[1]$
(b) Hiltration/decantation
(d) The presence of $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$ ions can be shown by warming solution Z . An alkaline gas [1] will evolve.
The presence of $\mathrm{K}^{+}(\mathrm{aq})$ ions cannot be shown. As in flame test, the lilac flame of [1] potassiun will be masked by the biflant yellow flame of sodium.
(e) Yellow

CE06_09
(a) Use a burette to contain $\mathrm{HCl}(\mathrm{aq})$.

Rinse the burette with distilled water (dcionized water) and then with the 0.18 M [1] hydrochlorie acid.
Add the indieator to the flask, and titrate the acid from the burette until the indicator [1] changes from yellow to orange.
(b) (i) $\frac{20.10+19.90+20.00}{3}=20.00 \mathrm{~cm}^{3}$
(ii) $\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
mole of $\mathrm{H}^{+}(\mathrm{aq})$ used $=0.18 \times \frac{20}{1000}=3.6 \times 10^{-3}$
mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in dilluted solution $=\frac{3.6 \times 10^{-3}}{2}$
mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 2.0 g of the sample $=\frac{3.6 \times 10^{-3} \times 10}{2}=0.018$ mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.018 \times 106=1.908 \mathrm{~g}$

$$
\begin{equation*}
\% \text { by mass of } \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{1.908}{2} \times 100 \%=95.4 \% \tag{_}
\end{equation*}
$$

(c) Use a pH meter/ pH senser
(d) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is used to remove hardness in frest water. Mg^{2+} and Ca^{2+} ions in hard water [1] react with $\mathrm{CO}_{3}{ }^{2-}$ to form insoluble metal carbonates.

CE07_05
(a) $\mathrm{Zn}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2}$
$O R, \quad \mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
(b) No further gas evolved.
(c) To wash away $\mathrm{Zn}^{2+} / \mathrm{Cl}^{-} / \mathrm{H}^{+} / \mathrm{ZnCl} / \mathrm{HCl} /$ acid left behiud. [1]
(d) Copper will be oxidized / become copper(II) oxide / copper teacts with oxygen (or air).
(e) $\%$ by mass of $Z \mathrm{n}=\frac{2.00-1.75}{2.00} \times 100 \%=12.5 \%$

CE07_10
(a) $10.0 \mathrm{~cm}^{3}$ of the acid is transferred into a $250.0 \mathrm{~cm}^{3}$ volumetric flask using a pipetie.

Distilled water is added up to the graduation nark.
(b) mole of $\mathrm{NaOH}=0.0176 \times 0.025=4.40 \times 10^{-4}$
mole of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in dilute solution $=\frac{4.40 \times 10^{-4}}{2}=2.20 \times 10^{-4}$
$\left[11_{3} \mathrm{PO}_{4}\right]=\frac{2.20 \times 10^{-4} \times 10}{\frac{10}{1000}}=0.22 \mathrm{M}$
(c) Neutralization is a quick process.

As titration proceels, comentration of acid decreases, less chance of NaOH to contact … [1] with the acid / rate of reaction decreases.
(d) (i) A solution of known concentration
(ii) Not approprinte. Solid sodium hydroxide absorbs water / CO_{2} teadily in air.

CE08 04
(a) Colourless bubbles / gas evolve / magnesium dissolves.

$$
O R_{1} \quad \mathrm{Mg}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{H}
$$

(b) The reaction between magnesium and hydrochlotic acid is exothermic / increase the temperature.
Solubility of carbon dioxide in the earbonated water decreases so that more carbon dioxide gas evolves.

CEO8 11
(a) (i) (1) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CuO}_{2} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$O R, \quad 2 \mathrm{H}^{+}+\mathrm{CuO} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$
(2) To make sure that all the sulphurie acid has been reacled.

OR. To make sure that the product is not contaminated with sulphuric acid.
(ii) Filleation / filtering
(iii) The solubility of CuSO_{4} decreases when the temperature of the solution drops.
(iv) (1) Anhydrous $\mathrm{CuSO}_{4} / \mathrm{CuO}$ will be obtained.
$O R, \quad \mathrm{CuSO}_{4}$ will be decomposed
$O R$, The waler of crystallization will be removed.
(2) Absorb the water by filter paper / place it in a desicentor
(b) (i) No. of moles of copper(II) sulthate $=$ No. of moles of sulphuric acid
$=1 \times 0.15$
$=0.15$ (mole)
(ii) Molar mass of $\mathrm{CuSO}_{4} \cdot \mathrm{SH}_{2} \mathrm{O}=249.6 \mathrm{~g}$

No. of moles of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=16.2 / 249.6=0.065$ (mole)
(iii) Should be different. / Answer in (ii) < (i)

Some CuSO_{4} dissolved in the solution and did not crystallize out.

CE08_13

Chemical knowledge

Principle	Process	Observation	
		$1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$	$1 \mathrm{M} \mathrm{HNO}_{3}$
Redox	Add Zn	No brown gas evolved	Brown gas cyolved
Precipitation	Add $\mathrm{BaCl}_{2}(\mathrm{aq}) / \mathrm{CaCl}_{2}(\mathrm{aq})$ /etc.	White precipitate	No white precipitate
Basicity	Titrate with $\mathrm{NaOH}(\mathrm{aq})$	More NaOH (aq) needed to reach the end point for $\mathrm{H}_{2} \mathrm{SO}_{4}$ than HNO_{3}	

CE09 01
(a) Calcian carbonate/ CaCO_{3}[1]
(b) Limestone dissolves. / Gas (bubbles) given out [1]
$\mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ [1]
(i) (i) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}^{(}+\mathrm{CO}_{2}$[1]
[1]
(ii) Decomposition of calcium carbonate is an endothermic process
$O R \quad$ Carbon dioxide evolved can extinguish fire.

CE09 07
(a) Pour the mixture in water with stirring untin no more solid can be dissolved. [1] Filter the mixture and the residue is calcium sulphate.
(b) Ade acidified silver nitrate solution to both solution. [1]

The one with white precipitate formed is potassium chloride solution. [I]
OR, Add chlorine water / gas to both solutions.
The one with brown / yellow colour formed is potassium bromide solution.

CE09_11
(a) $\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl} \longrightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

OR, $\quad \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}^{+} \longrightarrow \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$
(b) Pour all the solution obtained from Step I to a $\left(250 \mathrm{~cm}^{3}\right)$ volumerric flask.

Rinse all the solution left in the beaket by distilled water and transfer the washing to the [1] volumetric flask.
Add distilled water to the mark of the volumetric flask and shake the volumetric flask [1] thoroughly.
(c) Methyl orange: from red to orange / yellow
$O R$, phenolplititalcin; colourtess to pink
(d) (i) mole of excess $\mathrm{HCl}=$ mole of $\mathrm{NaOH}=0.20 \times \frac{20.8}{1000}=4.16 \times 10^{-3}$
(ii) mole of HCl used to react with $\mathrm{Al}(\mathrm{OH})_{3}$

$$
\begin{aligned}
& =0.05 \times 1.0-4.16 \times 10^{-3} \times \frac{250}{25}=0.0084 \\
& \text { mole of } \mathrm{Al}(\mathrm{OH})_{3} \text { in the tablet }=\frac{0.0084}{3}=2.8 \times 10^{-3}
\end{aligned}
$$

CEIO_O2
(a) (i) Orange, dictiromate $/ \mathrm{Cr}_{2} \mathrm{O}_{7}^{2}$ ion
(ii) Heat with sodium hydroxide / potassium hydroxide / calcium hydroxide / calcium oxide / soda lime.
A colourless gas is evolved which has a characteristic / pungent smell/ which turns [1] moist red litmus paper blue.
(b) (i) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
(ii) Test with auhydrous / dry cobait(II) chloride paper.

Water vapour changes it from blue to pink.
OR, Test with anhydrous / dey copper(II) sulphate. Water vapour changes it from white to bluc.

CE $10 \quad 06$
(a) Linewater turns milky and then turns clear again.
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
(b) No. Sodium carbonate is solubie in water, [1]
(c) No. The pereeniage of carbon dioxide in air is very low and similar observations would [1] not be made in a short period of time.
$O R, \quad$ Yes. Air contains a low percentage of carbon dioxide and similar observations would be made in a sufficiently long period of time.
(d) $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

CE10_10

(a) Pipette
(b) Wash with deionized / disitilled water.
(c) $\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} \longrightarrow$ [i]
(d) As acutralization is exothermic, temperature of the solution rose when sulphuric acid [was added into sodium hydroxide solution.
When the sodium hydroxide was just completely reacted, the temperature reached a [1] maximum value.
Atter that, the addition of excess cold sulphuric acid lowered the temperature of the [1] reaction mixture.
(e)

$$
\text { mole of } \mathrm{NaOH}=2 \times 0.5 \times \frac{15}{1000}=1.5 \times 10^{-2}
$$

$$
[\mathrm{NaOH}(\mathrm{aq})]=\frac{1.5 \times 10^{-2}}{\frac{25}{1000}}=0.60 \mathrm{M}
$$

CE10 13
Chemical knowledge
(a) The higher the concentration of hydrogen ions, the lower is the $\mathrm{\rho H}$.
(b) Concentration: The more concentrated an acid is, normally the more concenfrated is the hydrogen ions.
(c) Strength: A strong acid has a higher degrece of ionization / dissociation in water to give hydrogen ions.
Correct exnmples of strong acid and weak acid (e.g. 1 M HCl and $1 \mathrm{M} \mathrm{Cl}_{3} \mathrm{COOH}$)
(d) Basicity: An acid with a higher basicity normally gives a higber concentration of hydrogen ions.
Correct exainples of acids with different basicity (e.g. $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 1 M HCl) Effective commenication

CEII_01
(b) Golden yellow flame implies the salt contains sodiun ions.

The white precipitate formed is calcium sulphate (CaSO_{4}), this implies the salt contains sulphate ions.
The salt should be sodimm sulphate.

CE11_09
(a) pipette / volumetric flask
(b) $[\mathrm{HCl}(\mathrm{aq})]=2 \times \frac{25}{250}=0.2 \mathrm{M}$
(c)

(d) from red to orange
(c) $\mathrm{HCl}+\mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}$
$O R, \quad \mathrm{H}^{+}+\mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4}^{+}$
(f) mole of $\mathrm{NH}_{3}=0.2 \times \frac{25}{1000}=5.0 \times 10^{-3}$
$\left[\mathrm{NH}_{3}(a q)\right]=\frac{5.0 \times 10^{-3}}{\frac{22.9}{1000}}=0.22 \mathrm{M}$

AL99(I)_04

(b) Thymolplathalein

The pH range of the color change of thymolphthalcin falls into the steepest / vertical part [1] of the tifration curve.

ALS9(I)_04

For the $\mathrm{pH} 2 \mathrm{HCl}(\mathrm{aq}),\left[\mathrm{H}^{+}\right]=10^{-2} \mathrm{M}$
No. of mole of HCl required for the preparation $=10^{-2} \times 1.0=10^{-2}$
Mass of constant boiling $\mathrm{HCl}(\mathrm{aq})=\frac{10^{-2}(1+35.5)}{0.202}$
$=1,80 \mathrm{~g}$

ALOOCl)_04

$\mathrm{NnOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\left[\mathrm{OH}^{-}\right]$renained $=\frac{0.105-0.095}{2}=5 \times 10^{-3} \mathrm{M}$
$\mu \mathrm{OH}=-\log \left(5 \times 10^{-3}\right)=2.30$
$\mathrm{pH}=14-\mathrm{pOH}=14-2.30=11.70$

ALOO(II)_02

Mass of HNO_{3} in $1 \mathrm{dm}^{3}=1420 \times 0.68=965.6$
Concentration of the acid $=\frac{965.6}{(1+14+16 \times 3)}=15.3 \mathrm{M}$
(accept answer from 15.0 to 15.6 M)

ASL00(II) II

Dropwise addition of $\mathrm{NaOH}(\mathrm{aq})$ into two samples solution until in excess respectively: [1]
$\mathrm{Mg}_{\mathrm{NO}}^{3}$) 2 (nq) give white precipitate in the excess $\mathrm{NaOH}(\mathrm{qq})$. [1/2]
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{H}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \quad[1 / 2]$
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)$)(ag) give white precipitate, and those precipitate redissolves in excess $\mathrm{NaOH}(\mathrm{aq})$. [1]
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Al}(\mathrm{OH})(\mathrm{s}) \quad[1 / 2]$
$\mathrm{Al}(\mathrm{OH}) 3(s)+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Al}_{(\mathrm{OH})_{4}(\mathrm{aq})}$
ASLOO(II)_12
Digestion of food in moutlo gives acids.
NaHCO_{3} dissolyes in water and dissocates to $\mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{HCO}_{3}^{-}(\mathrm{aq})$, which $\mathrm{ZCO}_{3}^{-}(\mathrm{aq})$ [1]
consumes $\mathrm{H}^{+}(\mathrm{aqq})$ and increase the pH of silya.
$\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(1)+\mathrm{CO}_{2}(\mathrm{~g})$

AL01(I)_07

Weigh a picce of office paper
Immerse paper in excess $\mathrm{HCl}(\mathrm{aq})$ [1/2]
When no CO_{2} evolves from the mixture, decont acid and wash paper with distilled water.Dry the paper in an oven $\left(110^{\circ} \mathrm{C}\right)$
Weigh the paper again $[1 / 2]$
$\%$ by mass of $\mathrm{CaCO}_{3}=\frac{\text { change in mass of paper }}{\text { original mass of paper }} \times 100$ [I]
Alternative answers
Weigh a piece of office paper [1/2]
Inmerse in a known volume of standard HCl (excess) [1]
Titrate excess HCl using standard $\mathrm{KOH}(\mathrm{aq}) / \mathrm{NaOH}$ (aq) [1]
Calculate mass of CaCO_{3} from the titration result [1/2]
$\%$ by mass of $\mathrm{CaCO}_{3}=\frac{\text { mass of } \mathrm{CaCO}_{3}}{\text { mass of paper }} \times 100$ [1]
Alternative answers
Burn the paper completely (in a crucibte) [1]
 [$1 / 2]$mass of $\mathrm{CaCO}_{3}=\frac{\mathrm{m}}{40+16} \times 100$
$\%$ by mass of $\mathrm{CaCO}_{3}=\frac{\text { mass of } \mathrm{CaCO}_{3}}{\text { mass of paper }} \times 100$mark for calculation.)[1/2][1]

]

[^0]
$1 / 2]$
$[11]$
1]

AL01(I)_07
Heat $\mathrm{NaCl}(s)$ with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$; use conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to dry HCl , connect dried HCl by
downward delivery / in a gas syringe.

Deduct 1 mark for diagram indicating a elosed system and 1 mark for using water to remove water vapor in HCl .

ALOI(I) 04 (modificd)
In aqueous solutions, $\mathrm{HCl}, \mathrm{HBr}$ and Hl are of comparable strengti because hoth compounds [] ionize completely.
OR. $\quad \mathrm{HI}$ is a stronger acid than HBr and HCl when dissolved in ethanoic acid (or other weak acid)

AL03(I)_01 (madified)
(a) $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})=\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})=\mathrm{HPO}_{4}^{2-(a q)}+\mathrm{H}^{+}(\mathrm{aq})$ $\mathrm{HPO}_{4}{ }^{2-(\mathrm{aq})}=\mathrm{PO}_{4}^{3-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
(b) After the removal off a hydrogen ion, the remaming species has an addilional negative [1] charge that atfracts the remaining hydrogen ions more strongly
(c)

volume of $\mathrm{NaOH}(\mathrm{aq})$ added
2 marks for a curve showing the nettralization of $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ and $\mathrm{HPO}_{4}{ }^{2-}$ (aq), 1 mark for labeling the axes.
Remarks: 3 vertical parts for tribasic acial.
AL04(1) 07
Step I: A standard $\mathrm{NaOH}(\mathrm{aq})$ should not be prepared using the method as described. [1/2]
Explanation: $\mathrm{NaOH}(s)$ is not a primary standard / is hygroscopic / $\mathrm{NaOH}(s)$ reacts with [1/2]
$\mathrm{CO}_{2}(\mathrm{~g})$ in air. [1/2]
Correction: it is necessary to standardize the $\mathrm{NaOH}(a q)$ before use.Step 3: The burette should not be rinsed with water only.[1/2]
Explanation: Water that remains in the burcte will cause a dilution of the $\mathrm{NaOH}(\mathrm{aq})$. [1/2]
Correction: The buretle needs to be rinsed with deionized water and then with the $\mathrm{NaOH}(\mathrm{aq})$ $[1 / 2]$prepared.
[1/2]
Step 4: Methyl orange is not a suitable indicator.
[1/2]
Explanation: The experiment involves a titration of a weak acid with a strong alkali. pH[1/2]
Correction: Phenolphthalein should be used [1/2]
Step 5: Calculation should not be based on the result of one titration only
[1/2]
Explanation: There may be errors in the titration $[1 / 2]$
$[1 / 2]$
the resulf of the trial titration, if necessary).
ASL04(I) 1(a) Observation: misty fumes[1]
$\mathrm{HCl}(\mathrm{g})$ dissolves in water wapor in air to form $\mathrm{HCl}(\mathrm{aq})$. The highly polarized $\mathrm{HCl}(\mathrm{aq})$ [1]calise water to condense to water droplets.
(b) Place a glass rod wetted with aqueous ammonia near the month of the reagent bottle. [1]Dense white furmes ars formed[1]
AL05(1)_08[1]
The person did not wear laboratory coat. Should wear a laboratory coas
The person did not have eye protection. Should weak safety spectacles / goggles.[1]
Should not detect $\mathrm{NH}_{3}(\mathrm{~g})$ by smelling white heating the reaction mixture. The mixture mayshoot his face. Should detect $\mathrm{NH}_{3}(\mathrm{~g})$ by the use of a piece of wet red litmus paper that canchange it from red to bhe
$O R, \quad$ by $\mathrm{HCl}(\mathrm{aq})$ that can form a white fumes with $\mathrm{HCl}(\mathrm{aq})$.
OR, should smell $\mathrm{NH}_{\mathrm{s}}(\mathrm{g})$ afer turning off the Bursen burner,

AL05(11)_01
(a) $2 \mathrm{X}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{XCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{X}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{XCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) According to the equations, $2 \mathrm{X}=\mathrm{X}_{2} \mathrm{O}_{3}$

For complete reaction with 6 mole of HCl , the mass of X (s) required is less than that of $\mathrm{X}_{2} \mathrm{O}_{3}$.

Greatest possible vafee of RAM of X can be calculated by assuming that the sample contains X only.
No. of mole of $\mathrm{HCl}(\mathrm{sq})$ used $=(0.0954)(6)=0.5724 \mathrm{~mol}$
Since the sample consists of pure X \& 1 mole of X reacts will 3 moles of HCl
No. of moles of $X=0.5724 \div 3=0.1908 \mathrm{~mol}$
Grealest possible RAM of $X=16.5 \div 0.1908=86.5$
Smallest possible value off RAM of X can be calculated by assuming that the sample conlains $\mathrm{X}_{2} \mathrm{O}_{3}$ only.
Since 1 mole of $\mathrm{X}_{2} \mathrm{O}_{3}$ reacts with 6 moles of HCl
No. of mole of $\mathrm{X}_{2} \mathrm{O}_{3}=0.5724 \div 6=0.0954 \mathrm{~mol}$
Let the RAM of X be A
$\frac{16.5}{2 A+16 \times 3}=0.0954$
Smallest possible RAM of $\mathrm{X}=62.5$
(c) The only trivalent metal with RAM in the range of 62.5 to 86.5 is gallium, Ga

AL05(I)_04

(a) Path I: $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{qq}) \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{qq})+3 \mathrm{H}_{2}(\mathrm{~g})$ $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+6 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{s}(\mathrm{~s})+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad$ [1]
Palli II: $2 \mathrm{Al}(\mathrm{s})+2 \mathrm{NaOH}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})+7(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})\right.$

$$
\begin{equation*}
2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right](\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{nq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \tag{1}
\end{equation*}
$$

(b) Path I:

Production of 2 molc of $\mathrm{Al}\left(\mathrm{OH}_{3}\right)_{3}$ requires $3 \mathrm{~mol}^{2}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{ag})$ and 6 mol of NaOH
Path II:
Production of 2 mole of $\mathrm{Al}(\mathrm{OH})_{3}$ requires 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and 2 mol of NaOH
(c) Path II is better because less reactants are used
and less heat is produced.
AL0G(I)_02
(a) Limestone / marble / cialk / anhydrite / gypsum / fluoritc
(b) Amount of $\mathrm{H}^{+}(\mathrm{aq})$ exchanged $=0.020 \times 15 \times 10^{-3}=3.0 \times 10^{-4} \mathrm{~mol}$ [1] Total no. of mole of $\mathrm{Ca}^{2+}(\mathrm{aq}) / \mathrm{Mg}^{2+}(\mathrm{aq})=3.0 \times 10^{-4} \div 2=1.5 \times 10^{-4} \mathrm{~mol}$ Total hardness of the water sample $=\frac{1.5 \times 10^{-4}}{50 \times 10^{-3}}=3.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

ASLOG(1)_03

Not agree
' \mathbf{A} is stronger acid than \mathbf{B} ' only means the degree of ienization of \mathbf{A} is larger than that of \mathbf{B}. [$[$] However, pH of an acid solution depends on both the degree of ionization and concentration of it.
As such, the stronger acid A may have a higher pH than the weaker acid B if the concentration [i] of acid B is higher than that of A by an adequate amount.

ASL07(I) 03
(a) $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NH}_{4}{ }^{+}(\mathrm{nq})$ [1]
(b) No. of moles of urea in 2 pieces of chewing gum

$$
\begin{equation*}
=\frac{1.5 \times 10^{-3}}{(12+16+14 \times 2+1 \times 4)}=5 \times 10^{-5} \tag{1}
\end{equation*}
$$

no. of moles of H^{+}that can be nelitralized $=1 \times 10^{-4}$
(c) Digestion of food in mouth gives acids.(1/2]
Chewing urea-containing chewing gum increases the pH of saliva, [1/2]
The equilibriut
not favored.
ASL07(I) 07
(a) Primary standard: a standard solution of the substance can be peepared by dissolving avolume.
(b) (i) $\mathrm{Br}_{2}(\mathrm{l})$ is volatile. It is difficult to weigh a sample of Br 2 (I) accurately.
(ii) $\mathrm{KOH}(\mathrm{s})$ absorbs water moisture / absorbs CO_{2}.

ASL07(I)_09

Prepare a saturated solution of $\mathrm{KCl}(\mathrm{s})$ by dissolving the sall in water until in excess. [1]
Place the flask containing the saturated solution in water bath/hermostat kept at 208 K . [1/2]
Filter the solution at 298 K to remove the undissolved $\mathrm{KCl}(\mathrm{s})$. $\quad[1 / 2]$
Weigh a clean and dry evaporating dish (w). $\quad[1 / 2]$
Transfer a portion of the saturated solution to the evaporating dish and weigh the dish together [1/2] with the solution (w_{2}).
Evaporate the solution to dryness in an oven (hy the use of an appropriate metiod)
Weigh the dish and the solid residue.
Repeat the evaporating and weighing process until the dish and the solid residue reach a [1/2] constant mass (w_{3}).
Solubility of KCl(s)at $298 \mathrm{~K}=\frac{w_{3}-w_{1}}{w_{2}-w_{3}} \times 100 \mathrm{~g}$ per 100 g of water

AL07(II)_01
Use a pipette to transfer $10.0 \mathrm{~cm}^{3}$ of $0.10 \mathrm{MAgNO}_{3}$ (aq) to a $100.0 \mathrm{~cm}^{3}$ volumetric flask. (OR $25.0 \mathrm{~cm}^{3}$ of $0.10 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$ to a $250.0 \mathrm{~cm}^{3}$ volumetric flask)
Add deionized water to the flask until the bottom of the meniscus reaches the graduation mark.
Swifl the solution thoroughty.

ASL08(I) 08

Preparation of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
Heat excess Cu metal with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a fume cupboard.
$\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
Add water to the resulting mixture and filter off any excess Cu metal. Evaporate the solution

to give saturated $\mathrm{CuSO}_{4}(\mathrm{aq})$

Allow the solution to cool to obtained $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$. Dry the crystals in a desiccator,[1]

AL09(1)_07c

Ditution of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is highty exothermic process. The heat evolved can vaporize the water and cause splashing out of the acid.

ASL09(II)_03
(a) Red to orange
(b) In the titration, no. of moles of NaOH used $=0.0941 \times 16.48 \times 10^{-3}=1.55 \times 10^{-3}$

No. of moles of $\mathrm{H}+$ originally present $=0.955 \times 25 \times 10^{-3} \times 2=0.0478$
No. of moles of $\mathrm{H}+$ that react with Mg
$=0.0478-1.55 \times 10^{-3} \times 10=0.0322$
$\mathrm{Mg}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2}$
No. of mole of Mg in the tibbon $=0.0161$
Relative atomic mass $=0.420+0.0161=26.05$
(c) Some of the Mg has been oxidized to MgO

ASLIO(1) 09
(a) Electrical conductivity $/ \mathrm{pH}$

Electrical conductivity decreases before the equivalence point because the concentration [1/2] of the highty conducting $\mathrm{OH}^{-}(\mathrm{aq})$ decreases as it reacts with $\mathrm{H}^{+}(\mathrm{aq})$ to give $\mathrm{H}_{2} \mathrm{O}$ (I).
After the equivalent point, the increase in conductivity is due to the increase in $\left[\mathrm{H}^{+}(\mathrm{aq})\right] . \quad[1 / 2]$ $O R, \quad \mathrm{pH}$
 volume of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ added
pH drops before the equivalent point because $\mathrm{OH}^{-}(\mathrm{aq})$ ions are removed by
$\mathrm{H}^{+}(\mathrm{aq})$ ions.
$\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
When it is close to the equivalence point, both $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ and $[\mathrm{OH}$ (aq) $]$ are
small, Addition of a drop of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{at})$ can lead to a significant decrease in pH .

AL10(I) 07
Allow a known volume (v) of the water sample 10 pass through a proton-exchange resin column. The $\mathrm{Ca}^{2+}(\mathrm{aq})$ in the sample will be quantitatively exchanged by $\mathrm{H}^{+}(\mathrm{aq})$ ions. Ca^{2+} (in sample) $+2 \mathrm{H}^{+}$(fron resin) $\longrightarrow \mathrm{Ca}^{2+}$ (on resin) $+2 \mathrm{H}^{+}$(in sample) Thtrate the eluent with standard NaOH (aq) using phenolphthalein as indicator, to determine
the no. of moles of $\mathrm{H}^{\dagger}(\mathrm{aq})$. The mixture clanges from colorless to pale pink when the endpoint is reached.
Hardness due to $\mathrm{Cu}^{2+}(\mathrm{aq})=\frac{1}{2} \times \frac{\text { molarity of } \mathrm{NaOH}(a q) \times \text { volumeof titrant }}{v}$
AL11(I)_07
(b) (i) Add $\mathrm{HCl}(\mathrm{aq}) / \mathrm{KCl}(\mathrm{aq}) /$ aqueous solution of a water-soluble chforide. Only $\mathrm{Pb}^{2+}(\mathrm{aq})$ gives a white precipitate.
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})$
OR, Add $\mathrm{NaOH}(\mathrm{aq})$. $\mathrm{Onfy}^{\mathrm{Pb}} \mathrm{Pb}^{2+}($ aq) gives a white precipitate (which is soluble in the excess alkali) $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$ $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow\left[\mathrm{Pb}(\mathrm{OH})_{4}\right]^{2}(\mathrm{aq})$
[NOT accept a test with $\mathrm{SO}_{4}{ }^{2-}$, bath Br^{2+} and Pl^{2+} forms white precipitatc.]
(ii) Add acidififed $\mathrm{AgNO}_{3}($ (aq). Cl-(aq) gives a white precipitate, while Br -(aq) gives [l] a pale yellow precipitate.
$\mathrm{Ag}^{+}(\mathrm{nq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})$
OR, Add $\mathrm{Cl}_{2}(\mathrm{aq})$. Only Br (aq) gives a brown solution. $\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{Br}^{-(\mathrm{qq})} \longrightarrow \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-(\mathrm{aq})}$
OR, Treal solution wit acidified $\mathrm{KMnO4}$ (aq). Cl -(an) causes itecolorization slowly; $\mathrm{Br}(\mathrm{aq})$ gives a orange solution.
$10 \mathrm{X}-(\mathrm{aq})+2 \mathrm{MnO}_{+}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 5 \mathrm{X}_{2}(\mathrm{~g} / \mathrm{l})+2 \mathrm{Mn}^{2+(\mathrm{aq})}+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

AL1i(II)_06

(c) Observation: white precipitate is forned and the precipitate dissolves in excess alkali to give a cholorless solution.
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
$\mathrm{Al}(\mathrm{OH})(\mathrm{s})+\mathrm{OH}^{-(\mathrm{aq})} \rightarrow \mathrm{Al}(\mathrm{OH})_{4}(\mathrm{aq})$
ASLI3(I)_09a (modified)
(i)
$[\mathrm{NaClO}]=\frac{\frac{1 \times 5.25 \%}{74.5}}{1 \times 10^{-3}}=0.705 \mathrm{M}$
(ii) Moles of cyclohexanol used $=\frac{5.0 \times 0.948}{100}=0.0474$
moles of NaClO in $25 \mathrm{~cm}^{3}$ of bleach $=0.705 \times 25 \times 10^{-3}=0.0177$
Minimum no. or portions of bleach used $>\frac{0.0474}{0.0177}=3$
DSEISP_01
(b) False. Dilution of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a highly exothernic process.

The heat evolved may cause the acid to splasit out.
(c) False. ' A is a stronger acid than B ' only means the degree of ionization of A is larger than that of B. However, the pH of an acid solution depends on both the degree of ionization and its concentration.
As such, the stronger acid A may have a higher pH than the weaker acid B if the concentration of acid B is Sigher than that of A by an adequate amount.

DSEIISP_08
(a) zinc granules dissolve / a colorless gas is produced / solutiont gets warm
$\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
$O R_{1} \quad \mathrm{Zn}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2}$
(b) Orean precipitate is forned/The green colur of the sulution beconnes paler (coloriess). If
$\mathrm{FeSO}_{4}+2 \mathrm{NaOH}_{4} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
$\mathrm{OR}, \quad \mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{2}$
\square
3 sets of tests needed each of which carries 2 marks:

- Suitable test matches the intention to distinguish certain compounds [3]

Correct observation / result
Effective communication

- Conduct flame test uising the samples

Only two sodium compounds ($\mathrm{NaOCl}_{\mathrm{a}}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$) give a golden yellow flame.

- Heat samples with NaOH (aq).

Only the two amnonium compounds ($\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$) give an alkaline gas / ammonia.

- Add HCl(aq)

Only $\mathrm{NaOCl}(\mathrm{aq})$ gives greenish yellow gas / chlorine.

- Touch with moist litmus paper / color flower petal, Only NaOCl gives bleaching effect.
- Added acidified BaCl_{3} (aq) to aqueous solution of the two sodium componads. Only $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ gives a white precipitate.
- Add acidified $\mathrm{AgNO}_{3}(\mathrm{aq})$ to aqueous solutions of the two ammoniun conpounds. Only $\mathrm{NH}_{4} \mathrm{C}($ (aq) gives a white precipitate.

DSE12PP_01
(a) (i) $\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}$

$$
O R, \quad \mathrm{ZnO}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) Unreacted ZnO (s) can be seen.

To ensure that the product is not contaminated with sulphuric acid.
OR, The une remove the excess $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$.
(b) Remove a drop of the solution with a glass rod, and see whether any solid forms when [1] the drop cools.
(c) Washing with distilled water can remove the water-soluble impurities.

Using a small amount of water / cold water helps to reduce loos of the salt. [I]
(d) Any ONE of the following:

- Drying the crystals between filter papers
- Putting the erystals in a desiccator.
(DO NOT accept methods which invelve strong heating.)
(c) $\mathrm{Zn} / \mathrm{Zn}(\mathrm{OH})_{2} / \mathrm{ZnCO}_{3}$

DSEI2PP 04
(a) Dissolve 1.14 g of $\mathrm{M}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ in some distilled water / desonized water in a beaker. [1] Transfer the solution to a $100,0 \mathrm{~cm}^{3}$ of volunetric flask,
Wash the beaker with distilled water/deionized water and transfer the washings into [1]
the volumetric flask.
Add distilfed water / deionized water up to the gradtation mark of the volumetric flasl.
Shake the volumetric Ilask to ensure its content is well mixed
(b)
mole of $\mathrm{H}^{+}(\mathrm{aq})$ used $=0.085 \times \frac{25.30}{1000}=2.15 \times 10^{-3}$
$\mathrm{M}_{2} \mathrm{CO}_{3}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{M}^{+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
moles of $\mathrm{M}_{2} \mathrm{CO}_{3}$ in the solid sample $=2.15 \times 10^{-5} \times \frac{100}{10} \times \frac{1}{2}=0.01075$

$$
\begin{align*}
& \frac{1.14}{2 \mathrm{M}+12+16 \times 3}=0.01075 \tag{1}\\
& \mathrm{M}=23 \\
& \mathrm{M} \text { is likely to be } \mathrm{Na}
\end{align*}
$$

DSE12 06

Dissolve solid lead(il) nitrate in watc
Nas[1]
Filter[1]
Effective commanication
DSEE2 07
(a) $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ [1]
(b) The KOH is (very) corrosive. $/ \mathrm{NH}_{4} \mathrm{NO}_{3}$ is explosive $/ \mathrm{NH}_{4} \mathrm{NO}_{3}$ is flammable $/ \mathrm{HCl}$ is [1] corrosive.
(c) Prevent sucking back as $\mathrm{NH}_{3}(\mathrm{~g})$ is very sotuble / Increase the surface area for dissolving [1] $\mathrm{NH}_{3}(\mathrm{~g})$
(Accept prevent HCl sucking upwards or similar descriptions)
(d) (i) Pipete
(ii) Changes from red to orange
(iii)
(ii) mole of HCl in the beaker $=0.100 \times \frac{41}{1000} \times \frac{100}{25}=0.0164$
mole of $\mathrm{NH}_{3}(\mathrm{~g})$ produced $=0.0485-0.0164=0.0321$
$\%$ by mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}=\frac{0.0321 \times 80}{3.150} \times 100 \%=81.5 \%$
(Accept $81.52 \% / 82.5 \% / 82.54 \%$)
[1]

DSE13 0
(b) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \Longrightarrow \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$
$O R, \quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{qq})=\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
$O R, \quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is a weak acid. It undergoes incomplete ionization in water.
As $\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right]$ and $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ in $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ is less than 0.1 M , it pH is [1]
thus greater than 1 .
(c) $\mathrm{NaOH}(\mathrm{aq})$ is deliquescent / hygroscopic /absorbs water from the atmosphere. [1]

OR, $\quad \mathrm{NaOH}(\mathrm{s})$ reacts with $\mathrm{CO}_{2}(\mathrm{~g})$ in the atmosphere.
\therefore The mass of $\mathrm{NaOH}(s)$ cannot be accurntely determined by weigfing.
(d) (i) From colorless to pink
(ii) $\quad M_{A} V_{A} B_{A}=M_{B} V_{B} B_{B}$ $(0.05)(25)(2)=\mathrm{MB}(17.20)(1)$ $\mathrm{M}_{\mathrm{B}}=0.145 \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3}$
(e) (i) Riusing the conical flask with $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$; Some $\mathrm{H}^{+}(\mathrm{aq})$ ions / acid $/$ [1] $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ remain in the flask, and more alkali (as revealed from the burette reading) than actually required is used to reach 在e fitration end-point. (Do not accept the concentration of H^{+}(aq) increase.)
(ii) $\mathrm{NaOH}(a \mathrm{a})$ clinging onto the stem of funnel may fall into the burette. The [1] volume of alkali used (as revealed from the burete reading) is smaller than what is expected.

DSE14_05
(a) Wearing protective gloves or plastic gloves or gown or safety googles or any suitable [1] PPE
$O R, \quad$ Adding concentrater acids into water when diluting the concentrated acids
$O R_{1} \quad$ Use a fume cupboard
Not accepted: maintain a good ventilation.
(b) No, the strength of an acid is not related to its concontration. Not all concentrated neids, [l] c.g. ethanoic acid, are strong acids / use a concrete example to illustrate.

DSE14_07
(a) Mass of HCl present in $1000 \mathrm{~cm}^{3}$ of the concentrated acid $=1180 \times 36 \%=425 \mathrm{~g}$

Formula mass of $\mathrm{HCl}=36.5$
Concentration $=\frac{425}{36.5}=11.6 \mathrm{~mol} \mathrm{dm}^{-3}$
(Accept 11.5-11.644, maximum 3 decimal places)
(b) (i) Weigh accurately the amount of sodium carbonate needed and dissolve if using deionized wwater/distilled water.
(accept using "a known amount of sodium carbonate", not accept if slate "water" only.)
Transfer all tie solution made to a volumetric flask, add deionized water to
(ii) Mole of H^{+}present in the diluted acid $=1.06 \times 10 \times 10^{-3} \times 2=0.0212$ Concentration of the acld $=\frac{0.0212}{20,30 \times 10^{-3}} \times 10=10.4 \mathrm{~mol} \mathrm{dm}^{-3}$
(c) Some HCl cseaped / vaporized from the concentrated acid as $\mathrm{HCl}(\mathrm{g}) /$ Coneentrated \quad [1] hydrochloric acid is volatile.

DSE14_09
(a) (i) A blue precipitate is obtained.
(ii) $\mathrm{Cu}^{2+}(\mathrm{Aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ (Slate symbols are not required)

DSE15 02
(a) A white precipitate/solid is firstly formed/lt tums milky; the precipitate dissolves in the presence of excess $\mathrm{CO}_{2}(\mathrm{~g})$.
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}_{2}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})$
DSE15_04
(c) Lead/lead compounds are toxic / hatmfin.
$O R, \quad$ Sulphuric acid is corrosive / irritant.
NOT accept answers like "lead compounds are pollutants / heavy metal" NOT accept answers like 'acid cause harm the enviromment".
(d) (i) Pour a small amount of the concentrated sulphuric acid to a large amount of [2] water.
Accept answers like "add concentrated sulphturic acid to a large amount of water," Constant stirring is required (if the amounts of water and acid are not mentioned) [1] Wear goggle / fice shield/safety spectacles / safety glasses
(ii) Mole of sulphuric acid $=\frac{2.48}{98.1}=0.0253$

Molarty of sulphuric acld $=\frac{0.0253}{5 \times 10^{-3}}=5,06 \mathrm{M}$
DSE15_05

- Equation: $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{2}$
- Explanation: ammonia ionizes slighty in water / The fonization of ammonia in water is incomplete.
- Metbod: measure the pH / electrical conductivity / enthalpy change of neutralization / temperature change in nevtralization of both $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$.
- Observation: $\mathrm{pH} /$ elcetrical conductivity / enthalpy change of neutralization/temperature rise in neutralization of $\mathrm{NH}_{3}(\mathrm{aq})$ is lower than that of $\mathrm{NaOH}(\mathrm{aq})$.
- Fair comparison between $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$
pH measurement - same concentration of $\mathrm{NH}_{3}($ (qq) and $\mathrm{NaOH}(\mathrm{aq})$
elcetrical conductivity measurement - same concentration of $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$
enthalpy clange of neutralization - same amount / known amomit of $\mathrm{NH}_{3}(\mathrm{aq})$ and
$\mathrm{NaOH}(\mathrm{aq})$
determine the temperature rise in neutralization - same volume and concentration of $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{NaOH}($ (aq)
- Effective communication

DSEIG_06

(a)

(b) (i) Volumetric flask
(ii) mole of $\mathrm{NaOH}(\mathrm{aq})=0.123 \times 0.01845=2.27 \times 10^{-3}$
mole of citric acid $=\frac{2.27 \times 10^{-3}}{3}=7.56 \times 10^{-4}$
Moles of citric acid in the satuple $=7.56 \times 10^{-4} \times 10=7.56 \times 10^{-3}$
$\%$ by mass of citric actd $=\frac{7.56 \times 10^{-3} \times 192}{1.65} \times 100 \%=88.0 \%$
(c) (i) (Colorless) gas bubles form. / Effervescence occurs. / Carbon dioxide gas is [1] given out.
Do not accept "the powder dissolves".
(ii) $\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

DSE16 09

- Dissolve the solids separalely in water.
- Add aqueous ammonia / $\mathrm{NaOH}(\mathrm{aq})$ to each of the solutions obtained until excess.
- White precipitate formed initally for all of then. But only the precipitate of ZnSO_{4} [I] dissolves in excess aqueous anmonia $/ \mathrm{NaOH}$ (aq).
- Heat respecively the two remaining solids in a test tube and place a picce of dry CoCl_{2} paper in the nouth of the thbe.
- Only $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ can tuns dry CoCl_{2} paper from blue to pink / anhydrous $\mathrm{CuSO}_{4}(\mathrm{~s})$ from white to blue,
Effective communication

DSE16_11
(a) To ensure fair comparisons between the trials.
$O R$, To ensure the concentration of $\mathrm{NaOH}(\mathrm{aq})$ / reactant is the only variable.
OR, The volume of $\mathrm{NaOH}(8 q)$ used can represent the concentration of $\mathrm{NaOH}(\mathrm{aq})$ I reactant in the reaction mixtures.
(Not accept if the answer is expressed in terms of "amount of NaOH(aq)")
(b) $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=2.0 \times(4.015 .0)=1.6 \mathrm{~mol}_{\mathrm{dm}^{-3}}$

DSE17 OL
(b) (i) The gas (ammonia) is less dense than air
(Should be answered in terms of density. Not accept: The gas is lighter than air.)
(ii) The gas (ammonia) is soluble (in water)

Accept: the gas will be absorbed by water / The gas will react with water. (Not accept: The gas is slightly soluble in water.)
(c) (i) White solid forms / white precipitate forms / heat evolves / temperature rises
(Accept: milky nixture forms / cloudy mixture forms / white suspension forms.)
(ii) (i) When $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is added to $\mathrm{it}, \mathrm{BaSO}_{4}($ s $)$ (and $\mathrm{H}_{2} \mathrm{O}(1)$) are formed, the
concentration / mumber of mobile ions in the nixture decreases / [Ba^{2+} and $\left[\mathrm{OH}^{-}\right]$decrease.
(2) Excess $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{SO}_{4}^{2-}(\mathrm{aq})$ ions are introduced into the solution.

The concentrations / amount / number of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{SO}_{4}{ }^{2}$-(aq) ions in the solution iscrease.
The concentrations / amount / unnber of (mobile) ions increases when $\mathrm{H}_{2} \mathrm{SO}_{4}$ is in excess.
(Accept only H^{+}or $\mathrm{SO}_{4}{ }^{2}$-is mentioned in the answer.)

DSE17 02

(c) $\left(1.0 \times 10^{-8} \times 1000\right) \div 207.2$ [1]
$=4.83 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$

DSE17 06
(a) Oxidizing and corrosive
(b) (i) The reaction between concentrated sulphuric aeid and $\mathrm{NaOH}(a q)$ is highly [1] exothermic.
$\mathrm{O}_{\mathrm{k}}^{\mathrm{K}} \quad$ Concentrated $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{SO}_{4}$ is corrosive.
$O R$, Avoid to fill the butette more than once.
$O R$, Use less chemicals.
(Do not accept answer like "splashed oul" without mentioning of "ioghly exothermic.")
(ii) Red to orange

Do not accept "red to yeltow".
(iii) No. of moles of NaOH used $=0.189 \times 22.20 \times 10^{-3}=4.20 \times 10^{-3}$

Concentration of the concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
$=4.20 \times 10^{-3} \div\left(2 \times 25 \times 10^{-3}\right) \times(1000 \div 5)$
$=16.8 \mathrm{~mol} \mathrm{dm}^{-3}$
Accept 16.76, 16.78, 16.783, 16.784, 16.80
Do not accept $16.7832 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
$\begin{aligned} & \text { Alternalive } \quad \text { Molarity of dilute sulphurie acid } \\ &\left(\mathrm{M}_{\text {disut }}\right)(25)(2)=(0.189)(22.2)(1)\end{aligned}$
Mdilue $=0.0839 \mathrm{~mol} \mathrm{dm}^{-3}$
Mofarity of coneentrated sulpluric acid
$\mathrm{M}_{\text {rons }}(5)=(0.0839)(1000)$
$M_{\text {cone. }}=16.8 \mathrm{~mol} \mathrm{dm}^{-3}$

DSE18_02
(a) Set-up for preparation - boiling tube with reagents aud HEAT (with stopper)
(Accept heating the reagents in a flask)
Upward delivery of ammonia gas (without stopper)
(Accept collecting the gas with a gas syringe.)

(b) (i) Ammonia is soluble in water / Ammonia reacts with water to form aqueons ammonia.
As all ammonia dissolves, the atmospheric pressure forces the water in the trough to inject into the flask through the glass tubing / the pressure inside the flask is reduced.
(ii) The water in the flask turns from coloriess to pink

It is because aqueous ammonia is alkaline.

DSE18_07
(a) Conical flask
(b) Yellow to orange (Do not accept red) [
(c) moles of $\mathrm{B}_{4} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})=\frac{0.125 \times 0,01898}{2}=1.187 \times 10^{-3}$
[1]
$\frac{0.452}{201.2+187}=1.187 \times 10^{-3}$
$n=10$
(d) (i) Solutions with accurately known concentrations.
(ii) It can be used to defermine the concentration of another reagent/ number of water [I] of crystallization / molar mass, elc. yia titration / to prepare a callbration curve.

DSE18_08

(a) An acid which can (almost) completely ionizo / dissociate to II ${ }^{*}$ ions in woter.

DSE19_03

Gas X may be ammonia / NH_{3}.
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{NH}_{4}{ }^{+}(\mathrm{qq})+\mathrm{OH}^{-}(\mathrm{aq})$
(State symbols net required) (Ignore incorrect slate symbois) (Accept single arrow)
OH^{-}(aq) turns phenolphthatein pink.
OR. Ammonta/the gas/the solution is alkaline, and it turns phenolyhthaiein pink.
DSE19_08
(a)

Maximum temperature $=33.1^{\circ} \mathrm{C}$
Drawing 2 best-fit slant straigh lines to show how to obtain the possible maximum temperature using the volune of $\mathrm{NaOH}(\mathrm{aq})\left(58.0 \mathrm{~cm}^{3}\right)$.
(b) (i)
moles of $\mathrm{NaOH}(a q)$ used $=1.0 \times \frac{58}{1000}=0.0058$
\because At cquivalent point, moles of $\mathrm{NaOH}(\mathrm{aq})$ used $=$ moles of $\mathrm{HCt}(\mathrm{aq})$ reacted
\therefore moles of $\mathrm{HCl}(\mathrm{aq})$ reacted $=0.058$
concentration of $\mathrm{HCl}(a q)=\frac{0.058}{\frac{42.0}{1000}}=1.38 \mathrm{M}$

DSE19_04
(a) (i) To dissolve the solid by adding delonised / distilled water fo the solid in a [1] beaker.
Transfer the solution with rinsing (with deionised / distilled water) into a $250.0 \quad$ [1] cm^{3} volumetric flask and add deioniseel / distilled water to the graduation mark of the flask. Slake thoroughly.
(ii)
molarity of the standard solution $=\frac{1.12}{204.1} \div 0.2500=0.022 \mathrm{M}$
(Also accept 0.02195, 0.02196, 0.0220; Not accept 0.02192, 0.0210)
(Accept max. 4 significant figures, i.c. 0.02195)
(Accept answer without an unit, but NOT accept answer with an incorrect minit.)
(b) If ti ionises completely in water, $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=0.06\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ then the pH will be 1.22 .

However the actual $\mathrm{pH}(3,3)$ is higher than 1.22, therefore the -COOH in polassium [1] fydragenphthalate only ionises partly in water.
Also accept:
The $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ in pH 3.30 solution is $0.0005\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$.
However the actual $\left[\mathrm{H}^{+}(\mathrm{nq})\right]\left(0.0005 \mathrm{~mol}^{\left(\mathrm{dm}^{-3}\right)}\right.$ is lower than $0.06 \mathrm{~mol} \mathrm{dm}{ }^{-3}$, therefore the - COOH in potassium hydrogenphthalate only ionises partly in water,)

DSE19_10
Dissolve the sample in (distilled) water / Add water to the sample.
Add excess $\mathrm{Zn}(\mathrm{s})$ to the sample solution.
Filter to collect $\mathrm{ZnSO}_{4}(\mathrm{aq})$ / filtrate / solution / Filter off the solid/ $\mathrm{Cu}(\mathrm{s})$ and excess $\mathrm{Zn}(\mathrm{s}) /$ [1] $\mathrm{Cu}(\mathrm{s}) / \mathrm{Zu}(\mathrm{s})$
Evaporate the filtrate, allow ZnSO_{4} solid crystallises ont / collect crystals and then dry fwill) filter paper / in a desiccator)
OR Heat (to concentrate/saturate) the filtrate, cool down to allow crystallisation / collect crystals and then dry
OR Set the filtrate aside to allow crystillisation / collect crystals and then dry
(Do not accept "heal to dryness", "put the filtrate into an oven", "dry the crystals in an oven")

Commmication mark

(Chemical knowledge $=0$ to 2, communication mark $=0$
Chemical knowledge $=3$ to 4 , communication mark $=0$ or
Incomplete answer or difficult to understand, communication mark $=0$)
Need to indicate excess Zu(s) has been used at least once in the answer to give a complete answer.

1. (a) $2,8,18,7$ I
(b) \rightarrow
z z
Accept arswer with correct inver shell electrons)
Not accept answer with incorrect imer shell etections, ifinner shell electrons are drawnt
(c) (i) $\mathrm{K}_{2} \mathrm{SO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})$ $\mathrm{K}_{2} \mathrm{SO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})$
Correct states (1 mark)
Balanced equation (1 mark)
(No mark fifte tbemital species shown in He equition are incornect)
(ii) (Reddish brown / brown) changes to colourless. / The solution changes to colourless. Not accept incortest mitial colour. Not accepi pale brown $\mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Br}+\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}$
(State symbils not required) (Igrore incorrect state symbols)
$\mathrm{Y}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{3} \mathrm{O} \rightarrow 2 \mathrm{Y}^{-}+\mathrm{SO}_{2}^{2}+4 \mathrm{H}^{+}$
OR $\quad \mathrm{Y}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Y}^{-}+\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}$
(iii) Y and Z have the same number of electrons/ seven electrons in the outermost shells, hence Het pecet "Same chemieal trongrties"
DSE20_04
2. (a) To increase the surface area of egsshell for increasing the reaction rate.
(b) To dissolve organic substances in eggshell.
(c) Speed up the reaction between the calcium carbonate in the sample with HCl(aq). / Shorten the time needed for the reaction./To make sure that the reaction is complete.
(d) i phenolphthalein
(e) Nunber of moles of CaCO_{3} in the sample
$=(0.200 \times 25.00-0.102 \times 16.85) \times 10^{-3} \times 1 / 2$
$=1.64 \times 10^{-3}$
$=1.64 \times 10^{-3} \times 1001-0.204 \times \mathrm{CaC}_{3}$ in the sample
$=1.64 \times 10^{-3} \times 100.1 \div 0.204 \times 100 \%$
$=80.5 \%($ Accert $80.4-80.5 \%$
DSE20_05
3. (a) Carboxyl (group) $/-\mathrm{CO}_{2} \mathrm{H}$ (group)/- COOH (group) $/-\mathrm{CO}_{2} \mathrm{H} /-\mathrm{COOH} / \mathrm{CO}_{3} \mathrm{H} / \mathrm{COOH}$ Not accept acid f allanoic meld / organic aclid / $\mathrm{COOH}-/ \mathrm{CHO}_{2} / \mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{HI}$
(b) (i) $\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} / \mathrm{HOOCCH}_{3} \mathrm{CH}_{2} \mathrm{COOH} / \mathrm{CH}_{2} \mathrm{COOM}_{2}$
Not accept: $\mathrm{HOOCC}_{3} \mathrm{HF}_{4} \mathrm{COOH}$)
$\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{COOCH}_{3}$; $\mathrm{HO} \mathrm{CCOOCH}_{3} \mathrm{CH}_{3}$
(ii) - The enthalpy changee when solutions of an acid and an alkali / a base react together $/$ neutralise under standard conditions to produce 1 mole of water.
(Accept: $25 \mathrm{C}(298 \mathrm{~K}$) and one momospheric pressure ($760 \mathrm{mmHH}, 103 \mathrm{kPa}$

- As indicated in the equation, the reaction produces 2 moles of water, hence $y / 2$
represents the standard cnthalpy change of neulualisalion represents the standard enthalpy change of neutalisation.
(Accept: No unit)
(iii) L Less negative than $-57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
- W is a weak acid when compared with HCl(aq), energy /heatemergy /heren is needed

Accent absotb energy
Not accept: dissocinto

7. (a) : Put a moist ted jimuspaper/ /maciss pH petser near the mouth of the conical llask.
 paper to blue L LiA paper wa blue

- Pur g glass rod with conc. HCI HCl(g) near the mouth of the conical flask
- Deive the gas produced into water, then use a pli meter ta measire the pH of the solution
- Anmonia / NHy gas dissolves in water to give OH-ions/at alkaline soltuion wiff $\mathrm{H}>4$.
(b) Alkali is a water soluble substance reacts with an acid to give salt and water only Alkati is a substance when dissolved in water to give hydroxide lons as the only ation Alkail is a soluble base that feacts with an acid to give galt and water anly (Not accept: alkali reacts with acid to give sall and water only.) (Noz accepr a alallis are waier scluble base)
(Nol accept alkali is a solution with [aH-] ligher han IMT]
(c) (i) $\mathrm{Ba}(\mathrm{s})+9 \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}=8 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \quad \mathrm{A} \mathrm{si}^{3}=-3345 \mathrm{~kJ} \mathrm{~mol}^{-8}$ $7 \mathrm{Br}(\mathrm{s})+9 \mathrm{H}(\mathrm{g})+5 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Bz}(\mathrm{OH})_{2}=8 \mathrm{~Hz} \mathrm{O}(\mathrm{s}) \quad \mathrm{A} / \mathrm{I}=-3345 \mathrm{kl} \mathrm{mol}$ Not $\left.\mathrm{acceqt:} \mathrm{Ba}(\mathrm{s})+9 \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{SO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{SH}_{2} \mathrm{O}(\mathrm{s}) \quad \Delta H<0\right)$ Correat state symbils and minic
(ii) $\Delta H^{p}=(-859)+10 \times(-286)+2 \times(-46)-(-3345)-2 \times(-314)$ Accept $+162.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Not accept 'wront unic' missing urit' 'no plas sime elo)
(iii) (As be reaction kas sif >0) the reaction is endothermic (absetbs theif, thus the 1 temperature would decrease.

SECTION 5 Fossill Fuels and Carbon Compound

Multiple-Chole Questions

Part 1: (a) hydrocarbons. (b) homologous series and (c) alkanes and aikenes

CE90_0

The boiling points of some lydrocarbons are given in the table below
The boiling points of some lydrocarbons are given in the table below;

Hydracarbon	Ethane	Ethene	Propene
Boiling point/C	-89	-104	-48

Bong $-10^{\circ} \mathrm{C}$ is allowed to warm up gradually to $-80^{\circ} \mathrm{C}$, which
of the following will happen?
A. Ethene will remain in the fiquid state.
B. Propene will remain in the liquid state.
C. Ethane and ethene will semain in the liquid state
D. Ehane, ethene and propene will exist in the gaseous state

CE90 18
Which of the following statements concerning acid rain is NOT correct?
A. Acid rain can be caused by the burning of fossil fuel.
B. Acid rain can corrode buildings.
C. Acid rain can make the soil infertile by renoving the minerals from the soil
D. Acid rain can attack the human respiratory system

CE90_21
Which of the following pairs of substances would react to produce hydrogen?
(1) iron and steam
(2) sodium and ethano
A. (1) and (2) only
(1) and (3) onl
A. (1) and (2) only
D. (1), (2) and (3)

CE91_05
Tetrachlorometiane is a common solvent in the chemistry laboratory. Which of the following hazard warning labels should be displayed on a bottle of tetrachlowmethane?

(1)
A. (1) only
C. (1) and (3) only

B. (2) only
D. (2) and (3) ouly
\qquad

CE92_24
Which of the following statements concerning $\mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$ is correct?
A. They have different boiling points.
B. They bolong to different homologous series.
C. They burn in excess oxygen to form carbon monoxide and water.
D. They readily decolourize bromine in letrachiforomethane.

CE92_49

$1^{\text {st }}$ statement

$2^{\text {nd }}$ statement
A solution of hydrogen chloride in Hydrogen chloride dissolves in methylbenzene metiylbenzene can tum bluc litmus paper to form hydrogen ions.
red,
CE93_29

$$
\mathrm{C}_{10} \mathrm{H}_{22} \xrightarrow{\text { catalyst, }} \xrightarrow{\text { heat }} \mathrm{C}_{6} \mathrm{H}_{44}+2 \mathrm{X}
$$

In the above process, which of the following combinations is correct?

Process

$\underset{X}{x}$
A. fractional distillation an alkane
B. fractional distillation an alkene
C. cracking
an alkane
an aikne
CE93_32
Which of the following subslances can react with propene?
(1) concentrated sodium hydroxide solution
(2) acidified potassium permanganate solution
(3) eilhanol
A. (1) only
C. (1) and (3) only
B. (2) onily

CE93_3.3
Which of the following statements about fossil fuels is correct?
A. They are liguid or gases.
B. They are all formed from plats which died millions of years ago.
C. They can be recycled to help conserve entergy resotirces.
. They cnuse air pollution when burnt

CE94_21
A solution of cflorine in tetrachloromethane is shaken with an aqueous solution of a conpound X in a test tube. On standing, two layers are fomed in test tube and lie lower layer is violet in colour X may bo
A. sodium fluoride
B. sodium bromide
C. sodium iodide
D. sodium sulphite

CE94_22

Ditection: Q .22 and Q .23 refer to the following diagran which shows a fractionting column of an oil refinery.

Which of the following fractions is NOT cracked to produce more useful products?
A. P
B. R
C. S
D. \mathbf{I}^{\prime}

CE94 23
Which if the following slatements is correct?
A. Fraction P has the highest boiling point.
B. Fraction T is used for surface roads.
C. Fraction U is the least viscous.
D. Fraction S burns with a more sooty flame than fraction Q.

CE94 32
Which of the following label(s) should be placed on a bottle containing tetrachloromethane?

(1)
A. (I) only
C. (1) and (3) only

(2)
B. (2) only
D. (2) and (3) only

(3)

CE94_41
A compound has the following structure:

Which of the following statements about this compound are correct?
(1) It can decolourize bromine water.
(2) It can be polymerized.
(3) It can bum in air.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE95_15
The structural formula of a certain compound is shown below:

The name of this compound is
A. butain-1-01
B. butan-2-0l
C. 2-methyipropan-1-01
D. 2-methylpropau-2-ol

CE95 20
Which of the following statements conceming alkenes is INCORRECT?
A. They can decolourize a solution of bromine in 1,1,1-trichloroethane.
B. They can decolourize red litmus solution.
C. They can decolourize acidified potassium permanganate solutions.
D. They can be polymerized to form addition polymers.

CE95 23
Which of the following substances can cause acid rain?
A. lead compounds from the burning of leaded petrol in motor cars.
B. carbon dioxide from the complete conbustion of town gas.
C. carbon soots from the incomplete combustion of coal.
D. nitrogen dioxide from the burning of fuels in power stations.

CE95 39
Which of the following substances can conduct efectricity?
(1) molten zinc chloride
(2) an aqueous solution of magnesium suiphate
(3) a mixture of ethanol and water
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE96 13

Which of the
from petrolcum?
A. bleacin
C. polystyrene
B. ethanol
D. soapless detergent

CE96_14
One mole of each of the following compounds is bunt completely in oxygen. Which compound requires the greatest volume of oxygen, measured at the same tempenture and pressure, for
complete combustion?
A. carbon monoxide
B. ethane
C. ethene
D. ethanol

CE96_20
Which of the following methods can be used to minimize the air pollutant mentioned?
A. increase the air supply to remove nitrogen dioxide produced by burning heavy oil

B using cataiytic converters to remove lead compounds produced by burning leaded petrol
C. using scrubbers remove carbon monoxide produced by the incomplete combustion of dicsel
D. using electrostatic precipitators to remove particulates produced by burning coal

CE97-10
Which of the following combinations is INCORRECT?

Chemical	Method of storage
calcium	under water
potassium	under paraffin oil
chanol	in a cool place
D. potassium permanganate solution	in a brown bottle

D. potassium permanganate solution
in a brown bottle
CE97-16
Which of the following componads represents the first member of a honsologous series?
A. ethane
B. ethene
C. ethanol
D. ethanoic acid

CE97 18
The model shown below represents a compound comaining 6 hydrogen atoms (white spheres) and 3 carbon atoms (black spheres).

Which of the following statements concerning the compound is INCORRECT?
A. Its structural formula is $\mathrm{C}_{3} \mathrm{H}_{6}$.
B. If can be prepared by cracking petroleuns fractions.
C. It can decolourize bromine in 1,1,1-trichloroethane.
D. It can undergo polymerization.

CE97_19
Which of the following compounds CANNOT be produced disecliy from othene?
A. carbon dioxide
B. ethanol
C. ethyl ethanoate
D. 1,2-dibromoethane

CE97_23
Direction: Q .23 and Q .24 refer to the following experiment:

Which of the following set-ups should be connected to the delivery tube to collect the gaseous products formed?
A.

c.

B.

CE97_24
Which of the following reactions is involved in this experiment?
A. cracking
B. redox
C. catalytic hydration
D. destructive distiflation

CE97_33

Which of the following statements concerning the reaction of methane with bromine isfare correct?
d) It is an addition reaction.
(2) It is a substitution reaction
(3) A simitar reaction will occur if propane is used instead of methane.
A. (I) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) ouly

CE97_38
Which of the following statements about using ethanol as a car fuel is correct?
(1) Ethanol is a cleaner fuel than petrol.
(2) Using ethanol as a car fuel is economical in agricuttural contries with sugar cane as the main crop.
(3) A car engine leas to be suitably modified when using ethanol as a fuel
. (1) and (2) onl
B. (1) and (3) only
C. (2) aud (3) only
D. (1), (2) and (3)

CE97_42
Which of the following measures can reduce the formation of acid rain?
(1) installing catalytic oxidizers in cars
(2) using leaded pofrol in cars
(3) using fuels of low sulphar content in cars
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE98_03

Which of the following substances is the main constituent of town gas?
A. liydrogen
B. methate
C. carbon monoxide
D. gaseous naphuna

CE98_07

Which of the following enviromental problems is NOT caused by excessive burning of fossi fuels?
A. the cortosion of marble statues
B. the formation of snog
C. a higher incidence of liver disease
D. global warming

CE98 14

Which of the following statements concerning propene is correct?
A. It can be converted by catalytic hydration to an alkanol with molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
B. It can undergo condensation polymerization,
C. It can be manufactured by fractional distillation of erude oil
D. It can undergo substitution reaction with a solution of bromine in $1,1,1$-trichloroethane.

CE98_29
X is a compound containing four catbon atoms. It gives negative results with the following tests,

(1) Treating X with sodium hydrogencarbonate solution,

(2) Treating X with a solution of bromine in 1,1,1-tichtionoethanc
(3) Heating \mathbf{X} with acidified potasslum dichromate solution.
The structural formula of X may be
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}^{2}$
D. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

CE98_39

The diagram below shows a catalytic convericr fitted to the exhaust system of a car:

Which of the following pollutants from the car engine undergo reactions in the catalytic converter to produce less harmful products?
(1) carbon monoxide
(2) hydrocarbons
(3) nitrogen monoxid
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE98_47
Ist statement
The use of leaded petrol has been banned in
Hong Kong.
$2^{\text {nd }}$ statement
Lead compounds in car exhaust can cause damage to luman brains.

CE99-03
Wich of the following has the lowest boiling poin
A. etbanol
B. propan-1-ol
C. propane
D. butane

CE99 30
Which of the following combinations is INCORRECT

Pollutant

A. hydrocarbons
B. carbon monoxide
C. lead compounds
D. carbon particies

Harmfuleffect

causing liver diseases causing unconsciousnes causing brain damage causing respiratory diseases

CE99 32
Which of the following substances can react with acidiffed potassium permanganate solution?
(1) ethene
(2) copper(II) sulphate solution
(3) iron(II) sulphato solution
A. (1) only
B. (2) only
C. (1) aud (3) only
D. (2) and (3) only

CE99 35
The label below is displayed on a container for chemical X :
Which of the following chemicals may \mathbf{X} be?
(1) bromochlorodifluoromethane
(2) ethanol
(3) potassiu
A. (1) only
B. (2) only
C. (1) and (3) ouly
D. (2) and (3) only

CE99-44
Which of the following statements concerning the reaction of an alkane with bronine are correct?
(1) The reaction occurs faster under sumlight than in darkness.
(2) The reaction is a substitution.
(3) The colour of the reaction mixture fates.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) ouly
D. (1), (2) and (3)

CEOD 06
Which of the following pairs of compounds can be distinguished by treating with an acidified potassium dichromate solution?
A. ethane and ethene
B. ethanol and propan- 1 -ol
C. sadium carbonate and sodium kydrogencarbonate
D. sodium sulphite and sodium sulphate

CE00 08
Which of the following statements conceming members of a homologous series is INCORRECT?
A. They conlain carbon and hydrogen only.
B. They can be represented by the same general formula
C. They have similar chemical properties.
D. Thelr boiling points inerease wilh their relative nolecular masses.

$\mathrm{CE} 00_{2} 14$

Which of the following solutions con react with bromine water to give a colouriess solution?
A. sodium chloride solution
B. sodiun sulphite solution
C. sodiura iodide solution
D. sodium hypochlorite solation

CEOO 21
Whicit of the following processes requires a catalyst?
A. preparation of ethyl ethanoate from eltanoic acid and ethanot
B. conversion of sulphur trioxide to concentrated sulphuric acid
C. manufacture of chlorine bleach from brine
D. reduction of iron(III) oxide to iron

CEOO_25

Which of the following processes is endothermic?
A. cracking of petroleum fractions
B. fermentation of glucose solution
C. manufacture of anmonia by Haber process
D. oxidation of sulphur dioxide to sulphur trioxide in the contact process

CE00 27
Which of the following changes occurs in a catalytic converter installation in a noofor car?
A. Nitrogen monoxide changes to nitrogen dioxide.
B. Carbon monoxide changes to carton dioxide.
C. Unburnt hydrocarbons change to carbon particles
D. Sulphur changes to sulphur dioxide.

CE00_40

Which of the following measures can reduce the emission of poliutants frem a coal-fired power station?
(1) installation of scrubbers
(2) installation of electrostatic precipitators
(3) increasing the height of the chimney
A. (1) and (2) only
B. (1) and (3) ouly
C. (2) and (3) ouly
D. (1), (2) and (3)

CE01 03
Which of the following processes is exatlermic?
A. melting of ice
B. evaporation of ethanol
C. sublimation of todine
D. dissolving of sodium hydroxide pellets in water

CE0i_07
Which of the following statements concerning water is correct?
A. It reacts with calcium to give a colourless gas.
B. It is a strong electrolyto
C. It turns anhydrous cobalt(II) chloride from pink to blue.
D. It is immiscible with ethanol.

CE01_12
Which of the following processes is NOT involved in the production of ethanol from crude oil?
A. cracking
B. fermentation
C. catalytic hydration
D. fractional distillation

CE01 14
Which of the following pairs is correctly matched?
Pollutant
A. carbon monoxide global warming
B. sulphur dioxide darkening of building walls
C. lead compounds
D. unburnt hydrocarbons

CEO1 31
Which of the following measures can reduce the emission of sulphur dioxide from a faciory asing diesel fuel?
(1) the installation of calalytic converters
(2) the instatation of scrubbers
(3) Itre installation of clectrostatic precipitators
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CHOI_32
The fommae of three straight-chain hydrocarbons are listed below:
(l) $\mathrm{C}_{2} \mathrm{H}_{6}$
(2) $\mathrm{C}_{3} \mathrm{H}_{6}$
(3) $\mathrm{C}_{4} \mathrm{H}_{8}$

Which of these hydrocarbons is/are unsaturated?
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) aud (3) only

CE01_41
Which of the following statements concerning oil spillage on the sea are correct?
(1) Petroleum is toxic to marine lives
(2) Petroleum can block the oxygen supply to marine lives.
(3) Petroleum can cause the outbreak of firc on the sea.
A. (1) and (2) ouly
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE02_05
Consider the aqueous solution listed below:
(1) 1 M ethancic acid
(2) 1 M hydrochloric acid
(3) 1 M ammonia solution

Which of the following represents the increasing order of pH of the solutions?
A. (1), (2), (3)
B. (2), (1), (3)
C. $(3),(1),(2)$
D. (3), (2), (1)

CFO2_09
Which of the following equations represents a cracking reaction
A. $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10}$
B. $\mathrm{C}_{4} \mathrm{H}_{10} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{4}$
C. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
D. $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{3}+\mathrm{H}_{2} \mathrm{O}$

CE02_12
Which of the following reactions does NOT require the use of a catalyst?
A. conversion of ammenia to nitrogen monoxide
B. hydration of ethene to give ethanol
C. oxidation of ethanol to ethanoic acid
D. fermentation of glucose to give ethanol

CE02_33
Which of the following reactions is/are endollermic?
(1) the fermentation of glucose
(2) the cracking of naplitha
(3) the reaction of lime with dilute hydrochloric acid
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) ofly

CE02_34
Upon complete combustion, gaseous hydrocarbon X gives an equal number of moles of earbon dioxide and water. Which of the following hydrocarbons may X be?
(1) ethaile
(2) ethene
(3) propene
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE02_43
In which of the following processes will carbon dioxide be produced?
(1) the fermentation of glucose solution
(2) the biodegradation of animal faeces
(3) the treatinent of car exhaust in a catalytic converter
A. (1) and (2) only
B. (1) and (3) ouly
C. (2) and (3) ouly
D. (1), (2) and (3)

CE02_44
Both ethene and ethyne are gaseous hydrocarbons. Their structures are shown felow:

Which if the following statements concerning eflene and ethyne are correct?
(1) Both are unsaturated hydrocarbons.
(2) Both are insoluble in water.
3) Ethyne burns with a more sooty flame than ethene
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE02_48

The basicity of methanoic acid is different
Fom that of ethanoic ncid
$2^{\text {nd }}$ statement
The number of hydrogen atoms in a molccule of methane acid is differem from that in molecule of cthanoic acid

CE03 08
Which of the following combinations is correct

Homologous serics	General formula
A. nlkanes	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
B. alkenes	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
C. alkanols	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{OH}$
D. alknoic acids	$\mathrm{Cn}_{n} \mathrm{H}_{2 n+1} \mathrm{CO}_{2} \mathrm{H}$
CE03_10	
Which of the following combinations is correct?	
Chemical	Hazardous natare
A. sodium	oxidizing
B. mercury	toxic
C. ethyl ethanoato	irritant
D. potassium dichromate	explosive

CE03_17
An organic compound has the following structure:

The systematic name of this compound is

. 1,2-dimeliylethanol
B. 1-methyipropan-1-0
C. 1-methylpropan-2-ol
D. butat-2-01

CE03_31
Propene is an unsaturated hydrocarbon. Which of the following reactions is/are characteristic of the unsaturated nature of propenc?
(1) It undergoes incomplete combustion to give carbon monoxide.
(2) It decolourizes acidified potassium permanganate solution.
(3) It undergees polymerization to give polyprepene.
A. (1) ouly
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE03_33
Ethane reacts with bromine ander suitable conditions. Which of the following statements concerning this reaction isfare correct?
(l) The reaction occurs readily in the dark,
(2) The reaction is a substitution.
(3) The reaction gives a mixture of otganic products.
A. (1) only B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE03_37
Which of the following statements concerning the manafacture of town gas in Hong Kong is/are correct?
(1) Town gas is produced from coat
(2) Town gas contains hydrogen as the major component
(3) Oxygen is added to enhance the flmmability of town gas prior to its delivery to customers
A. (1) ouly
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE03_38
The structure of two organic compounds are shown below:

Which of the following statements concerning these two compounds istare correct?
(1) They have the same relative molecular mass.
(2) Thicy have the same chemical properties.
(3) They are boilh soluble in water.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE0SSP_16
Which of the following natural substances is essentially a single compound?
A. air
B. coal
C. petrofeum
D. quartz

CEOSSP 19
Which of the following conpounds is the least soluble in water?
A. ethanol
B. ethanoic acid
C. ellhyt ethanomte
D. sodian ethanoate

CE04_21
A gaseous mixture consists of methane and ethane in a mole ratio of 1:1. It has a volume of 200 cm^{3} at room temperature and pressure. What is the volume of oxygen required, measured at room temperature and pressure, for the complete combustion of the mixture?
A. $400 \mathrm{~cm}^{3}$
B. $550 \mathrm{~cm}^{3}$
C. $700 \mathrm{cmr}^{3}$
D. $\quad 1100 \mathrm{~cm}^{3}$

CE04_28
Ethene can be prepared by heating ethanol with excess concentrated sulphuric acid. The reaction involved can be represented by the equation:

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Which of the set-ups shown below can be used to collect the ethenc produced?
Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{~N}=14.0, \mathrm{O}=16.0$)

(2)

A. (1) and (2) only
B. (1) and (3) ouly
D. (1), (2) and (3)

CE04_37

After heavy rain, the Air Pollution Index becomes lower, Which of the following air poilutants are likely to have been removed by the rain water?
(i) particulates
(2) carbon monoxide
(3) nitrogen dioxide
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) ouly
D. (1), (2) and (3)

CE84_42

The structure of two organic compounds are shown below
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
$\underset{\substack{\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \\ \mathrm{C} \\ \mathrm{C} \\ \mathrm{H} \\ \mathrm{H}}}{\stackrel{\mathrm{CH}}{3}}$
Which of the following statements concerning the two compounds are correct?
(1) Both compounds are members of the same homologous setics.
(2) Both compounds have the same molar yolume at room temperature and pressure
(3) Both compounds undergo sublination when treated with bromine.
e and pressure
A. (1) and (2) ouly
B. (1) and (3) only
C. (2) and (3) onliy
D. (1), (2) and (3)

CEO4 45
$1^{\text {st }}$ stateluent
Bolit but-1-enc and but-2-cne can decolonrize a solution of bromine in 1,1,1 trichlorocthane.

CE04_46
$1^{\text {st }}$ statement
Methanoic acid is a non-electrolyte.
$2^{\text {nd }}$ slatement
Both but-1-che and but-2-ene have the same inolecular formula.

CEOS_OL
What is the systematic name of the following hydrocarbon?

A. 1,1,2-timethylpropaue
B. 2,3,3-trinethylpropane
C. 1,2-dimethylbuane
D. 2,3-dimetliylbutanc

CE05_02
Uponcracking, one molecule of decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$ gives two molecules of propene and one molecule of an alkane (X). What is X ?
A. $\mathrm{C}_{4} \mathrm{H}_{6}$
B. $\mathrm{C}_{4} \mathrm{HIt}$
c. $\mathrm{C}_{3} \mathrm{H}_{4}$
D. $\mathrm{C}_{7} \mathrm{H}_{16}$

CE05_04
What is the type of reaction involved when hydrogen bromide reacts with ethene to form
bromoethane?
A. addition
B. cracking
C. polymerization
D. substitution

CE05 12
Which of the following reactions is endothermic?
A. $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
B. $\quad \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
C. $2 \mathrm{C}_{4} \mathrm{H}_{\mathrm{t}(\mathrm{g}}(\mathrm{g})+13 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{C}_{4} \mathrm{H}_{20}(\mathrm{l}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})$

CE05_21
Which of the following molecule formulae represents an alkanoic acid?
A. $\mathrm{CH}_{2} \mathrm{O}$
B. $\mathrm{CH}_{2} \mathrm{O}_{2}$
A. $\quad \mathrm{CH}_{2} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$

CEOS

Which of the following processes affect the amount of carbon dioxide in the atmosphere?
(1) buming of fossil fuels
(2) photosynthesis in plants
(3) absorption by sea wale
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE05 37
Melianc burns completely in oxygen according to the following equation:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
What is the mass of oxygen required for the complete combustion of 48 g of methane?
Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12,0,0=16.0$)
A. 48 g
B. 96 g
C. 192 g
D. 384 g

CE05 43
Consider the reaction represented by the equation bolow:
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
hich of the following statements concerning this reaction are correct?
(1) It is a reversible reaction.
(2) The raw materials for the reactants are readily available in nature.
(3) The product mixture formed can be used as a gaseous fuel.
A. (1) and (2) onty
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE05_46
Which of the following energy conversions is involved in the system?
A. chemical cnergy \longrightarrow hent energy
B. lightenergy \longrightarrow heat energy
C. chemical energy \longrightarrow light energy \longrightarrow leat energy
D. lightenergy \longrightarrow chemical energy \longrightarrow heat energy

CE05 47
Which of the following staiements coneorning the system are correct?
(I) Reaction I is endothermic.
(2) $\mathrm{SO}_{2}(\mathrm{~g})$ atd $\mathrm{O}_{2}(\mathrm{~g})$ should be pumped into Reaction Tank II from fime to time.
(3) A catalyst is required in Reaction Tank II,
A. (1) and (2) only
B. (1) and (3) onty
C. (2) and (3) only
D. (1), (2) and (3)

CE05_45
Obtaining energy from the sun provides nany advantages over that from combustions of fossil fuels. The diagram below shows a closed system which can be used to convert solar chergy to heat energy by means of two chemical reactions.

The gases in the diagranm are circulated around the system. Energy is stored by means of Reaction I and fater released by means of Reaction If.

What are the advantages of obtaining energy from the sun over that from combustion of fossil fuels?
(1) Supply of solar energy is unlimited.
(2) Solar energy is always available.
(3) Using solar entergy produces no waste products.
A. (1) and (2) only
B. (1) and (3) ouly
C. (2) and (3) ouly
D. (1), (2) and (3)

CE06 11
Which of the following statements about acids is correct?
A. Nitric acid is used in car batterics.
B. Hydrochlorio acid is produced in human stomach
C. Ethanoic acid is a strong oxidizing agent.
D. The following hazard warning label slould be displayed on a bottie of concenfrated sulphuric acid.

CE06_12
Consider the following information:

Compound	Relative molecular mass
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	46
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$	60
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$	88
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	180

When 1 g of each of these compounds undergoes complete combustion, which one will produce the greatest number of moles of carbon dioxide?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$
D. $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{6}$

CE06 16
Which of the following compounds is formed from the reaction of propene with chlorine?

B.

C.

D.

CE06_17
Gas X is bubbled into solution Y as shown below:

Which of the following combinations would give no wisible change in the test tube?
$\underline{\mathbf{X}} \underline{\mathbf{Y}}$
A. sulphur dioxide
B. ethane
C. chlorine
D. carbon dioxide

\underline{X}

sodium iodide solution
acidified potassium permanganate solution litmus solution
calcium hydroxidé solution

C806 22
Which of the following processes is/are application(s) of neutralization
(1) using sertubers to remove sulphur dioxide from fuel gas in a power station
(2) using catalytic converters to remove nitrogen oxides in car exhaust
(3) using soditu hydroxide solution to remove copper(ll) ions in industrial waste water
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) ouly

CE06_23

Rain water samples collected in industrial areas have pH lower than those collected in the commeryside. Whicls of the following air pollutants is/are responsible for this phenomenon?
(1) carbon dioxide
(2) nitrogen dioxide
(3) particulates
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE06_30

1^{11} slatement

In Hong Kong, taxis have switched from using diesel to using natural gas as fuel.

$2^{\text {nd }}$ statement

Burning natural gas poses Iess "arrn to the environment than burning diesel.

CEO6 44
Which of the following statements concerning a catalyst are correct?
(1) A catalyst can aller the rate of reaction.
(2) The mass of a catalyst remams unchanged at the end of the reaction
(3) A catalyst should be in the same physical state as the reaction.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE06_45
In an experiment to prepare a polymer, equal volumes of styrene and kerosene are mixed and then heated under reflux for about an hour. After cooling, the resulting mixture is poured juto a large volume of methanol. A white waxy solid is formed. Which of the following statements concerning the experiment are correct?
(1) The experiment should be conducted in a fume cupboard
(2) The mixture of styrene and kerosene is heated under refux because kerosene is volatile.
(3) Methanol reacts with slyrene to form the waxy solid.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) ouly
D. (1), (2) and (3)

CE06 46

There are two unlabeled botles in the laboratory. One of the botiles contains an aqueots solution of commen sati and the ofther contains antiscptic alcolol. Which of the following methods can be used to distinguish, the subslances in the botles?
(1) adding a small amount of water
(2) detccting their odour
(3) measuring their electrical conductivity
A. (1) and (2) only
B. (1) aud (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE07_02
Which of the following subslances has a shatp boiling point?
A. petrol
B. red wine
C. malten wax
D. liquid amumonia

CE07_04
Which of the following slatements concerning members of a homologous series is correct?
A. The menbers of the same molecular formula
B. The relative molecular mass of each successive member differs by 14
C. The volatility of the members increases with relative molecular mass.
D. The members with more carbon atoms in their motecules burn more readly.

CE07_08
What is the systematic name of the foliowing compound?

A. 2-chloro-2-ethylpropane
B. 2-clloro-2-methylbutare
C. 1-chloro-1,1-dinethylpropane
D. 2-cliforo-2,2-dimetliylpropane

CE07_10
Which of the following suggestions for storing chemicals is acceptable?
A. storing sodium in a brown glass bottle.
B. stering silver nitrate solution in an iron can.
C. storing ethyl ethanoale in an expanded polystyrene container
D. storing concentrated sulphuric acid in a polyvinyl chloride botte,

CEO7 14
How many moles of ethane contain y hydrogen atoms?
(L represents the Avogadro's constant.)
A. y / L
B. L / y
C. $y / 6 \mathrm{~L}$
D. $6 y / \mathrm{L}$

CE07 2
Which of the following statements concerning the mensures to teduce ait pollufats is / are correet?
(1) Scrubber can be used to reduce carbon monexide.
(2) Catalytic converter can be used to reduce nitrogen monoxide.
(3) Electrostatic precipitator can be used to reduce unburnt hydrocarbons.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) aud (3) only

CEO7 30
$1^{\text {st }}$ statement
Carion can form a large number of compounds with long carbon chains.
$2^{\text {nd }}$ statement
Carbon aloms can share electrons with one another.

CE07_33
$50 \mathrm{~cm}^{3}$ of carben monoxide burns completely in $50 \mathrm{~cm}^{3}$ of oxygen. Assuming that all volumes are measured at room temperature and pressture, what is the final gaseous volume at the end of the combustion?
(Molar volume of gas at room temperature and pressure $=24 \mathrm{dm}^{3}$)
A. $50 \mathrm{~cm}^{3}$
B. $75 \mathrm{~cm}^{3}$
C. $100 \mathrm{~cm}^{3}$
D. $\quad 150 \mathrm{~cm}^{3}$

CE07 49
${ }^{\text {st }}$ statensent
Cracking is an endothermic reaction.
$2^{\text {nd }}$ statement
Cracking resulis in an increase of number of molesules.

CE08 06
An organic compound has the following structure:

The systematio name of this compound is
A. 2-ethylpropan-2-ol.
B. 2-metlylbutan-1-01
C. 2-methylbutan-2-01.
D. 1,1-dimethylpropan-1-ot.

CE08_14
Which of the following petroleum fractions has the highest carbon content?
A. diesel
B. petrol
C. kerosene
D. naphitha

CE08 27
Which of the following substances are sources of organic chemicals?
(1) wood
(2) reck
A. (1) and (2) ouly
B. (1) and (3) only
C. (2) and (3) ouly
D. (1), (2) and (3)

CE08 29
$1^{\text {si }}$ statement
The boiling point of butane is higher than that of methanc.
$2^{\text {nd }}$ statement
The van der Waais' forces between butane molecules are stronger than the forces between methane molecules.

CE08 49

${ }^{15}$ statement

Fractional distillation can convert large akane molecules to smaller alkane molccules and alkene moleculcs.

$2^{\text {nd }}$ statement

Fractional distillation involves breaking and forming of covalent bonds.

CE09-03
Which of the following properties is NOT possessed by buth carbon and nitrogen?
A. They can form multiple bonds.
B. They can exit in giant covalent structures.
C. They are chemically stable at room teniperature.
D. They react with oxygen under suitable conditions to form acidic oxides.

CE09_11
What is the systematic name of the following compound?

A. 2-bromobut-3-ene
C. 1-bromo-1-methylpropene
B. 3-bromobut-1-cue
D. 3-bromo-3-methylpropene

CEO9_16
Which of the following is/are renewable encrgy source(s)?
(1) natural gas
(2) wind power
(3) nuclear energy
A. (1) only
C. (1) and (3) only
B. (2) only
D. (2) and (3) only

CE09_21
Which of the following methods are used to treat solid wastes in Hong Kong?
(1) recycling of metal wastes
(2) using plastic wastes as fuel
(3) burying domestic solid wasics in landfill sites
A. (1) and (2) ouly
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE09 25
Which of the following hazard warning labels should be displayed on the reagent bottle of metharol?

(2)

(3)
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE0)_26

Which of the following measures can help reduce the level of catbon monoxide at the road side?
(1) using iiqueficd petroleum gas as fuel for motor vehicles
(2) installing catalytic converter for motor vehicles
(3) installing electrostatic precipitators for motor velicies
A. (1) and (2) ouly
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE10 02
Consider the industrial processes as showa below:

Which of the following combinations is correct?

Process I

Process II
A. is a chemical change
B. is a chemical change
C. is a physical change.
D. is a physical change.
is a physical change.
is a chemical chnoge.
is a physical change.
is a chemical change.

CE10_12
The structure of compound R is shown below:

The systematic name of R is
A. 2-methylbutan-3-01.
B. 3-methyibutan-2-ol.
C. 1,1-dimethylpropan-2-ol.
D. 3,3-diunethylpropat-2-01

CE1日_25
Which of the following measures can belp improve the air quality in Hong Kong?
(1) Use natural gas to replace coal in generating electricity.
(2) Use electricity to replace pecrol in drive cars
(3) Use fuel wills lower sulphur content to drive fercies.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE10_27
Which of the following environmental problems may be reduced by installing catalytic converters in petrol-driven cars?
(1) acid rain
2) greenhouse effect
(3) photochemical smog
A. (1) and (2) only
C. (2) and (3) only
B. (1) and (3) only
D. (1), (2) and (3)
$1^{\text {st }}$ slatement
When using a Bunsen burner with the air hole closed, the burner gives a 1 on unitu flame.

CE10 50

$$
1^{\text {st }} \text { statement }
$$

The reaction of charcoal with oxygen is endothernic.

CE11_10

The set-up shown in the above diagram can be used to collect
A. ethene.
B. anmonia.
C. sulphur dioxide.
D. hydrogen chloride

CE11_18
The equation below represents the complete combustion of organic compound X :

$$
2 \mathrm{X}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

What is X ?
A. $\mathrm{C}_{3} \mathrm{H}_{6}$
B. CaH_{8}
C. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
D. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$

CE11 22
Whith of the following statements concerning cracking and fractional distillation in petrochemical industry is /ate correct?
(1) Both processes involve heating.
(2) Both processes are chemical changes.
(3) Both processes produce extra alkenes.
A. (I) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CEII_38

Hydrocarbon X contains 80% of carbon by mass. What is the enpirical formula of X ?
(Relative atonic inasses: $\mathrm{H}=1.0, \mathrm{C}=12.0$)
A. CH
B. CH_{2}
C. CH_{3}
D. CH_{4}

CE11_42
The exhaust pipe of a petrol-driven car will corrode easily because
(1) there are nitrogen oxides passing through the exhaust pipe.
(2) there are unburnt hydrocarbons passing through the exhaust pipe.
(3) the exhaust pipe usually becomes hot when the car engine is running.
(1) ouly
B. (2) oully
C. (1) and (3) only
D. (2) and (3) only

Part 2: (d) addition polymers

CE91_26
Teflon, a polyner used for coating and non-stick cooking utensils, has the structure given below

Which of the following is the mononer for Teflon?
A. 1,2-difluorcetliane
B. 1,2-difhoroctheae
C. 1,1,2,2-tetrafinamethane
D. 1,1,2,2-tetrafluoroethene

CE91_27
A sample of polymer gives acid fumes on strong heating. The polymer is probably
A. nylon
B. polypropene
C. palystyrene
D. polyvinyi chloride

CE92 25
The polynner formed by $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}$ and

A. has a formula of

B. is a thermoseting plastic.
C. has cross-linkages.
D. burns witha floral smell.

CE92_43
Which of the following polymers is/are NOT suttable for making a container for boiling water?
(1) perspex
(2) utea-methanal
(3) pelyvinyl chlorido
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE93 35
A pulymer has the following structure:

Its monomer is
A. cinlormethene,
B. 1,1-dichloroethane.
C. 1,2-dichloroethene.
D. 1,2-dichloroethane.

CE94_20
\mathbf{X} is a synthetic polymer. On gentle heating, it softens and chars. On strong heating, it burns with an acidic smell. X is probably
A. polypropene.
B. polystyrene,
C. polyvinyl chloride.
D. perspex.

CE94_41
A compound has the following structure:

Which of the following statements about this compound are correct?
(1) It can decoloutize bromine water.
(2) It can be polymerized.
(3) It can bum in air.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE95 22
The formula below can be used to represent the structure of some polymers.

(X represents an atem or a group of atoms.)
Which of the following combination is INCORRECT?

	$\underline{\mathrm{X}}$	Name of polymer A. H
B.	Cl	polyethene
C.	CH_{3}	polywinyl chitoride
D.	$\mathrm{C}_{6} \mathrm{H}_{5}$	perspex
		polystyrene

CE95 35
Which of the following subslances, when mixed with 1emon juice, would give off gas bubbles?
(1) iron mails
(2) milk of magnesia
(3) polyethene wrap
A. (1) ouly
B. (2) only
C. (1) aud (3) only
D. (2) and (3) only

CE96_05
Which of the following materials are suifable for making the base and hande of a frying pan? Base Handle
A. Aluminiara Polyvinyl chloride
B. Copper Urea-methanol
C. Titanium Polyvinyl chloride
D. Zinc

Urea-meihnol
CE97_18
The model shown on the right represents a compound containing 6 hydrogen atoms (white splieres) and 3 carbon atoms (btack spheres).
Which of the following statements concerning the compound is INCORRECT?

A. Its structural formula is $\mathrm{C}_{3} \mathrm{H}_{6}$.
B. It can be prepared by cracking petroleum fractions.
C. It can decolourize bromine in $1,1,1$-ticithloroethane.
D. It cat undergo polymerization.

CE97_40
Which of the following methods can be used to solve the pollution problems associated with the disposal of plastic waste?
(1) recyeling of plastic
(2) making biodegradable plastics
(3) burning plastic waste in incinerators with tall chimneys
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE98_14
Which of the following statements concerning propene is correct?
A. It can be converted by catalytic hydration to an alkanol with molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
B. It can undergo condensation polymerization.
C. It can be manufactured by fractional distillatiun of crude oil
D. It can andergo substitution reaction with a solution of bromine in 1,1,1-trichloroellane.

CE98 49
1^{15} statement
Wash bottles used in the chemistry laboratory are commonly made of
polyethene.
CE99_28
Which of the following substance is a thermoplastic as well as a condensation polymer?
A. nylon
B. perspex
C. pofyethene
D. urea-methanal

CE99-41
Plastic X has the following structure:

Which of the following slatements concorning X are correct?
(1) The monomer of X is $\mathrm{CHCl}=\mathrm{CHCl}$.
(2) X can be used to make electric sockets.
(3) The flue gas produced by the incineration of X can cause the formation of acid rain.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) ouly
D. (1), (2) and (3)

Sonte concentrated sulphurio acid was poured into a sink connected to a catchpot made of polyvinyl chloride (PVC). After some time, the calelpot becomes defonned, Which of the following explanations for the deformation of the catchpot is/are correct?
(1) The heat liberated when the concentrated sulphuric acid mixed with the water in the catchpot caused PVC to soften.
(2) PVC was decomposed into its monomer by the concentrated sulphuric acid.
(3) PVC was oxidized by the concentrated sufphuric acid.
A. (1) only
B. (2) ouly
C. (1) and (3) only
D. (2) and (3) only

CEOL_09
Which of the following statements concerning uses of plastics is correct?
A. Perspex is tised for making ash trays.
B. Polyuiny chloride is used for making raincoats.
C. Polystyrene is used for making floor tiles.
D. Nylon is used for making packing materials for electrival appliances.

CE01_17

Which of the following compounds is a monomer of polywinyl chloride (polychloroethene)?
A. $\mathrm{CH}_{2}=\mathrm{CHCl}$
B. $\mathrm{CH}_{2}=\mathrm{CCl}_{2}$
C. $\mathrm{CHCl}=\mathrm{CHCl}$
D. $\mathrm{CCl}_{2}=\mathrm{CCl}_{2}$

CE02 20
The monomer of polymer X is chloroeihene. Which of the following slatements concerning X is correct?
A. X is a condeasation polymer.
B. X is a thermosetting plastic.
C. X is used in making drainage pipes.
D. The repeating unit of X is as follows

CE02_30
Starch, a natural polymer, is a carbohydrate. When concentrated sulphuric acid is added dropwise to some starch, a black substance is formed. The reaction involved is
A. dehydration
B. depolymerization
C. redox reaction
D. neutralization

CE03_31
Propene is an unsaturated hydrocarbon. Which of the following reactions is/are characteristic of the unsaturated nature of propene?
(1) It undergocs incomplete conlustion to give carbon monoxide.
(2) It decolourizes acidified potassium pernanganate solution.
(3) It undergoes polymerization to give polypropene.
A. (I) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

CE03_36

Which of the following statements concerning thernoplastics is/are correct?
(1) They soften upon heating.
(2) They are cross-linked polymers.
(3) They are addition polymers.
A. (I) ouly
B. (2) only
C. (1) and (3) ouly
D. (2) and (3) only

CE03_48

$1^{\text {sh }}$ statement

$2^{\text {nd }}$ statement
Polyethene is used for making the handle of frying pals.

The shape of the poiyethene handle remains unchanged during the frying process.

CEOSSP_48

${ }^{\text {s }}$ statement

Polyethene is used to make food wrap.
$2^{\text {nd }}$ statement
Polyethenc is an addition polymer.

CE04_15
The structure of polymer X can be represented by

What is the monomer of X ?
A. 1,1-dimethylethene
B. 1,2-dimethylethene
C. methylpropene
D. but-1-ctie

CEO4 41
Which of the following statements conceming polyvityl chloride (PVC) are correct?
(1) PVC is used in making raincoats.
(2) PVC softeas upon gentle heating.
(3) When PVC is strongly heated, fumes with an irritating edour are enitted.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE06 49

$1^{\text {s }}$ statement

Both ethene and polyethene can decolourize Both ehtene and polyethene belong to the same a solution of bromine in als organic solvent.
homoogous series.

CE07 09
Which of the following items can be made from polystyrene?
A. clothing
B. food wrap
C. electric socket
D. packaging material

CE 07 _ 27
Which of the following statements concerning but-2-ene are correct?
(1) It has the same molecular formula as but-1-ene.
(2) It can form a polyner with

(3) It can decolourize acidified polassitum permanganate solution
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

CE10_10

The polymer formed from the polymerization of 1,1 -dichloroethene is commonly used in making rood wrap for microwave cooking, Which of the following can represent a part of the sinucture of the polymer?

B.

D.

DSE12PP_11
The equation below represents the cracking of a hydrocarbon: $\mathrm{C}_{22} \mathrm{H}_{46} \longrightarrow \mathrm{C}_{14} \mathrm{H}_{30}+2 \mathrm{X}$
What is the chemical fornula of compound \mathbf{X} ?
A. $\mathrm{C}_{3} \mathrm{H}_{6}$
B. $\mathrm{C}_{4} \mathrm{H}_{8}$
C. $\mathrm{C}_{8} \mathrm{H}_{16}$
D. $\mathrm{C}_{64} \mathrm{H}_{28}$

DSE12PP_21
Consider the following organic compound:

$$
{\underset{\mathrm{H}}{3} \mathrm{C}}_{\mathrm{H}_{3} \mathrm{C}}^{\mathrm{C}}=\mathrm{CH}_{2}
$$

Wlich of the following statements about this compound is/are correct
(1) Its systenatic name is 1,1 -dimethylethene.
(2) It can decolorize an acidified solution of potassium permanganate.
(3) If is the monomer of Perspex.
A. (1) only
B. (2) only
C. (I) and (3) only
D. (2) and (3) only

DSE12_11
Compound X has the following structure.

$$
\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}
$$

The systemic name of
A. Prop-1-en-3-ol
B. Prop-2-en-1-0.
C. 3-hydroxypropene
D. 1-fiydroxyprop-3-ene

DSE12 17
The diagram below shows the set-up of an experiment:

The unglazed porcelain in tube A is strongly heated and the glass wool is occasionally heated. Which of the following statements is/are correct?
(1) A chemical reaction occurs at the glass wool.
(2) There is NO color change in the solution in tube B.
(3) There is NO color chares in the solution in tube C
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE12_2

Which of the following compounds can be used as monomers to make addition polymers?
(1) $\mathrm{CF}_{2}=\mathrm{CF}_{2}$
(2) $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CN}$
(3)

A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only

DSE12 22
Which of the following processes involve redox reaction?
(1) Mixing methanol and ethanol
(2) Mixing cllorine and methane under sunlight
(3) Mixing ethane and acidificd $\mathrm{KMnO}_{4}(\mathrm{nq})$
A. (1) and (2) ouly
B. (1) and (3)only
C. (2) and (3) only
D. (1), (2) and (3)

DSE12_24

$1^{\text {st }}$ statement

Burning fossil fuels can cause acid rain.
DSET3_14
A portion of the structure of ati addition polyner X is shown below:
Which of the following is the systematic name of the monomer of X based on the given structure?

A. 1,1-dicloro-2-methylethene
B. 1,1-dichloropropene
C. 1,2-dichloropropene
D. 3,3-dichloropropene

DSE14_08
Which of the following compounds would be fonmed when bromoethene reacts with chiorine in a suitable organic solvent?
A.

B.

C.

D.

DSEI4_10

One mole of melhane is allowed to react with two moles of chlorine in the presence of light. Which of the following best describes the organic product(s) that would be formed?
A. One nole of CCl_{4}
B. One nole of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. A mixture contatuing onily CCl_{4} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
D. A mixture comaining $\mathrm{CH}_{3} \mathrm{CI}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ and CCl_{4}

DSE14 17

What are the adkantages of using natural gas over using coal as a fuel in power stations?
(1) In comparing with coal, natural gas burns more completely.
(2) In comparing with coal, natural gas has less sulphur-containing substances.
(3) Natural gas is a renewable energy source, but coal is net.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE15_10
The structure of a certain polymer is shown below :

Which of the following is the systenatic name of the monomer of this polymer?
A. Propene
B. But-1-cne
C. But-2-ene
D. Methylpropene

DSE15_19
Which of the following pairs of substances can be distinguistred by using acidified $\mathrm{KMnO}_{4}(\mathrm{aq})$?
(1) Pent-1-ene and Pent-2-enc
(2) Cyclolexane and Cyclohexene
(3) polyethene and Poly(chloroethene)
A. (1) only B. (2) only
C. (1) and (3) onl
D. (2) and (3) only

DSE15_22
Which of the following are renewable energy sources?
(I) nuclear energy
(2) tidal energy
(3) biomass
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE15_20

The set-up of an experiment is shown below.

Which of the following observations would be expected?
(1) Linetwater turns milky.
(2) $\mathrm{Br}_{2}(\mathrm{aq})$ clanges from brown to colorless
(3) The flame is brick red in color.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE16 09
1 mol of a hydrocarbon requires 9 mol of oxygen for complete combustion. Which of the following may be this hydrocarbon?
A. $\mathrm{C}_{6} \mathrm{H}_{6}$
B. $\mathrm{C}_{6} \mathrm{H}_{10}$
C. $\mathrm{C}_{6} \mathrm{H}_{12}$
D. $\mathrm{C}_{6} \mathrm{H}_{14}$

DSE16_10
Whith of the following CANNOT be converted into substances that are less harmfitl when passed through a catalytic converter?
A. Nitrogen oxides
B. Sulphar dioxide
C. Carbon monoxide
D. Unbunat hydrocarbons

DSE16 17
Which of the following statements concerning petroleum is/are correct?
(1) It is a source of aliphatic hydrocarbons
(2) It can be separaled into liquids of different viscosity by a separating funnel.
(3) It is a fossil fuel derived rom anciem natine organisms.
A. (I) only
B. (2) only
C. (i) and (3) only
D. (2) and (3) only

DSE16

The hazard warning label below is displayed on a bottle contaning chemical \mathbb{Z} :
Which of the following chenicals may Z be?
(1) Sodium
(2) Trichloromethane
(3) Concentrated aqueors ammonia
A. (1) only
B. (2) only
C. (I) and (3) only
D. (2) and (3) onfy

DSE17_05
Which is the systematic name of $\mathrm{Cl}_{2} \mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$?
A. 1-dichloropenta-2,4-diene
B. 5,5-chloropenta-1,3-diene
C. 1,1-dichloropenta-2,4-diene
D. 5,5-dichloropenta-1,3-diene

DSE17 18
The structures of organic compound A and B are shown below:

A

B

Which of the following statements conceming the two compounds is/are correct?
(I) A and B betong to the same homologous series.
(2) A and B can be distinguished by acidifed $\mathrm{KMnO}_{4}(a \mathrm{a})$,
(3) Complete combustion of 1.0 g of A and complete combustion of 1.0 g of \mathbf{B} would form the same mass of $\mathrm{CO}_{2}(\mathrm{~g})$.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE17_20

Which of the following are claracteristics exhibited by members of a homologous series?
(1) They have similar chemical properties.
(2) They display a gredation in physical properties.
(3) They can be represented by the same general formula.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE17_22
Which of the following statements concerning burning coal under room conditions ane correct?
(1) Burning coal forms both acidic and non-acidic substances.
(2) Burning coal forms both gaseous and non-gaseons substances.
(3) Burning coal forms boilh poisonous and nom-poisonous substances.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

DSE18_08
Which of the following molecular formulae can represent an alkanoic acid?
A. $\mathrm{CH}_{2} \mathrm{O}$
B. $\mathrm{C}_{2} \mathrm{I}_{6} \mathrm{O}_{2}$
C. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
D. $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$

DSE18_13
The reaction below involves sestral steps.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\text { sunlight }} \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

Which of the following steps can lead to a termination of the reaction?

(Note:	

A. $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$
B. $\mathrm{CH}_{3} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{Cl}$
C. $\mathrm{CH}_{4}+\mathrm{Cl} \longrightarrow \mathrm{CH}_{3}{ }^{\circ}+\mathrm{HCl}$
D. $\mathrm{CH}_{3} \cdot+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot$

DSE18_14

Which of the following statements conceraing the polymer is correct?
A. It is a polyester.
B. If can be polymerized from $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO}_{2} \mathrm{CH}_{3}$
C. Its monomer can decolorize acidified $\mathrm{KMnO}_{4}(\mathrm{nq})$.
p. It can be made from its monomer through condeusation.

DSE18_15

Which of the following mixtures can be separated by this apparatus?
A. Rock sall and sand
B. Propan-2-ol aud water
C. Hexane $\left(\mathrm{C}_{6} \mathrm{H}_{(4)}\right)$ and wate
D. Methanoic acid and ethanoic acid

DSE18 20

Which of the following lazard waming labels should be displayed on a bottle containing propan-2-01?

A. (1) only
C. (1) and (3) only

(2)

(3)
D. (2) and (3) only

DSE19_07
The set-up of an experiment is shown below:

Which of the following statements is INCORRECT?
A. The broken anglazed porcelain acts as a catalyst.
B. Fractional distillation is performed in the set-up.
C. The gas mixture turns acidfied potassium perntanganate solution from purple to colorless.
D. When no more gas can be collected, the delivery tube should be taken out of the water before removing the heat source.

DSE19_10
A pars of the sintecture of a polyner is shown below:

Which of the following can be a monomer of this polymer?
A.

B.
$\mathrm{H}_{3} \mathrm{H}_{3} \mathrm{C}=\mathrm{C}_{\mathrm{H}}^{\prime}$
D.

DSEI9 18
Consider the following two compounds:

Which of the following statements is / are correct?
() They are both soluble in water.
(2) They have the same empirical formula.
(3) They are in the same homologous series.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

DSE20_6

6. What is the product of the reaction between choroethene and bromine dissolved in an oxganic solvent?

DSE20_23

23. Whick of the following hazard warning labels should be displayed on a bottle containing methanol?

(1) and (2) only
(1) and (3) only
(2) and (3) orly
B. (1) and (3) only
C. (2) and (3) onty
D.
(1), (2) and (3)

DSE20_24
24. Consider the following statements and choose the best answer :
lat statement
Perspex is a condensation polyme
A. Both statements are true and the 2 nd statement is a correct explanation of the 1 ist statement
B. Both statements are true but the 2nd statement is NOT a corcec explanation of the ist statement.
C. The ist statement is false but the and statement is true. Both statements are false.

DSE21_8
8. Consider two compounds with their structures shown below

- carbon atom

O hydrogen atom

Which of the following statements is correct?
A. Both of them are flammable.
B. They have different empinical formulae.
C. They belong to the same homologous series,
D. Both of them can decolourise bromine solution in the dark.

DSE21_11
11. The monosubstitution of methane with chlorine under diffuse sunlight involves several steps. Which of the following steps initiates the reaction?
A. $\quad \mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}$.
B. $\quad \mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3},+\mathrm{H}$
C. $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
D. $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{H} \cdot+\mathrm{Cl}$.
17. What is the systernatic name of $\mathrm{CH}_{2} \mathrm{BrCHBrCH} \mathrm{CH}_{2} \mathrm{I}$?
A. 1-iodo-3,4-dibromobutane
B. 4-iodo-1,2-dibromobutane
C. 1,2-dibromo-4-idodobutane
D. 3,4-dibromo-1-iodobutane

DSE21 20

The structure of a portion of a polymer is shown below,

Which of the following statements concerning the polymer is / are correct?
(1)
(2)
(3) $\mathrm{HOCH}_{2} \mathrm{COOH}$ is a monomer of it.
A. (1) onily
B.
(2) only
C. (1) and (3) only
D. (2) and (3) only

Strictural Questions

Part 1: (a) hydrocarbons, (b) homologous series and (c) alkanes and alkenes
CE90_03a
Hong Kong imports staphtha (mainly $\mathrm{C}_{3} \mathrm{H}_{12}$), from whicls town gas is produced
(i) What is the raw material from which naphtha is obtained? How is naphtha obtained from this raw material?
(ii) Town gas is produced by reacting with stean. Write an equation for this reartion. Name two major components in town gas.
(iii) What is observed when town gas is passed through a sample of citrated blood? Explain your answar.
(iv) What is observed when town gas is passed over heated copper(II) oxide in a combustion tube? Explain your answer and write appropriate equations.
(v) State two potential hazards associated with the use of town gas.
(vi) If you suspect there is a leakage of town gas in your home, explain why
(1) you should opto all windows at once.
(2) you should NOT use your telephone to call for help.
(13 marks)
$\mathrm{CE} 90 \quad 05 \mathrm{c}$ (ii)
When sulphur dioxide gas reacts with water, the following equitibrime is established:

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq}) \quad[\Delta \mathrm{H} \text { is negative }]
$$

Sulphur dioxide gas is a common pollutant found in exhatist fumes from factorics, and it can be removed by using aqueons sodium hydroxide.
(1) Why is sulphur dioxide gas present in the exhaust fumes?
(2) Give Two reasons why sulphur dioxide gas should be removed from the exhaust fumes.

CE91_02a

A student wished to find out which of the two commercial brands of vinegar, A and B, was the better buy, i.e. of lower price per gram of chanoic acid ($\mathrm{CH}_{3} \mathrm{COOH}$).
The following table listed some of the information about these tivo brands:

Brand	Price	Volume of vinegar	Concentration of ethanois acid
A	$\$ 3.00$	$250 \mathrm{~cm}^{3}$	$50 \mathrm{~g} \mathrm{dm}^{-3}$
B	$\$ 6.00$	$500 \mathrm{~cm}^{3}$	UNKNOWN

The student carried out a titation experiment to determine the concentration of ethanoic acid in Brand B as follows:
$25 \mathrm{~cm}^{3}$ of the vincgar was first diluted to $250 \mathrm{~cm}^{3}$ with distilled water. $25.0 \mathrm{~cm}^{3}$ portions of the diluted solution were then titroted agabst 0.10 M sodium hydroxide solution, using a suitable indicator, until the end-point was reached.
The following results were oblained:

Titration $/$ Burette reading	1	2	3	4
Fital reading $\left(\mathrm{cm}^{3}\right)$	25.50	25.70	26.20	25.90
Initeal reading $\left(\mathrm{cm}^{3}\right)$	0.00	1.00	1.30	1.10

(i) Describe, giving the names of the apparatus used, how $25.0 \mathrm{~cm}^{3}$ of the winegar should be diluted to $250.0 \mathrm{~cm}^{3}$.
(ii) Suggest a suitable indicator for this titration and state its color change at the endopoint.
(iii) Based on the tifration results, calctlate a reasonable average for the yolume of the sodium hydroxide solution used.
(iv) Write the equation for this reaction. (Ionic equation will not be accepted.)
(v) Calculate the molarity of ethanoic acid in Brand B.
(vi) Show by calculation which brand of vinegar is the beteer buy.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
(13 marks)

CE91_03a

Petroleum, often referred to as a 'fossil' fiel, can be separated into various fractions by fractional distillation. The following table shows the ambal production and consumption of petroleum fractions in a certain country.

Petroleuna fraction	Anmal production (in million tonnes)	Anmal consumption (in million tonncs)
Petroi	10	25
Naphitha	5	5
Kerosene	20	20
Dissel oil	15	35
Heavy oil	40	5
Liqueficd petroleum gas	6	4

(i) Why is petroleum referred to as a 'fossil' fuel?
(ii) Why can the various petroleum fractions be obtained from petroleun by fractional distillation?
(iii) According to the above table, some fractions are produced in excess while some others are not sufficient to meet the annual consumption reguirements.
(1) Identify a fraction that is produced in excess and can be converted into those which are not sufficient.
(2) Suggest a chemical method for the above conversion.
(iv) A sample of liquefied petroleum gas is known to contain propene and propane.
(1) Draw the struchural formula of
(I) propene, and
(II) propanc.
(2) (D) Write the equation for the complete combustion of propane in air.
(II) Explain whether the combustion of propene or propane would produre a more sooty flame,
(3) How would you show that propane consists of
(I) carbon, and
(it) hydrogen?
(4) Apart from combustion, describe another chemical test to distinguish propene from propane.
(13 marks)

CE92_0ic

In motor car engines, petrol is mixed with air and burn to produce power.
(i) Using $\mathrm{C}_{8} \mathrm{H}$ is to represent petrol, write a balanced equation for the complete combustion of petrol. Explain why this reaction can produce power.
(ii) What would happen if the supply of air is insufficient for the combustion of peirol in the car engine?
(iii) Leaded petrol has been used for a long time in Houg Kong. In April 1991, unteaded petrol was introduced.
(1) (II) Why is petrol leaded?
(2) Explain why unleaded petrol has bech introduced in Hong Kong.

CE93_01c

Alkenes can be obtained from petroleum fractions by a process called 'eracking'. Using a suittable petroleum fraction, a student carried out this process in the laboratory and collected the gascous product over water.
(i) What is 'cracking'?
(ii) Draw a labelted diagram of a laboratory set-up that can be used for carrying out the process and collecting the gaseous product.
(iii) An important safety precaution in the experiment is to prevent sucking back.
(1) What is the potential lazard if sucking back occurs?
(2) How can sucking back be prevented?
(iv) If the gaseous product decolorizes a solution of bromine in tetrachloromethane, can you conclude that lie gaseous product is ethene? Explain your answer.

CE93 01d

Chemical reactions play important roles in our daily life. Some are beneficial to us white others are not.
In the case of a motor car, chemical reactions occur both when it is in motion and at rest. With reference to these reactions, answer the following questions:
(i) State ONE reaction that is beneficial. Explain your aiswer.
(ii) (I) Slate ONE reaction that is not beneficial. Explain your answer.
(2) How can the undesirable effect of this reaction be minumized?

CE93 03b
In school laboratories, chemical wastes such as concentrated hydrochloric acid, methylbenzene and tetrachloromethane produced during practical work are to be stored in containers and then sent to a clenzical waste treatment plant for disposal.
(iii) When chemical wastes such as methylbenzene and tetrachloromethane are burn in the incinerator in the plant, several pollutants including sulphur dioxide are produced.
(1) Explain why sulplur dioxide is enitited from the incinerator.
(2) Name TWO pollutants other than sulphur dioxide which are emitted from the incinerator and state ONE harmfil effect for each pollutiont.
(5 marks)

CE94_05
(iii) If heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$, is used as a fuel in the internal combustion engine.
(1) Write an equation for the complete combustion of heptane.
(iv) Explain why car exhaust fumes usually contain oxides of nitrogen.

CE95_02

In each of the following groups of substances, there is ONE substance which different from the others in terms of their properties. In each group, identify the substance which is different from the others and explain your choice.
(d) carbon monoxide, fyydrogen, metlane, nitrogen

CE95_08a
The funes emitted from a factory using diesel fuel contain several gaseons pollutants. One of these pollutants, Z , has a choking smell and can decolourize bromine water.

(i) (1) What is Z?

(2) What is the effect of Z on the civiroument?
(3) Suggesi ONE way to reduce the amount of Z in the fumes.
(ii) (1) Suggest ONE other pollutan that is present in the fumes.
(2) Explain how this pollutant is formed.
(3) What is the effect of this pollutant on the envisomment?
(4) Suggest ONE way to reduce the amomit of this pollutant in the fumes.
(iii) If a fire is caused by the burning of diesel fuel, what type of fire extinguisher should not be used to put out the fire?

CE96_01a(3)
A student suggested the following inmediate actions to deal wifh three domestic accidents. However, these actions are considered inappropriate

Accident	Suggested action
Leakage of town gas oceurs in a kitchen.	Turn on an exhaust fan in the kitchen to remove the town gas.

Explain why the action is inappropriate and suggest a proper action.

CE96 02

The relative molecular mass of an alkanol X is $60.0 . \mathrm{X}$ contains 60% of carbon by mass.
(a) Calculate the number of moles of carbon in one mole of X and hence deduce the molecular formula of \mathbf{X}.
(b) Draw ONE possible structure of X and give its systematic name
(Relative atomic mass: $\mathrm{C}=12.0$)

CE96 03

'Tossil fuels' such as petroleum and coal constitute the worid's major source of energy. However mony countries have been developing alternative energy sources.
(a) Why are petroletm and coal called 'fossil fuels'?
(b) Give TWO reasons why it is necessary to develop altenative energy sources.
(c) Nuclear power is used as an afternative to fossil fuets in many countries. Suggest ONE advantage and ONE disadvantage of using nuclear power.
(d) Suggest ONE energy source, other than nucleas power, that can be used as an alternative to fossil fuels.

CE97_05

In March 1989, the oit tanker Exxon Valdez was wrecked off the coast of Alaska and split a large amount of cride oil into the sea. The oil spillage caused serious environmental problems.

Briefly exphain why oil spillage in the sea con cause serious cnvironmental problems and suggest ONE method of treating the split oil.
(8 marks)

CE97_09a
The photograph below shows a gas burner with a can of fuel. The can contains 250 g of liquefied butane.

(i) Write the structural formula of butane.
(ii) (1) Write the chemical equation for the complete combustion of butane.
(2) Suggest a chemical test for EACH of the products fonned when butane is completely burnt in air.
(3) Calculate the volume of the gascous product formed, measured at room temperature and pressure, if all the butane contained in the can is completely bunt in air.
(iii) Explain why it is dangerous to use such gas burners in a poorly-ventiated room.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$;
molar volune of gas at room temperature and pressure $=24.0 \mathrm{dmi}^{3}$)

CE98 02

For each of the followitg experiments, state the expected observation and write a relevant chemical equation.
(a) Ethene is passed into an acidified potassium permanganate solution.
(b) A mixture of butane and bromine vapour is exposed to diffused sunlight.

CE99 03
The illustration below shows the exhaust from a motor car using unleaded petrol.

(a) Explain why the exhaust contains carbon monoxide.
(b) (i) Write TWO chemical equations for the fonnation of acid rain from nitrogen oxides. (2) State ONE undesirable effect of acid rain.
(c) State ONE health hazard associated with particulates.
(d) Suggest ONE other polltant that may be found in the exhaust.
(e) Suggest a device that can be instafled in the motor oar to reduce tie emission of carbon monoxide and nitrogen oxides.

CE99_09b

Cracking of naphitha gives alkane X (relative molecular mass 44), alkene Y (refative molecular mass 42) and other products.
(i) What is the meaning of the term 'cracking'?
(ii) Suggest a chemical test to distinguish between \mathbf{X} and \mathbf{Y}.
(iii) Deduce the molecular formula of X

CEOO OBa

Crude oil is a mixture consisting mainly of alkanes. Fractional distillation of crude oil gives different petroleum fractions. The lable below lists the length of carton chain of the alkanes in some of the fractions.

Fraction	Length of carbon chain
petroilnaphtha	$\mathrm{C}_{5}-\mathrm{C}_{18}$
kerosene	$\mathrm{C}_{11}-\mathrm{C}_{18}$
diese C	$\mathrm{C}_{18}-\mathrm{C}_{25}$
X	$\mathrm{C}_{20}-\mathrm{C}_{34}$

(i) Describe the principle underlying the fractional distillation of cride oil.
(ii) (1) Explain why global demand for perrol is greater than that for kerosene.
(2) Cracking kerosene can produce petrol, State the conditions required for the cracking process.
(iii) In Hong Kong, naphtha insteat of coal is used to manufacture town gas
(1) State ONE advantage of using naphtha instead of coal to manufacture town gas. (You are NOT required to consider the price of the materials.)
(2) Explain why an additive with a foul smell is added to town gas before it is delivered to the customers.
(iv) Glye ONE use of fraction X in cars.

CE00_08

In some countries, 'gasohol' (a mixture of petrol and ethanol) is used as fuel for cars
(i) Explain why burning gasolol causes less air pollution than buming petrot.
(ii) Ethanol can be manufactured from a petrolemb product. Name the manufacturing process and write the chemical equation for the reaction involved.
(iii) Elhanol can also be manufactured by another process. Name this process.
(iv) Of the two processes you have mentioned in (ii) and (iii), which one is belter for the mamfacture of ethanol in gasoloi? Explain your answer

CEOO 09b
Carbon dioxide constitutes about 0.03% of the atmosphere. Oyer millions of years, the concentration of carbon dioxide in the atmosphere has renizined almost constant because of a number of processes.
(i) Suggest ONE process by which carbon dioxide is added to the atmosplere.
(ii) Suggest ONE process by which carbon dioxide in the atmosphere is consumed.
(iii) Carbon dioxide is one of the greenhouse gases in the atmosplere.
(1) Explain why carbon dioxide can cause the greerhouse effect.
(2) State the inportance of the greenhouse gases in the attrosphere to living things on earth.
(3) Incrensing the concentration of the greenhouse gases in the atmosphere leads to global warming. State ONE harmful effect of global warming.
(6 marks)

CEO1 01

The pholograph below shows a burning cande

(a) The cande wax is a petroleum product. What type of compounds is mainly present in the wax?
(b) (i) In which of the states does wax act as the fuet in a burning candle? solid, liquid, vapour
(ii) State the conditions required for the combustion of wax
(iii) Suggest a reason why a burning candle can be extinguisted by a strong wind.
(c) Explain why it is hazardous to add cold water to a tray containing molten wax at a higher temperature.

CE01_07b
For environmental reasons, the Hong Kong Government has launched a plan for taxis to swich fom using diesel to using diescl litquefied petroleum gas (LPG).
(i) Both LPG and diesel are petroleum products. State the origin of petroleum.
(ii) With reference to their chemical constitnents, explain why LPG is a cleaner fuel than diesel,
(iii) State ONE problent that nay occur in the initial stage in launching this plan.

CEO2_08a
Sulphur dioxide is fotmed when coal is burnt in a power station.
(i) The coal used in the power station contains 1.5% of sulphur by mass. Calculate the volume of sulphur dioxide released, measured at room temperature and pressure, when 1.0 kg of the coal is burut.
(You may assume that all the sulplur in coal is converted to sulphur dioxide upon burning,)
(ii) State ONE envirommental problem associated with the emission of sulphur dioxide into the atmosphere.
(iii) Suggest ONE measure to reduce the emission of sulplur dioxide from the power station
(iv) Particulates are also present in the flue gas generated in the power station.
(1) State ONE environmental problem associated with the discharge of particulates into the atmosphere.
(2) Suggest ONE way to renove particulates from flue gas.
(Relative atomic masses; $0=16.0, S=32.0$,
molar volume of gas at room temperature and pressure $=24 \mathrm{dm}^{3}$)

CE03_076

Cracking is an important process in petrochemical indusiry.
(i) What is the meaning of the term 'cracking'?
(ii) Account for the importance of cracking in petrochemical industry.
(iii) Octane ($\mathrm{C}_{8} \mathrm{H}_{18}$) is used in an experiment to study cracking in a solool haboratory. Cracking of octane gives a mixture of products, some of which are gases.
Draw a labelled diagram for the set-up used in the experiment, including the collection of the gascous products.
(iv) One of the reactions involved in the cracking of octane gives two hydrocarbons, each containing the same number of carbon aloms.
(1) Write the chemical equation for this reaction.
(2) Suggest a chemical test to distinguish the two hydrocarbons from each other.

CE03 O9c
Organic wastes can be used as an alternative energy souree. Under suitable conditions, the wastes can be digested by bacteria to give a gaseous nixture containing a high proportion of metlane. Meltane can be used as a fuel.
(i) Suggest ONE organic waste that can be used for this purpose.
(ii) Write the chenical equation for the complete combustion of methane.
(iii) Suggest ONE advanage of using organic wastes as an alternative energy source.
(iv) Suggest ONE reason why organic wastes are not yet widely used as an energy source
(4 marks)

CE04_03
(a) Suggest how iodine tincture can be prepared in a school laboratory.
(b) A student split some iodine tineture on fis laboratory cont. His classmate suggested the following two methods to remove the iodine stain from the laboratory coat:
(1) treating the stain with sodium sulphite solution
(2) freating the stain with $1,1,1$-trichloroethane

State the principle underlying each method. Decide and explain which method is better.
(5 marks)

CE04_04

Acid rain is a scrious environmental problem. Discuss the formation of acid rain in relation to human activities, and suggest possible way to reduce its formation.

CEOS 05

Both pentane ($\mathrm{C}_{5} \mathrm{H}_{12}$) and octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ ate members of the same homologous series.
(a) Using pentane and octane as examples, illusifate Two characteristies of the members of a homologous setics.
(b) Which compotind, pentane or octanc, will burn with a more sooty flame? Explain your aswer.
(c) Draw TWO structures which have the same motecular fonmula $\mathrm{C}_{5} \mathrm{H}_{12}$

CE06.01b
A student suggested using the set-up shown below to separate hex-1-ene from a mixture of hex-1ene and hexane,
(At almospheric pressure, the boiling points of hex-l-ene and hexane are $64{ }^{\circ} \mathrm{C}$ and $69^{\circ} \mathrm{C}$ respectively.)

(i) Explain why it is dangerous to use the above set-up to carfy out the experiment. Suggest a modification to the set-up so that the experiment can be carried out safely.
(ii) After the set-up has been modified at suggested in (i), can it be used to separate hex-1-cne from hexane effectively? Explain your answer.
(iii) Suggest a chennical lest to distinguisl hex-1-ene from hexane.

CE06_06
Carbon dioxide and methane are two major greenhouse gases in the atmosplere. The table shows the average concentrations of the two gases in the atmosphere in 1900 and in 2000.
the average concentations of the two gases in the atmosphere in

Gas	Average concentration in the atmosphere (arbitrary units)	
	Year 1900	Year 2000
carbon dioxide	300000	400000
melhane	1000	2000

(a) Suggest TWO rensons why there was a large increase in concentration of carbon dioxide in the atmosphere in the past ten decades.
(2 marks)
(b) Suggest ONE reason why there was a large increase in concentration of methane in the atmosphere in the past ten decades.
(1 mark)
(c) The presence of greenhouse gases in the atmosphere is important to life on Earti. However, too nuch greenhouse gases in the atmosphere can catse global warning, which nay lead to severe envirommental consequences.
(i) State the importance of greenhouse gases to life on Earth.
(ii) State ONE severe environmental sonsequence associaled with global warming.
(iii) Suggest ONE possible way to prevent further increase in the concentation of each of the following greenhouse gases in the atnosphere without sacrificing our present standard of living:
(I) carbon dioxide
(II) methans

CE07 02

A student performed an experiment to crack paraffin of and collect the gaseous products by using a bailing tube.
(a) Draw a labelled flagram to show how the experiment can be performed in the laboratory. (3 marks)
(b) (i) The student added a few drops of bronine water into the boiling tube containing the gaseous products. The brown colour of bromine water disappeared inmediately. Why?
(ii) The student then dropped more bromine water into the boiling tube untit the brown colour persisted. After about 10 minutes, the brown colour disappeared. Why?

CE07 07

This question involves how to distinguish four unfabeled fest thbes, each containing one of the following colourless liquids.

Methanol, concentrated sodium hydroxide solution, distiled water, hexane
(a) By heating a smatl amount of each of the colouless liquids to dryness, ONE of the liquids can be distinguislied. Suggest which liquid can be distinguished, and state the observation involved.
(b) By applying a flame directly to a small amomi of each of the colouless liquids. TWO of the liquids would catch fire.
(i) Suggest which twa liquids would catch fire
(ii) For the two liquids that would entch fire, the observations involved daring combustion are different. Suggest the difference in these observations, and explain your answer.
(iii) Without using other chemicals apart from the above colourless liquids, sugges another method to distinguish the two liquids that would caicls fire. State the expected observation. (Smelling is not accepted.)

CE08_07

Crude oil can be separaied into different products such as petrol, diesel oil and fuel oil by a process called ' A '. The fuel oll obtained can then be converled into smaller molecules by another process called ' B '.
(a) Nane process A and process B.
(b) (i) Explain whether petrol or diesel oil has a higher viscosity.
(ii) Explain whether petrol or diesel is a cleaner fued.
(c) (i) Suggest one importance of process B in industry.
(ii) One of the compounds in fuel oil is $\mathrm{C}_{28} \mathrm{H}_{58}$, which can be converted into smaller molecules as shown in the following equation. $\mathrm{C}_{28} \mathrm{H}_{58} \rightarrow \mathrm{C}_{20} \mathrm{H}_{42}+2 \mathrm{D}$
(1) Suggest a possible structure of D, and state its systematic name.
(2) Suggest a chemical test to distinguish D from $\mathrm{C}_{20} \mathrm{H}_{42}$, and state the expected observation.

CE11_01s
A non-luminous fame is obtained when the air holc of a Bunsen burner is fully open. Mellane is one of the components of the gascous fluel used in the Bunsen burner. Whit reference to methanc only and dided by a chemical egration, explain why the flame oblained is non-luminons,
(3 marks)

CE11 06
To reduce air pollution caused by velicles, several measures have been adopted in recent years.
(a) Many taxis and intit-buses have switched from using diesel to liquefied petroleum gas (LPG) as fuel.
(i) Give the rame of a compound which is a major component of LPG.
(ii) Why is LPG considered to be a 'cicaner' fuel than diesel?
(b) Catalytic converters have been installed in most petro-driven vehicles.
(i) Slate TWO functions of catalytic converters.
(ii) State one harmfui product enitted from eatalytie converters.

(2 marks)

(3 marks)
(c) Some regions supply ulfra low sulphur diesel (ULSD) for diesel vehicles. Explan how this measure reduces air polfution.
(2 marks)

Part 2: (d) addition polymers.

CE90_O1a
The talle below describe some reactions of liquid propan-1-0l:

EXPERIMENT	RESULT
Propan-1-ol is heated and the vapour passed over heated broken porcelain.	Gas Z is produced.

(iv) Z can undergo addition polymerization to form a polymer.
(1) Name the polymer formed and draw the repeating unit.
(2) State one household artictes that can be made from the polymer

CE91_02b
The following diagrams show three plastic items. The universal adaptor is made of thermosetting plastic while the other two are made of themeplastics.

(i) Exphin why thermoplastic are not suitable for making universal adaptor.
(ii) The form lunch box is made from a plastic containing a trapped gas. Name the plastic that is commonly used and state the purpose of trapping a gas within the plastic.
(iii) (i) Name a plastic that is commonly used to make food wrap, and wite an equation to show the formation of the plastic from its monomer.

CES2_04a
(i) The structure of polyner X can be represented by the following diagram:

Where represents a group containing carbon and hydrogen atoms only.
(1) Draw the structure of the monomer of X .
(2) Name an example of a polymer with the structure of \mathbf{X}.
(3) Two separate pieces of X are strongly heated as shown in diagram A and B bclow:
polymer X

Diagram A

hat would be obseryed in each case?
Explain your answer.
(ii) Upon analysis, 5.00 g of the monomer of X are found to contain 4.62 g carbon. If the relative molecular mass of the monomer is 104, deduce its molecular formula. (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0$)

CE93_02a
Turning knobs on radios are often made of plasties with metal coating.
(i) State TWO reasons why plastics are used in the manafacture of furning knobs.

CE95_06a
The illustration below shows the plastic botte of a domestic toilet cleaker and its label,

(iv) (1) Explain why plastic is used for making the bottie for the tollet cleaner.
(2) Name ONE plastic material suitable for making the bottle for the foilet clenner.

CE96 07

The flow diagram below shows the three key stages involved in the production of polypropene bottes from crude ofit.

(i) What is the proeess involved in oblaining heavy oil from crude oll in Stage I?
(ii) (1) Draw the structure of monomer A.
(2) What are the TWO main processes involved in the production of monomer A from heavy oil in Stage In?
(iii) What are the TWO main processes involved in the production of polypropene botles from monvme A in Stage 111 ?
(iv) Suggest ONE reason why the disposal of polypropene wastes can cause pollution problems. (v) Polypropene wastos can be recycled by melting and remouding.
(1) What prelinitury treatment of the polypropene wastes is required before recycling?
(2) Name ONE plastic which cannot be recyeled by melling and renoulding.
(9 marks)

CE97 01
For each of the tasks listed in the table below, decide which substance on the right is the best to use to accomptish the task. Explain your answer in each case.
(c) To make feeding bottles or babies

(3 marks)

E97 07b

The structure of five compounds, I, II, III, IV and V, are shown below:

In the above sfructures, rexi represmits a saturated hydrocarbon chain containing 1 to 6 carbon atoms and $L .$.$] represents a saturated hydrocarbon chain containing 12$ to 20 carbon atoms.
(i) Which compotind can be used to make an addition polymer? Write a chemical equation to represenf the addition polymerization.

CE99 09b
Cracking of naphtha gives alkane X (rentive molecular mass 44), alkene Y (refative molecular mas 42) and other products.
(i) What is the meaning of the tern 'cracking'?
(ii) Suggest a chemical test to distinguish between X and Y
(iii) Deduce the molecular formula of Y.
(iv) Y can be used as a starting material for the peoducton of plastic Z.
(I) Write the chemical equation for the formation of Z from Y
(2) Suggest how plastic cups can be made from Z .
(v) Suggest an advantage and a disadvantage of using plastic wastes as an energy source.
(Relative atomic mass: $\mathrm{H}=1.0, \mathrm{C}=12.0$)

CEOO_076

Polystyrene can be prepared in the laboratory by heating a mixture of styrene and kerosene under reflux.
(i) Draw a labeled diagram of the setwip used for heating the mixture under reflux
(ii) Suggest ONE safety precaution that should be taken when heating the mixture. Explain your answer.
(iii) Styrene has the following structure:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$
(1) What characteristic in the structure of styrene enables it to act as a monomer?
(2) Write the clienical equation for the polymerization.
(iv) Disposable lunch boxes are commonly made of expanded polystyrene.
(1) Suggest ONE reason why polystyzene should be expanded before it is used to make disposable lunch boxes.
(2) State whether yon agree with the following statement. Explain your answer.
'Landfiling is better than incineration for the disposal of polystyrene wastes.'
(8 marks)
CEO1_07a
Polystyrenc is used in making shopping bags and its monomer is ethene.
(i) Draw the electronic diagram of ethene, showing electrons in the outernost shells only.
(ii) Name the type of polymerization involved in the production of polyethene.
(iii) State ONE property of polyethene that nakes it suitable for making shopping bags.
(iv) (i) Suggest ONE way to dispose of polyethene wastes.
(2) Give ONE advantage and ONE disadvantage of the way you have suggested in (1). (6 marks)

CE02_05
Using alkenes as an exampse, describe the characteristics of members of a lomologous series.

CE03_05
Plastic wastes cause envirommental problems in modern cifies. Suggest possible ways of treating pastic wastes, and discuss their advantages and disadvantages.

CE0406c

Pyrolysis is one of the methods commonly used for treaing plastic wastes. During pyrolysis, plastic wastes are decomposed at high temperature in the absence of air to give a mixture of products, including methane and ethene.
(i) Explain why it is necessary to carry out the pyrolysis in the absence of air.
(ii) Suggest a method that can be used to separate methane from other pyrolysed products.
(iii) Give ONE major use of methane and ONE major use of ethene in industry.
(iv) (1) Suggest another method which is commonly used for treating plastic wastes.
(2) For each of the two methods, pyrolysis antd the method you have suggested in (1) above, state ONE advantage.

CE05_06
(a) Polystyrene is a plastic with a wide range of uses. It has the following structure:
CH-CH-CH-CH2-CH-CH2-Clen
(i) Draw the structure of styrene, the monomer of polystyrene.
(ii) Suggest why polystyrene does NOT tave a constant relative molecular mass.
(2 marks)
(b) Polystyrene can be prepared from styrene using the sel-up shown below

(i) Name apparatus A
(ii) Suggest, with explanation, a safety precaution that should be taken in the preparation.
(iii) Namte the type of polymerization involve in the formation of polysiytene from its monomer.
(c) Plastics are very useful materiats. Many oljects previously made with metals are now made with plastics. For each of the following objects, suggest ONE advantage of using plastics over using metals in making the object.
(i) Hie casting for an efectric rice cooker
(ii) a drainage pipe
(iii) a hellnet for a soldier

CE0G_11
Plastics can be classificd into thermoplasties and thermosetting plastics atcording to their thermal propertiss.
(a) Explain, in tenms of bonding and structure, why thermoplastics and thermoseting plastics behave differently upon heating.
(b) Polyethene (PE) is a thermoplastic commonly used in making shopping bags.
(i) Write the chemical equation for the formation of PE from its monomer.
(ii) Explain, in terms of bonding, why objects made of PE are durable.

CE07.. 08

(a) Teflan is a plastic that can be used to make artificial hip joints. Teflon is an addition polymer of linear structure consisting of carbon and fluorine only. The ratio of the number of carbon atons to the number of fluorine atoms in the polymer is $1: 2$.
(i) Draw the portion of the Teflon structure with 10 carbon atoms.
(ii) Write the repeating unit of Teflon, and suggest a possible monomer of Teflon. Repeating Unit:
Monomer:

CE08_08

The active ingredient of a superglue has the following structure:

Superglue can join objects together quickly through the polymerization of the active ingredient in the presence of water vapour.
(a) Name the type of polymerization that the active ingredient undergoes.
(b) Write a chemical equation for the polymerization involved.

CE09 04
The diagran below shows a truck with a slorage tank for transporting concentrated hydrochioric acid.

(a) Suggest a hazard warning label that should be posted on the stonage tank.
(b) The storage tank is made of steel and the imer wall has a lining of polyetiene.
(i) Draw the stractural formula of polyethene.
(ii) Explain the function of the lining of polyethene in terns of the chemistry concept involved.
(3 marks)
(c) The storage tank conlains 57000 kg of concentrated hydrochtoric acid, which occupics a volume of $50 \mathrm{~m}^{3}$. If the percentage by mass of HCl in tlie acid is 38.0%, calculate the molarity of the acid.
(2 marks)

CE10_12 1

Polypropene (PP) can be used to make bottes for storing drain ckeners containing strong alkalis. Write a chemical equation for the polynerization to form PP .

CE11_07
The diagram below shows the structure of a common beverage box consisting of layers of paper. polyethene (PE) and aluminium.

(a) Draw the repeating unit of PIS.
(b) Name the type of polymerization involved in making PE.
(c) Explain the function of the ontermast PE layer of the beverage box.
(d) Oxygen caut pass through paper and PE. Explain how ite box can prevent the beyerage from spoilage.
(c) Polychloroethene, commonly called polyvinyl chloride (PVC), is also a polymer. (2 mat
(i) Draw the structure of the monomer of PVC.
(ii) PVC can be used to make food packaging material. However, it may release some substances to contaminate the food. Suggest one substance that may be released.
(2 marks)
AL99(I) 06b
(i) Briefly explain why car exhaust contains carbon monoxide and nitrogen oxides.
(2 marks)
(ii) The installation of catalytic converters onto car exhaust systems can reduce the concentrations of pollutants in car exhaust. With the help of equations, briefly describe the function of a catalytic converter.
(iii) Explain why leaded petrol is not used in cars equipped with catalytic converters.
(1 marks)

ASL99(1) 07 [Similar to DSE16 05c]

Feeding bottes for babies can be nade from poly(propene) which usually contains butylated hydroxytoluene (BHT).
(a) Write the repeating unit of poly(propene).
(1 mark)
(b) 'The average relative molecular mass of a sample of poly(propene) is 4.2×10^{5}.'
(i) Why is an average value of relative molecular mass quoted in the above statement? (1 mark)
(ii) Calculate the ayerage number of repeating units in a polymer chain of the sample.
(1 mark)
ASL99(I)_09 (modified)
(a) When exposed to diffused sumlight, methane and chtorine react to give chloromethane. Using the electronic diagram, outline the mechanism of this reaction,
(b) The reaction of methane with chlorine also gives dichloromethane.
(i) Draw a three-dimensional structure for dichioromethane aud explain whether the molecule is polar or non-polar.
(ii) Explain why the reaction of methane with chlorine is not suitable for the preparation of dichloromethane.

[^1]ASL99(II)_10 (modified) [Similar to DSEI2 15]
(a) Car oxhaust contains a high concentration of carbon monoxide, nitrogen oxides and hydrocarbons. With the heip of batanced equations, briefly explain why the installation of catalyst converters onto car exhaust systems can redice the emission of these poliutans.
(4 marks)
(b) Car exhaust akso contains a high concentration of carbon dioxide.
(i) State ONE envirommental problem caused by an increase in concentration of carbon dioxide in the atmosphese. Explain your answer.
(ii) Suggest ONE measure to alleviate the envirommental problem in (i).
(2 marks)

Photochemical smog is usually associated with a brown inze.
(i) What pollutant causes the brown colour of photochemical snog?
(ii) State ONE Harmful effect of photochemical smog.

ASL01(I) O6 [Same as DSE13_06]
Both polypropene (PP) and polywinyl chioride (PVC) can be produced from naphtha, a petroleum fraction.
(a) State the three inain processes involved in the production of PP from naphitha.
(b) Why is PVC more rigid than PP?
(3 marks)
(2 marks)
(c) Adding plasticizers to PVC can reduce its rigidity. The sof PVC produced can be used to make garden hoses.
(i) Explain how plasticizers work.
(ii) Suggest one reason why PVC garden hoses become brittle atter a period of time.
(1 matk)
(d) Explain why the incineration of PVC wastes causes serious eswironnental problems.
(1 mark)

ASL02(I)_10

Burning of coal in a power station produces flue gas which contains nitrogen monoxide and sulphur dioxide. The flue gas is treated with copper(II) oxide, ammonia and air prior to discharge into the atmosphere.
(a) Explain why nitrogen monoxide and sulphur dioxide are formed when coal is burnt.
(2 marks)
(b) In the treatment process, nitrogen monoxide reacts with ammonia and air to give uitrogent In this reaction, copper(II) oxide acts as a catalyst.
(i) What is the menning of the term 'chatasis"?
(ii) Write a chenical equation for the conversion of nitrogen monoxide to uitrogen.
(c) In the treatment process, sulphor dioxide reacts with copper(I) oxide and air to give copper(II) sulphate(VI). Write a chemical equation for this renction.
(1 mark)
(d) The copper(II) oxide consumed in the treament process is regenerated by heating the copper(II) sulphate(VI) formed in (iii) with methane to give sulphur dioxide, carbon dioxide and copper. The copper is subsequently converted back to copper(II) oxide.
(i) Write a chemical equation for the reaction of copper(II) sulphate(VI) with methane.
(1 mark)
(ii) Suggest how the copper formed can be converted back to copper(II) oxide.
(1 mark)

ASL03(II)_08 (modified) [Similar to DSE12_15]
Under suitable conditions, CH_{4} reacts with Cl_{2} to give $\mathrm{CH}_{3} \mathrm{Cl}$.
(a) For this reaction,
(l) state the conditions required, and
(2 marks)
(ii) outline a mochanism and give the names of the mechanistic steps involved,
(3 marks)
(b) Apart from $\mathrm{CH}_{3} \mathrm{Cl}$, what other organic products will be formed when CH_{4} reacts with Cl_{2} ?

AL04(II)_06a

The exhaust of heavy-duty diesel engines contains an significant amount of particulate matter (PM) and hannful gases such as nitrogens oxides. A Continuously Regenerating Trap (CRT8) is a device which is designed for use in exhaust systems ofbuses and lorrics runuing on diesel with low sulphur content to remove PM and some of the harmful gases.
The digram below shows how a CRT works:

(i) (0)

With the help of chemical equations, explain why nitrogen oxides are present in the engine exhaust.
(ii) State one harmful effect of nitrogen oxides on the environment.
(ii) Carbon monoxide and hydrocarbons are two other harmful gases present in the engine exhaust.
Use chemical equations to show how these two gases can be removed in the calalytic chamber of a CRT.
(iii) A CRT is an automated, self-rcgenerating device which does not require cleaning of the filter. In a CRT, PM is trapped onto the filter mud is then oxidized by one fo the harmful gases to less harmful products.
(l) Which element is mot abundant in PM?
(1 mark)
(11) With the help of chemical equation(s), describe how PM trapped on the filter of a CRT can be removed. Hence, explain why the filler need not cleaned.
(2 marks)
(iv) Suggest why buese and lorries equipped with CRT should not run on diesel with high sulpltr content.

ASL04(II)_12

(a) Polywiny! claoride (PVC) is rigid and can easily be broken.
(i) Explain, in terms of intermolecular forces, why PVC is rigid.
(ii) The rigidity of PVC can be reduced by the addition of suitable plasticizers. Suggest why plasticizers can help reduce the rigidily of PVC.
(b) Expanded polystyrene is commonly used in making disposable lurch boxes. The monomer of polystyrene (PS) in phenylethene, which has the following structure:

(i) Write a chemical equation for the formation of PS from its monmers.
(ii) Suggest ONE forming agent sutable for making expanded PS.
(iii) Explain why expanded PS las good leat insulating properties.

ASLO5(II)_Il
The following substances are found in car exhaust:
Catbon monoxide, carbon dioxide, nitrogen oxides, hydrocarbons and particmates
Explain why the following substances are present in car cxhaust.
(i) Carbon monoxide
(ii) Nitrogen oxides
(b) For each of the following air pollutants, state one harmfinl effect.
(i) Nitrogen oxides
(ii) Particulates
(mark)
(c) The instilation of catalytic converter onto car exhaust system can help reduce the eminsion of carbon monoxide and nitrogen oxides.
With the help of appropriate chemical equation(s), explain how a catalytic converter works
(d) Do you agree with the following statemen? Explain your answer
'The exhaust of diesel engine contains a higher concentration of particulates than that of petrol engine,'

ASL08(I) 09 (modified)

Propenamide, the monomer of polypropenamide (also known as pofyacrylamide), is a potential eareinogen. The melting point of propenamide is $84^{\circ} \mathrm{C}$ and its solubility in water is $2.16 \mathrm{~g} \mathrm{~cm}^{-3}$ at $30^{\circ} \mathrm{C}$.
(a) Draw the structure of propenamide.
(b) Polyacrylamide gel (PAAG) is polyacryhamide saturated with water. A sample of PAAG fot break augmentation is suspected to contain about 1% propenamide. Suggest a chemical test to show the presence of propenamide in the sample.
(c) Propenamide can be identified by converting it to a solid derivative and determining the melting point of the derivative. With the help of a chemical equation, suggest ONE solid derivative of propenamide suitable for this purpse.

DSEIISP_02[Simitar to DSEI4_03]
Polyethene is used in making shopping bags and its monomer is ethene.
(9) Draw the electronic diagrann of ethene, showing electrons in the outermost shells only.
(1 mark)
(b) Name the lype of polymerisation involved in the production of polyethene.
(c) State ONE property of polyethene that makes it suitable for making shopping bags.
(d) (i) Suggest ONE way to dispose of polyethene wastes.
(ii) Ove ONE :Hywage and ONE desadvantage of the way you have suggested hat (i).

DSE12PP 05

The firel used in the forch for the Beijing 2008 Olympic Games was an alkane \mathbf{X} with the following composition by mass:
(a) Deduce what X could be

C, 81.8%
H, 18.2%
(b) Suggest an industrial process for obtaining X .
(3 marks)
(c) Kense wa
(1 mark)
(c) Kerosene was once used as a fiel for the Olympic torch. State ONE advantage of using each of the following sabstances as fuel for the torch.
(i) X
(ii) Kerosene

DSE12PP_07

(b) (i) With referctice to the properties of the materials involved, explain why
(I) a polypropene container is used to contain the calcium oxide.

DSE12_02

Poly(ethenyl ethanoate) is a polymer. Its monomer is ethenyl ethanoate with the structure shown below:

(a) Ethene is the raw material used in making ethenyl ethanoate. Ethene can be produced from hydrocarbons of higher molectular mass by an imporiant industrial process.
(i) Name this industrial process.
(ii) Explain why this process is importanl.
(b) Draw the sifucture of poly(ethenyl ethanoate)
(c) Ethyl ethanoate is an organic solvent.
(i) Draw the structere of ethyl ethanoate.
(I mark)
(1 mark)
(ii) Suggest a chamical test to show to distinguish between ethenyl ethanoate and ethyl ethanoate.

DSE12_10
Suggest THREE measures for reducing the emission of air pollutants upon using fossil fuels.

DSE12_15 [Same as ASL99(II)_09a]
Use electron diagrans to illustrate, step by step, how CH_{4} reacts with Br_{2} under sunlight to fonn $\mathrm{CH}_{3} \mathrm{Br}$.
Show electrons in the outermost shells only.)

DSE13 O6 [Same as ASL01(I)_06a]
Briefly describe how polypropene can be produced from naphtha.

DSE13_10
(c) Some people have the view that cars powered by hydrogen-oxygen fuel cells are more environmentaily friendly than those powdered by petrol.
Comment on this view from each of the following aspects:
(i) Source of fuel
(ii) The car emissions.

DSE14 03 [Similar to DSEIISP_02]
Both polyethene (PE) and 'Saran' can be used to make food wrap, but 'Saram' is more suitable than PE in making food wrap for use in microwave ovens.
(a) The monomer of PE is ethane. Suggest a chemical lest to show that ethane is in unsaturated compound.
(2 matks)
(b) 'Saran' can be formed from the polymerization of the compound shown below:

(i) State the systematic name of this compound.
(ii) Name the type of polymerization Involved in forming 'Saran'.
(iii) Draw the structurc of 'Saran', showing at least THREE repeating units.

In terms of intermolecular force, explain why 'Saran' is more suitable than PE in making wrap for use in microwave ovens.
(d) When incinerated, why would food wrap made from 'Saran' cause more serious pollution problem fhan food wrap made from PE?

DSE14_06

Petrol is a commonly used molor car fuel. It can be obtained from petroleum by fractional distillation
(a) (i) Explain, from molecular level, why petrol can be obtained from pefroteum by fractional distillation.
(ii) Other than directly obtaining petrol from fractional distillation of petroleun, suggest a way for producing extra petrol.
(1 mark)
(b) Molor cans powered by petrol emit air polluants such as nitrogen monoxide and carbon monoxide. Installing a certain device in motor cars can convert these two oxides to less barmful subslances.
(i) Name this device

DSELS_06

The steps involved in the reaction of methane with bromine forming $\mathrm{CH}_{3} \mathrm{Br}$ can be shown by the following diagram. Only electrons in the outermost shells are shown.

(a) Name the type of the reation for the formation of $\mathrm{CH}_{3} \mathrm{Br}$ from mathane and brominc,
(b) State the condition needed for the reaction to occur.
(c) State the expected observation for the reaction.
(d)

With reference to its electronic structure, explain why the species reactivity.
(c) The reaction of methane with bromine can also form other single-carbon-containing organic compouruds.
(i) Suggest one such compound.
(ii) Suggest a condition so that the reaction of mettane with bronine can form more $\mathrm{CH}_{3} \mathrm{Br}$ but less other organic compounds.

DSE15_08

Natural gas is an important energy source for electricity generation. It contains mainly methans $\left(\mathrm{CH}_{4}\right)$,
(a) Write the general formula of the molecules in the homologous series that methane helongs to.
(1 mark)
(b) The combustion of methane is an exothernic reaction. Its chemical equation is shown below: $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(i) Complete the table below by stating all the covalent bond(s) that are broken and formed daring the combustion of methane.

Covalent bond (s) broken
Covalent bond(s) formed
(2 marks)
(c) Some regions tend to generate efectricity more by natural gas but less by coal. Give TWO reasons from environmental protection consideration.
(2 marks)

DSE16_03
The diagran below shows an experimental set-up in which the glass wool soaked with octane is heated occasionally and the broken anglazed porcelain is heated sleongly. Sone gases are collected in the test tube over water.

(a) Name the type of reaction that occurs in the boiling tube. Suggest one importance of this type of reaction in industry.
(b) Expliin why finstead of a large piece of unglazed porcclain, broken unglazed porcelain ins in this experiment.
(c) Suppose that during the experiment, octane clanges to ethane gas and propene gas only mand they can be collected in the test tube.
(i) Write the balaneed equation for the reaction of changing octane to ethane and propene.
(1 mark)
(ii) The gases collected in the test tube are staken thoroughly with a faw drops of Br_{2} (in $\mathrm{CH}_{3} \mathrm{CCl}_{3}$)
(1) State the expected observation.
(2) Draw the structure of the product formed from the reaction between propene and Br_{2}.

When no more gas can be collected, what should be done to end itre experiment for safety consideration? Explain your answer.

DSE16_05

Polymer B shown below can be used as water absorbing material in diapers. It can be formed from the polymerization of compound A.

polymer B
(a) Draw the structure of compound A and state its systematic name.
(b) State the lype of polymerization for the formation of B from A.
(c) Suggest why the relative molecular mass of B is expressed using a range of values instead of a single fixed value. [Similar to ASLO9(I)_07b]
(d) It is known that the reaclion of polymer \mathbf{B} with $\mathrm{NaOH}(\mathrm{aq})$ forms polymer \mathbf{C} which can absorb water better. Draw the structure of C.

DSE17-03

Answer the following questions.
(a) Explain why propene can form a polymer, but propane cannot.

DSE17_08

Combustion of petrol increases the concentration of carbon dioxide in the atmosplere, and may contribute to global warming. Combustion of potrol also emits poisonous air pollutants.
(a) Write a chemical equation for the complete combustion of octane ($\mathrm{C}_{8} \mathrm{H}_{48}$), a component in petrol.
(b) Draw the electron diagram for a molecule of carbon dioxide, showing elections in the ontermost shell only.
(c) Give one reason FOR and one reason AGANST the foflowing statement:
'Swifching from tising pefrol-driwen cars to using electric cars can help allewlate global Hraming.'
FOR:

AGAINST:
(d) Carbon monoxide is one of the poisonous air polltitants emilted from the combustion ol petrol. Under what condition would carton monoxide be formed during the combustion of petrol?
(e) (i) Name a device that can be installed in petrol-driven cars so as to reduce the emission of carbon monoxide.
(1 mark)
(ii) Suggest one air pollutant in car exhaust which cannot be removed by the device in (i).
(I mark)

DSE18 04

Pelroleum is an important source of hydrocarbons.
(a) Describe the origin of petrolcum.
(b) D, \mathbf{E} and \mathbf{F} are isomeric alkene containing four carbon atons. D and E are cis-froms isomers. (i) Draw the structure of E (Irans-isomer).
(ii) State fic systenatic name of one possible structure of F
(c) Ethene and cthane are hydrocarbons.
(i) Suggest how ellene can be converted to ethanc.
(ii) Suggest a chemical test to distinguish between cthane and ethenc.

DSE18_09

Tefrafluorochene undergoes polymerization to form a polymer colled 'Teflon'. Using this example describe this type of polymerization.

DSE19-03
An experiment was carried out as shown below:

(a) (i) Suggest what the orange organic solution may be.
(ii) With the help of a chemical equation, explain the color change in the solution.

DSE19_05
The structure of a compound is shown below

Reacting with a reagent under certain conditions, it can give two compounds with the same moleculat formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Cl}_{2}$ but different structures
(a) Suggest what the reagent is.
(b) State the condition needed for the reaction to occur at room temperature.
(1 mark)
(c) Name the type of the reaction involved.
(f mark)
(d) (i) Draw the statcture of ONE of these two compounds and give its systematic name.
(1 mark)
(2 marks)
(ii) Draw the structure of the other compound.
(1 mark)
(iii) These two compounds are isomers. State the type of isomerism exhibited by them.
(1 mark)
DSE20_08
*g. Describe how 1,2 -dibromothane can be produced from crude oil, via an alkene, using appropriate chemicals and processes. White the chemical equations for the reactions involved. (6 marks)

DSE21_01(b)

Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ is a fuel. It can be obtained from calcium carbide $\left(\mathrm{CaC}_{2}\right)$ by two different reactions as represented by the equations shown below:

$$
\begin{array}{ll}
\mathrm{CaC}_{2}+\mathrm{A} \xrightarrow{2200^{\circ} \mathrm{C}} \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca} & \text { Reaction (1) } \\
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{25^{\circ} \mathrm{C}} \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2} & \text { Reaction (11) }
\end{array}
$$

(b) Write a chemical equation for the complete combustion of acetylene.
4. The chemical equation for a possible cracking reaction of decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$ is shown below : $\mathrm{C}_{10} \mathrm{H}_{23} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}+2 \mathrm{X}$
(a) State the systematic name of X.
(b) Suggest a chemical test to show how X and butane can be distinguished.
(c) X can form a polymer Z.
(i) Suggest why X can form a polymer.
(ii) Draw the repeating unit of Z.
8. The structure of a portion of a polymer is shown below :

Which of the following statements concerning the polymer is correct?
A. It can be used as a substitute for glass.
B.

C. It can be made from its monomer through addition polymerisation.
D. It can decolourise bromine dissolved in an organic solvent quickly.

Which of the following statements is / are correct ?
(1) They belong to the same homologous series.
(2) They have the same molecular formula.
(3) They are insoluble in water.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
16. The molecular formula of compound \mathbf{X} is $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{Br}$ and it has one carbon-carbon double bond. It can react
with Br_{2} (dissolved in an organic solvent) to give the following organic product :

Which of the following is / are the possible structure(s) of \mathbf{X} ?
(1) $\quad \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(2) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCHBrCH}_{3}$
(3) $\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
23. The simplified diagram below shows how different petroleum fractions can be obtained from a fractionating tower

Which of the following statements are correct?
(1) Fraction \mathbf{S} has a darker colour than fraction \mathbf{Q}.
(2) Fraction \mathbf{R} has a higher viscosity than fraction \mathbf{P}.
(3) Fraction \mathbf{Q} is more flammable than fraction \mathbf{P}.

A.	(1) and (2) only
B.	(1) and (3) only
C.	(2) and (3) only
D.	(1), (2) and (3)

6. Consider the following chemical equation for the formation of $\mathrm{CH}_{3} \mathrm{Cl}$ from methane and chlorine :

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

(a) Name the type of reaction involved.
(1 mark)
(b) State the condition needed for the reaction to occur at room temperature.
(1 mark)
(c) The reaction involves three stages: initiation, propagation and termination. In the initiation stage, chlorine free radicals $\left(\mathrm{Cl}^{\cdot}\right)$ are formed from chlorine molecules.
(i) With reference to the electronic structure, explain why a chlorine free radical $\left(\mathrm{Cl}^{\bullet}\right)$ is a reactive chemical species.
(ii) Complete the chemical equations below by filling in a suitable chemical species in each of the following boxes :

One of the steps in the propagation stage :

One of the steps in the termination stage :

(3 marks)
(d) Explain why $\mathrm{CH}_{3} \mathrm{Cl}$ is not the only organic product formed in the reaction between methane and chlorine.
(1 mark)
(e) From the hazard warning labels shown below, circle a label that should be displayed on a gas cylinder containing methane.

Marking Schame							
MCQ							
Patil: (a) hydrocabons, (b) homologous serics and (c) dkaues and alkenes							
CE90_06	B	CE90_18	D	CE90 21	A	CE9t_0	B
CE91_22	c	CE91_24	c	CE91_34	A	CE91-36	D
CE92_21	A	CES2_24	A	CE92 49	D	CE93_29	D
CE93_32	B	CE93 33	D	CE94_21	C	CE94_22	A
CE94 23	D	CE94_32	A	CE94_41	D	CE9S_15	c
CE95_20	B	CE95_23	D	CE95_39	A	CE96_13	A
CE96_14	B	CE96 20	D	CE97_10	A	CE97_16	B
CE97_18	A	CE97_19	C	CE97-23	D	CE97_24	A
CE97_33	D	CE97_38	D	CE97-42	B	CE98_33	A
CE98_07	C	CE98_14	A	CE98.29	D	CE98 39	D
CE98_47	B	CE99_03	c	CES9 30	A	CE99 32	C
CE99_35	D	CE99 44	D	Cemand	b	CEOn_os	\wedge
CE00_14	${ }^{\text {B }}$	CEOO2 21	A	CEAR 25	A	CEOP_27	13
CE00 40	A	CE01_03	D	CE01_07	A	CE01_12	B
CE01_14	D	CE01_31	B	CE01_32	D	CE01_41	D
CE02_05	B	CE02_09	B	CE02_12	C	CE02_33	B
CE02 34	D	CE02_43	D	CE02 44	D	CE02_48	C
CE03_08	D (65\%)	CE03_10	B (85\%)	CE03_17	D (33\%)	CE03_31	D (56\%)
CE03_33	D (48\%)	CE03 37	D (58\%)	CE03_38	A (51\%)	CEOSSP_16	D
CEOSSP_19	c	CE04_21	B (36\%)	$\mathrm{CEO4}_{-} 28$	B (30\%)	CE04_37	B (40\%)
CE04_42	$\mathrm{D}(41 \%)$	CE04_45	B (58\%)	CE04_46	C (42\%)	CE05_01	D (55%)
CE05_02	B (51\%)	CEOS_04	A(60\%)	CE05_12	D (62%)	CE0S 21	B (48\%)
CE05_28	D (34\%)	CE05_37	C (70%)	CE05_43	D (50\%)	CEOS 45	B $\left\{\begin{array}{l}(0 \%)\end{array}\right.$
CEOS 46	$\mathrm{D}(84 \%)$	CEOS_47	B $\{43 \%$	CE96_11	B (72\%)	CEOG_12	B (27%)
CE06_16	B (44\%)	CE06_17	A (58\%)	CLeb_22	A (44\%)	CE06_23	B (71\%)
CE06 30	C (38%)	CEO6_44	A 65%)	CE06_45	A (33\%)	CE0G_46	C (72\%)
CE07_02	D (34%)	CE07_04	B (36\%)	CE07 08	B (57%)	CE07_10	D (24%)
CE07_4	$\mathrm{C}(41 \%)$	CE07_26	B (40\%)	CE07_30	A(4)\%)	CE07_33	B (45\%)
CE07_49	B (61\%)	CE08_06	C(60%)	CE08_14	A(62\%)	CE08_27	B (45\%)
CE08 29	A(73\%)	CE08_49	D (68\%)	CE09 03	B (60\%)	CE09_11	B (74\%)
CEO9_16	B (74%)	CEO9 21	B (86\%)	CE09_25	A (82\%)	CE09 26	A (74\%)
CEl0_02	D (60%)	CE10_12	B (65\%)	CE10_25	D (76\%)	CE10-27	B (50\%)
CElO 29	C (43\%)	CE10_50	C (53\%)	CEII_10	A (58\%)	CE11_18	D 885%
CEII_22	A(67\%)	CE11_38	C (79\%)	CE11_42	C(55\%)		
Putt 2: (d) additiou polymers							
CE91_26	D	CE91_27	D	CE92_25	A	CE92_43	c
CE93-35	c	CE94_20	C	CE94_41	D	CE93 22	c
Cwes 35	A	cencos	B	CE9?_18	\wedge	CEM_4	\wedge
CE98 14	A	CR98_49	B	CE9928	A	CE99_41	B

CEOO_38	A	CFO1_09	B	CEO1_17	A	CE02_20	C
CE02_30	A	CE03_31	D (54%)	CE03_36	A (43\%)	CE03-48	D (66%)
CE0sSP_48	B	CEO4_15	$\mathrm{C}(41 \%)$	CE04_41	D (67\%)	CEO6_49	D (58\%)
CEOT_09	D (57\%)	CE07_27	D (53\%)	CELO_10	D (82\%)	CE11_17	D (66\%)

DSE							
DSEIISP_01	B	DSE1ISP_04	c	DSE11SP_09	B	DSE12PP_10	B
DSE12PP_-11	B	DSE12PP_ 21	B	USE12_11	$\mathrm{B}^{(61 \%)}$	USE12_17	B (50\%)
DSEL2_21	A(69%)	DSE12_22	C (84\%)	DSE12_24	B (61\%)	DSE13_14	B (81%)
DSE14_08	B (78\%)	DSEI4_10	$\mathrm{D}(70 \%)$	DSE14_17	A (88\%)	DSEIS_10	B (82\%)
DSEIS_19	B (73\%)	DSE15_22	C (84\%)	DSEAS_20	B (55\%)	DSE1G_09	C (77\%)
DSE16_10	B (63\%)	DSE16_17	$\mathrm{C}(73 \%)$	DSE16_19	C (27%)	DSEI? 05	D (63\%)
DSEL7_18	B (50\%)	DSEFI 20	D (71%)	DSE17_22	$\mathrm{D}(50 \%)$	DSE18_08	C (82\%)
DSE18_13	B (75\%)	DSE18_14	C (49\%)	DSE18_15	C (83\%)	DSE18_20	A(63\%)
DSEI9_07	B	DSEIS_10	C	DSE19_18	B		

DSE20_6 B
DSE20 23 C
DSE20_24D

Structural Questions

Part 1: (a) hydrocarbons, (b) homologous series and (c) alkanes and alkenes CE90 03a
(i) raw material: crude oil (petrolemm) [1] method: by fractional distillation
(ii) $\mathrm{C}_{5} \mathrm{H}_{12}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{CO}+11 \mathrm{H}_{2}$ [1]
hydrogen and carbon monorde
(iii) The colour of eitrated blood changes to eherry/ bright eed. [1]

This is the colour of the compound formed between carton monoxide and haemoglobin [I] to form carboxyhaemoglobin.
(iv) Black copper(II) oxide turued to brown comper

Copper(II) oxide is reduced by liydrogen and carbon monoxide. [I]
$\mathrm{CuO}+\mathrm{Hl}_{2} \longrightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CuO}+\mathrm{CO} \longrightarrow \mathrm{Cu}+\mathrm{CO}_{2}$
(v) Town gas is poisonous / toxic and has an explosion risk.
(vi) (i) for ventilation / Icting in fresh air / letting out fown gas.
[Do NOT accept: town gas is poisonous]
(2) dialing the felephone will trigger off a spark (or electric spark) which may ignite the town gas (or may cause an explosion).

CE90_05c(ii)
(1) Sulphur dioxide gas is released by burning fuels containing sulphar.
(2) as a gas: (any one)

- toxic (or poisonous) nature
- choking smell
- harmfill to human respiratory system
- harmiul to plants
- yellowing of leaves
when dissolved in water (any one)
- fomas acid rain
- is corrosive to building (or metals)
- makes soll acidio

CE91_02a
(i) First, use a pipette to draw $25.0 \mathrm{~cm}^{3}$ of vinggar to a $250.0 \mathrm{~cm}^{3}$ volumetric flask.
(ii) Use phenolphthalein as indicator. II]

At end point, the colour changes from colourless to red.
(iii)

Titration Burette reading	1	2	3	4
Final reading $\left(\mathrm{cm}^{3}\right)$	25.50	25.70	26.20	25.90
Initial reading $\left(\mathrm{cm}^{3}\right)$	0.00	1.00	1.30	1.10
Volume of NaOH used	$25.50-0.00$ $=25.50$	$25.70-1.00$ $=24.70$	$26.20-1.30$ $=24.90$	$25.90-1.10$ $=24.80$ l

$1^{\text {st }}$ trial would not be counted since the value is largely different from ohthers.
Reasonable average volume of NaOH used $\Rightarrow(24.70+24.90+24.80) / 3$

$$
=24.80 \mathrm{~cm}^{3}
$$

(iv) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}^{2}+\mathrm{H}_{2} \mathrm{O}$
(v) $\mathrm{NaOH}+\mathrm{ClHCOOH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
mole of $\mathrm{CH}_{3} \mathrm{COOH}=$ mole of $\mathrm{NaOH}=0.10 \times \frac{24.80}{1000}=0,00248$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {diluted }}=\frac{0.00248}{\frac{25}{100}}=0.0992 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {undiluted }}=0.0992 \times \frac{250}{25}=0.992 \mathrm{~mol} \mathrm{tm}^{-3}$
(vi) Given better buy $=$ lower price per gram of $\mathrm{CH}_{3} \mathrm{COOH}$
mass of $\mathrm{CH}_{3} \mathrm{COOH}$ in Brand $\mathrm{A}=50 \times \frac{250}{1000}=12.5 \mathrm{~g}$
mole of $\mathrm{CH}_{3} \mathrm{COOH}$ in Brand $\mathrm{B}=0.992 \times \frac{500}{1000}=0.496$
mass of $\mathrm{CH}_{3} \mathrm{COOH}$ in Brand $\mathrm{B}=0.496 \times 60=29.76 \mathrm{~g}$
For Brand $\mathrm{A}, \$$ of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{3.00}{12.5}=\$ 0.24$
For Brand $\mathrm{B}, \$$ of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{6.00}{29.76}=\$ 0.20$
Brand B is better buy

CE91.03a
(i) It is because petroletm comes from dead sea organisms million years ago. [1]
(ii) Different potrolcum fractions have different boiling points. [1]
(iii) (1) heavy oil[1]

(2) cracking [1]
(iv) (l) (I) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$ [1]
(II) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(2) (I) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ [I]
(II) Propene gives a more sooty flame because propene has higher mass [1] percentage of carbon
(3) (I) Burning of propane gives a gas $\left(\mathrm{CO}_{2}\right)$ [1] which can turn lime water millky. ..
(ii) Buming of propane gives a liguid ($\mathrm{H}_{2} \mathrm{O}$) which can turn dry cobalt(II) chloride paper from blue to pink. [1]

CE92 018

CE93_01c
(4) either one of the following tests:

Test	Observation	
	Propene	Propane
Adding bromine water or bromine in CCl_{4} (Do not accept $\mathrm{Br}_{2}(\mathrm{~g})$)	Colour changes from brown to colourless	Does not decolourize
Adding acidified KMnO_{4}	Colour change from purple to colouriess	Does not decolourize

(i) $2 \mathrm{C}_{3} \mathrm{H}_{18}+25 \mathrm{O}_{2} \longrightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$

OR, $\quad \mathrm{C}_{8} \mathrm{H}_{18}+25 / 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
The reaction is highly exothermic, the gas produced expand rapidy, so the motor is pushed rapidly.
(ii) Carbon dust and carbon monoxide are produced.

OR, Incomplete combustion occurs.
(iii) (1) (II) To increase efficiency of fiel combustion.
(2) It is because leâded pelrof burns and releases lead compounds [1] which can damage human nervous system.
(i) Ctacking is the process of breaking down large hydrocarbon molecules into many small hydrocarbon molecules under the action of heat (and catalyst) in the absence of air.
(ii) rocksil soaked broken pieces of
with paratin oil unglazed porcelain $/ \mathrm{Al}_{2} \mathrm{O}_{3}$

2 marks for showing cracking
I mark for showing collection of gas over water
(iii) (i) The boiling tube may be cracked / broken by cold water flowing in.
(2) Remove the delivery tube from water first, then step heating.
(iv) No, this can only conclude that the gascons producis contain $\mathrm{C}=\mathrm{C}$ band alkene or $[2]$ unsaturated hydrocarbons.

CE93_01d
(i) Borning of fiel because [1]
it is an exothermic reaction that provide energy to move the cars. [1]
(ii) (I) Incomplete combustion of fuel
because will produce air pollutant like carbon and carbon monoxide. [1]
(2) Install catalytic converters in cars.

CE93_03b
(iii) (I) The fuel used in incineration contains sulphur.
(2) Carbon dust. It will sick and mark harns to human respiratory system. [2] Carbon monoxide. It is a toxic ges.

CE94_05b
(iii) (1) $\mathrm{C}_{7} \mathrm{H}_{66}+11 \mathrm{O}_{2} \longrightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
(iv) The high tenperature inside car engine will make nitrogen gas (N_{2}) to react with [2] oxygen gas $\left(\mathrm{O}_{2}\right)$ to form oxide of nitrogen.

CEOS 02d
Nitrogen
If cannot burn in air (the others can burn in air)

CE95 08:
(i) (1) sulphur dioxide/ $/ \mathrm{SO}_{2}$
(2) attacks respitatory system/produces avid rain / cause smog / toxic
(3) installation of scrubbers (pass funes through alkalis) / use firel of low sulphur [1] conleat.
(ii) Any one of the following groups of answer:

- Part (I) carbonmonoxide / CO

Part (2) incomplete combustion (of fuel)
Part (3) poisotous / toxic
Part (4) ensure tiat there is sufficient supply of air duting combustion of fues $O R$, instalation of catalytic converter

- Part (1) particulates / carbon particles

Part (2) incomplete combustion (of fuef)
Part (3) cause smog/carcinogenic
Part (4) ensure that there is sufficient supply of air during combustion of fuet $O R, \quad$ installation of catalytic converter
OR, installation of electrostatic precipitator

- Part (1) nitrogen oxide / NO N_{x}

Part (2) combination of N_{2} and O_{2} at higle temperature
Part (3) poisonous / toxic / produces acid rain/photochentical smog
Part (4) installation of scrubber
$O R$ installation of catalytic converter

- Part (1) unburnt liydrocarbons

Part (2) incomplete combustion (of fuel)
Part (3) cause smog / carcinogenic
Pan (4) ensure that there is sufficient supply of air duting combustion of fue $O R, \quad$ installation of catalytic converter
(iii) water type firs extinguisher

CE96_01a(3)
Explain:
Turning on the exhaust fan may produce a spark
which may cause an explosion / the ignition of the town gas / cause a fire
Proper treatment:
Turn of the gas supply / open windows to let out the town gas
$O R_{1} \quad$ inform the Town gas company (police / fire service) via an outside telephonc.
CE96_02
(a) mass of 1 mole of $\mathrm{X}=1 \times 60=60 \mathrm{~g}$
mass of $\mathrm{C} \ln \mathrm{X}=60 \times \frac{60}{100}=36 \mathrm{~g}$
no. of mole of $\mathrm{C}=\frac{36}{12}=3$
The general formula of alkanol is $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{O}+1} \mathrm{OH}$
Thus, molecular formula of X is $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$
(b) Any ONE of the following
propan-1-01

propan-2-01

CE96 03

(a) Petroleum and coal were formed from the remains (dead/decayed bodies) of living orgarisms (animals and plants) that lived millions (thonsands) of years ago
(b) Any TWO of the following:

- The reserve of fossil fuels is limited / may be used up/is non-renewable energy source.
- The price of fossil fuel is controlled by countrics which have large reserve of these fuels.
- For economic and political reasons, countries which do not have rescrye of fossil fuels have to develop other energy sources.
- Burning of fossil fuels produces a lot of air pollutants.
- Burning of fossil fuels can chase global warming / greenhouse effect.
(c) Advantage: (any one)
- In the long run, nuclear power is cheaper
- Can produce a large guantity of energy
- Production of nuelear power produces less air pollutants / nuclear power is a clean energy source
Disadvantage: (any one)
- Leakage of radionctive source is disastrous (harmfini/ cancer causing)
- Difficult to trcat the waste.
- Setting up the plant is expensive.
(d) Solar energy / hydroelectric power / geothennal energy / tidal power / wind power / power from biomass.

CE97 05
Chemical knowledge:
Environmental problems caused by oil spillage:

- Oil is less dense than water and is insoluble in water, the oil layer can block the oxygen supply to marine life and cause death of marine life.
- Oil is flammable, it may cause luge fire which is hard to put out.
- Otl wasted ashore may spoil the beaches, the decomposition of oil is low and the effect is long lasting. Oil clogs the feather of sea birds and prevent them from flying or swimming, so the sea birds may die of cold or prenmonia (師炎),
- Oil layer blocks the sunlight from penetration into sea water and hinders the photosynthesis of aquatic plants.
- Oil is toxic/poisonous to marine life.

If detergent is used to clean up the split oil, the detergent remained in the sea may cause harm to marine life.
Treatment of oil spillage;

- Treat oil with detergent which can emulsify the oil which break down oil into dropiets.
- Use floating barier or boom to prevent the spread of oil.
- Use micro-organisin to break down the oil.

Presentation

CE97_09a
(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(ii) (1) $2 \mathrm{C}_{4} \mathrm{H}_{50}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
(2) Cazbon dioxide can furn lime water milky.

Water can turn anhydrous copper(II) sulplate from white to blue.
OR, Water can turn anhydrous cobalt(II) chloride (paper) from blue to pink.
(3) mole of butane in the $\mathrm{can}=\frac{250}{58}=4.31$
$2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2}-8 \mathrm{CO}_{2}+1 \mathrm{OH}_{2} \mathrm{O}$ mole ratio $\mathrm{C}_{4} \mathrm{H}_{50}: \mathrm{CO}_{2}=1: 4$
mole of $\mathrm{CO}_{2}=4.31 \times 4=17.24$
volume of CO_{2} produced $=17.24 \times 24=413.8 \mathrm{dm}^{3}$
(Accept answers from 412 to $414 \mathrm{dm}^{3}$; deduct 1 mark for wrong / no unit)[1]
(iii) Incomplete combustion of buiane may occur which produces carbon monoxide (CO) [2] which is toxic.

CE08 02
(a) potassiunz permanganate solution changes from purple to colourtess.

$O R, \quad \mathrm{CH}_{2}=\mathrm{CH}_{2}+[\mathrm{O}]+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2}(\mathrm{OH})$
(b) Brown colour of bromine changes io calorless.

OR. $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{3}+\mathrm{HBr}$
CE99 03
(a) incomplete combustion
(b) (i) $\begin{aligned} & 2 \mathrm{NO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2} \\ & 2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2}\end{aligned}$ $2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2}$
(2) damage buildings / statues,
$O R$, increase the rate of corrosion of metals / decrease crop yisld / harmful to aquatic life
(c) Irritates the respizatory system / causes lung cancer.
(d) Unburnt hydrocarbons / alkanes / sulphur dioxide
[1]
(do not accept carbon dioxide / lead compounds / dark smoke)
(e) Catalytic converter

CE99_09b

(i) Breaking down of large hydrocarbon (motecules) to small hydrocatbon (molecules) by heat and with help of a catalyst.
(ii) Treat compounds with bronine in 1,1,1-trichloroethane / bromine water.

Y can cause the bromine solution to change from brown to colourtess rapidly.
OR. Treat compounds with acidified KMnO_{4}
Only Y can cause the acidified KMnO_{4} solution to change from purple to colourless.
(iii) Gencral formula of alkene is $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$

$$
12 n+2 n=42, \quad n=3
$$

Y is $\mathrm{C}_{3} \mathrm{H}_{6}$
(i) Vapour of alkanes with low relative molecular mass condenses at lower tenmerature. $O R$, Vapour of alkanes with Jigh relative molecular mass condenses at higher temperature.
(ii) (1) Petrol is mainly used as fuel for motor cars.

The rapid growth in the number of motor cars makes the demand for petrol much $\quad 11$ greater than that for kerosone.
(2) Thermal cracking: heating (kerosene) under pressure in the absence of air.
$O R, \quad$ catalytic cracking: heating (kerosene) in the presence of a catalyst in the absence of air at a much lower pressure.
(iii) (I) Any ONE of the following;
It is easier to transport / store naphtha.
Using naphilia produces less air pollutants.
(2) To alert consumers of the leakage of town gas which conains earbon monoxide which is toxle / hydrogen which is explosive.
(iv) Lubricating oil

CE00_08b
(i) Burning gasohol produces a smaller amount of carbon monoxide / less unturnt
hydrocarbons / gasohol burns completely / produces less soct (dark smoke).
(ii) Catalytic hydration of ethene.
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(iii) Fermentation of carbohydrates.
(iv) Open-ended question:

Fermentation because it can save petroleum / the price of production of ethanol is low in agriculteral countries.
OR, Catalytic hydration because ethanol can be produced at a faster rale.

CE00 09 b
(i) Burning fossil fueis (wood) / respiration
(ii) Photosynthesis / dissolving carbon dioxide in seas (oceans)
(iii) (1) Catoon dioxide absorbs (infra-red) radiation from the earth surface and traps [2] the energy.
(2) The atmosphere is maintained in a temperature range suitable for plant and animal growth.
(3) Any ONE of the following:

- melling of ice in the polar caps which may cause flooding of the low-lying areas
- change in mainfall pattem
- weather disrupt ecosystem worldwide

CE01_01
(a) saturated hydrocarbon/alkane [1]
(b) (i) vapour
(ii) oxygen (air) and heat / high temperature [2]
(iii) The strong wind causes a lowering of temperature / removal of lient. [I]
(c) The high temperature of molten wax causes water to evaporate rapidly. [i]

The steam produced eauses the molten cande wax to splash out. The hot wax may cause
burning of skin.
$O R$, The steam produced causes the wax to form tiny drops of wax whicit can easily catch fire / can burn violently.

CE01 076
(i) Remains of sea animals and plants (e.g. planktons) that lived millions of years ago.
(ii) The catbon content of alkanes in dicsel is higher than that in LPG. [1]

It is more difficull for diesel to undergo complefe combustion.
So, burning diesel produces more particulntes / carbon monoxide / unburnt hydrocarbons. [1]
(iii) Any one of foilowing:

- not enough LPG refill centers
- investment to buy LPG taxis
- not enough service centers
(accept reasonable answers)

CE02_08a
(i) Mass of sulphur in 1.0 kg of coal $=1000 \times 1.5 \%=15 \mathrm{~g}$
$\mathrm{S}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{2}$
mole of SO_{2} refeased $=$ nole of sulphur used $=\frac{15}{32}=0.469$
Volume of SO_{2} released $=0.469 \times 24=11.26 \mathrm{dm}^{3}$ (Accept 11 and $11.3 \mathrm{dm}^{3}$) [2]
(ii) Acid rain/high incidence of respiratory ilhesses / corrosion of buildings. [1]
(iii) Instalation of scrubbers / installation of desulphurization systems / use of coal of lower [1] sulphur conten.
(iv) (1) High incidence of respiratory illnesses / causing cancer / darkening of building walls / reduce visibility / smog.
(2) Installation of electroslatic precipitator,

CE03_07b
(i) breaking down of large molecules into smaller ones,
(ii) Cracking can help to produce extra petrol which is used as fuel for motor veliceles.

OR, Cracking produces unsaturated hydrocarbons (e.g. alkene) which can be converted to other useful organic compounds.

rocksil soaked broken pieces of

 with paraffin oil uaglazed porcelain $/ \mathrm{Al}_{2} \mathrm{O}_{3}$
(1 mark for the set-up used for cracking octane; 1 mark for collection of gaseous product;
1 mark for the labels of an appropiate catalyst and heat.)
(iv) (1) $\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow \mathrm{C}_{4} \mathrm{H}_{13}+\mathrm{C}_{4} \mathrm{H}_{8}$
(2) Treat compounds with Br_{2} in $\mathrm{CH}_{3} \mathrm{CCl}_{3}$.

The unsaturated hydrocarbon readily turns Br_{2} in $\mathrm{CH}_{3} \mathrm{CCl}_{3}$ from brown to [1] colourless.

CE03_09c
(i) sewage sludge [i]
(ii) $\mathrm{CH}_{4}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ [I]
(iii) Save fossil fuels.
(iv) Possible answers: (any one)

- Methane produced in biogas plants cannot meet the huge demand of domestic fuel.
- Investment in the construction of biogas plant may be great
- Biogas plants release air pollutants.
- Difficift to collect large amount of organic wastes.

CE04_03
(a) Dissolve iodinc in ethanol/alcohol.
(b) (1) I_{2} is reduced by $\mathrm{SO}_{3}{ }^{2}{ }^{2}(\mathrm{aq})$ to colourless $\mathrm{I}^{-}(\mathrm{aq})$.
(2) I_{2} dissolves in $\mathrm{I}, 1,1$-tichloroethane.
(1) is better than (2).

In (2), the stain will be spread by $1,1,1$-trichloroethane/ the stain will remain on the coat when $1,1,1$-frochloroethane vaporizes.
OR $\quad 1,1,1$-trichloroothane is toxic/ harmful.
CE04_04
Chemical knowledge (6 marks)
Fornation of acid rain:
Burning of coal in power stations gives sulphur dioxide
OR, Roasting of sulphur-containing ores gives sulphur dioxide
OR, Bumag of diesel in diesel engines gives sulphar dioxide
Suiphur dioxide dissolves in rain water to give sulphurous acid.

Combination of N_{2} and O_{2} at high temperatures, e.g. in car engines or power stations gives $\mathrm{NO}_{\mathrm{x}} / \mathrm{NO} / \mathrm{NO}_{2}$.
NO_{2} is finally fonned which, when dissolves in rain water, gives $\mathrm{HNO}_{2} / \mathrm{HNO}_{3}$.
$O R$, Buming of chlorine-containing plastic wastes gives $\mathrm{HCl}(\mathrm{g})$
$O R, \quad \mathrm{HCl}(\mathrm{g})$ dissolves in rain water to give $\mathrm{HCl}(\mathrm{aq})$

Possible ways to reduce the formation of acid rain

For sulphur dioxide
Use low-sulphur coal / natura! gas / wind power (etc) instead of high-sulphur coal
OR, installation of scrubbers / flue gas desulphurization system.
For NO_{x} :
Installation of catalytic converters in car exhaust systems.
$O R$, Installation of low nitrogen oxide burner / scrubbers in power stations
For HCl :
Installation of scrubbers in exhaust system of incinerators / treat plastic wastes by landfilling
(Accept other possible ways for the removal of $\mathrm{SO}_{2}, \mathrm{NO}_{\mathrm{x}}$ and HCl .)
Effective comnunication

CE0S_05
(a) Any TWO of the following paiss:

- Bolfip pentane and octane can be represented by a same general formula. The general formula for pentane and octane is $\mathrm{C}_{n} \mathrm{H}_{2 n+2} /$ Adjacent mentbers differ by anc $-\mathrm{CH}_{2}$.
- There are gradual changes in physical properties among the members of a homologous series.
The boiling point / melting point/ viscosity / density of octane is higher than that of pentane.
- Members of the same homologous scries have similar chemical properties. Both pentane and octane can undergo substitution reaction with $\mathrm{Br}_{2} / \mathrm{Cl}_{2}$.
(b) Octane, it has a higler percentage of carbon by mass. Its chance to undergo incomplete [2] conibustion to give carbon is higher.
(c) Any TWO of the following:
$\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}$

CEOG 0 Ib
(i) Pressure builds up in the set-up when the mixture is heated. It is dangerous to conduct an experinent using a closed system. An explosion is liable to occur
Modification: add a receiver adaptor between the condenser and the round-bottomed flask.

CE06_06

CE07_02
(a)
(ii) No. The boiling point of hex-f-ene and hexane are very close together. They camnot be separated by simple distillation.
(iii) Treat the hydrocarbons with bromine in $1,1,1$-trichloroellane. Hex-1-ene will turn the [1] solution from brown to colourless inmediately. In the case of hexame, the colour of the [1] Br_{2} solution fades slowly.
(a) The number of motor vehicles increases capidly. Latge quantities of yetrol / diesel are buent to produce CO_{2}.
The rapid growth in population leads to deforestation, which can provide more land for [1] housing.
(b) lecrease in the number of rice paddies / cattle. The remains / manuse decay to give [1] methane.
(c) (i) Grenhouse gases can trap heat which is reradiated from the Earth, and keep the [1] atmosphere warm for life to sustain on Earth.
(ii) Increase in temperature of the atmosphere can cause melting of polar ice caps / [1] flooding / change in rainfall pattem etc.
(iii) (i) Any ONE of the following:

- Use alternative energy sources to generate electricity, e.g. nuctear energy, wind energy, solar energy, HEP etc.
- Use H_{2} as fuel (fuel cell) in cars
- Plant more trees
(II) Natural gas / marsh gas / methane from biomass can be used as a fuel $\begin{array}{ll}\text { rocksil saaked } & \begin{array}{l}\text { broken pieces of } \\ \text { wiglazed porcelain }\end{array}\end{array}$ with paraffin oil uiglazed porcelain / $\mathrm{Al}_{2} \mathrm{O}_{3}$

Cracking sel-up [!]
Gas collection set-up
Labelling of paraffin oil and porcelain/porons pot/pumice stones/aluminium oxide/etc.
(b) (i) The products of cracking contained unsaturated (hydrocarbons) /alkenes / $\mathrm{C}=\mathrm{C} /[2$ ethane / reasonable name of alkenc, which decolourized the bromine water inunediately by addition reaction.
(ii) The products of cracking also contained saturated (hydrocarbons) / alkanes / [2] methane / reasonable name or molecular formuka of alkane, which decolourized the bromine water slowly by subssitution reaction.1]

$$
401
$$

CE07_07
(a) concentrated sodium hydroxide solution
(b) (i) methanal and hexane [1]
(ii) methanol burns will a blue flane while hexame burns with a yellow flame /hexane burns will a more sooty flame than methanol
carbon content in hexane is higher than that in methanol
(iii) Add distilled water / cone, sodium hydroxide solution separately to methanol and hexame.

Methanol is miscible wilh distilled water / conc, sodiun hydroxide solution while hexane
is not.
$O R_{r} \quad$ Just mix them together. Two layers observed. Upper layer is hexane while lower layer is methanol.
$O R_{1} \quad$ Carry out boiling point test. The one with higher boiling point is hexane.

CE08 07
(a) A: fractional distillation [1] B: cracking
(b) (i) Diesel oil has a higher viseosity because the internolecular forces between the [1] molecules are larger than those in petrol.
(ii) Petrol is a cleaner fiel because
it burns more completely
OR, has shorter carbon chains
OR, has lower carbon to hydregen ratio
OR, has lower carbon contents than diesel oil.
(c) (i) To increase the amount of petrol for meeting the demands
$O R$, To increase the anount of sinatier molectiles for meeting the demands.
$O R, \quad$ To produce alkenes which are used to make other compounds.
(ii) (1)

	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{Cl}_{2}$	but-1-ene
OR	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$	but-2-ene
OR	$\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$	2-methylpropenc / metilylpropane

CE11 01a
Enotgh oxygen is provided when air hole is fully open. [1]
Complete combustion of methane has occurred.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

CE11_06
(a) (i) Butane
[1]
(ii) LPG burns more completely.

OR, LPG gives less sooty flame on burning.
(b) (i) Any 2 points, 1 mark for each point.

- Reduce the amount of nitrogen oxides in the exhaust.
- Reduce the amount of unburn lyydrocarbons in the exhaust.
- Reduce the amount of carbon monoxide in the exhaust.
- Reduce the amount of soot.
- Reduce the amount of suspended particulates in the exhaust. (ii) Nitrogen gas $\left(\mathrm{N}_{2}\right)$ or water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ or carbon dioxide $\left(\mathrm{CO}_{2}\right)$
(c) Burning of ultra low sulphur diesel (ULSD) gives less sulphur dioxide.

Sulplur dioxide couses acid rain/ is hamful to human respitatory system.

Part 2: (d) addition polyiners

CE90_01a(iv)
(I) polypropene
$\mathrm{H} \mathrm{CH}_{3}$
$-\mathrm{C}-\mathrm{C}-$
$\substack{1 \\ \mathrm{H} \\ \mathrm{H}}$
(2) household articles:
bowls / buckets / cups
CE91_02b
(i) Thermoplastic are easily melt and caich fire because electricity produces heat.

(ii) Polystyrene.

The gas is a good insulator of heat, so as the plastic.
(iii) (1) polyethenc/polytinene

CE92_04a
(i) (1) $\begin{array}{cc}\square & H \\ & \mathrm{C}=\mathrm{H} \\ 1 & H \\ & \mathrm{H}\end{array}$
(2) polypopene / polystyrene \quad [1]
(3) $\ln \mathrm{A}, \mathrm{X}$ will melt [1]
because X is heated in a limiled supply of air [1]OR, because
In B, X will burn[1]
becatse there is much air supplied for burning. [1]
(ii) mole ratio of $\mathrm{C}: \mathrm{H}=\frac{4.62}{12}: \frac{5.00-4.62}{1}=0.385: 0.38=1: 1$ [2]
$\mathrm{n}(\mathrm{CH})=104$, hence $\mathrm{n}=8$Molecular formula of monomer of X is $\mathrm{C}_{8} \mathrm{H}_{8}$.[1]
CE93 02a
(1) Plastics are chemically unreactive and cheap. [2]
CE95_06a(iv)(1) It is inert / does not react with HCl / the bottle is not easily broken / flexible / light in [1]weight / can be molded easily.
(2) polyethene / polythene / polypropene / polysfyrene / polyvinyl chloride etc.[1]
CE96 076
(i) fractional distillation of erude on [1]
(ii) (1) $\mathrm{H}_{3} \mathrm{C}$, H [1]
(2) Stej 1: (catalytic) cracking of heavy oil [1]
Step 2: fractional distillation of the mixture to obtain propene [1]
(iii) Step 1: monomer A (propenc) is polymerized to give polypropene $\left.\begin{array}{l}{[1]} \\ {[1]}\end{array}\right]$
Step 2: polypropene is injection moulded to give the polypropene boltie II
(iv) Polypropene is non-biodegradable. [1]
$O R_{2} \quad$ Burning of polypropene waste may produce toxic gas / air pollutants
(v) (1) Separating polypropene from oller plastic wastes [1]
OR, cleaning the polypropene wastes [1]
CE97_0lc
Polystyrene[1]
Feeding bottes are usually sterilized by heating in boiling water. Polyethene has a low melting[1]point. It softens at the temperature of boiling waterUrea-methanal. It cannot be moulded into the shape of a botte / it is not transparent.[1]
CE97-07[1]
[1]
CE98_07b
(i) $\mathrm{nH}_{2} \mathrm{C}=\mathrm{CH}_{2} \longrightarrow+\mathrm{CH}_{2}-\mathrm{CHCl} \dagger_{\mathrm{n}}$[1]
(ii) (I) Anyone:[1]
hottes
garmen

- surface of sofa
- liose
- cable shoathing
- foot wear- tiles cartains
(2) Any one:[1]- pipes
- bottles
- record
(3) No. PVC is a thermoplastic, it melis upon heating [1]
(iii) (1) Acid rain / damage to the respiratory' system [1]
OR. pass the gas through scrubber
(3) mole of HCl produced $=$ mole of PVC repeating units $=\frac{1000000}{62.5}$[1]
volume of HCl produced $=16000 \times 24=384000 \mathrm{dm}^{3}$[1]
CE99 01[1]- Polyvinyl chloride is more corrosive resistant than iron- It can be more casily shaped- It is chemically inert
(ii) Any one:[1]
- Iron is stronger
- Iron has higher tensile strength than PYC(b) (i) Perspex is not easily broken / lighter.[1]
(ii) Glass cannot be easily scratched / has better light Iransmission properly [1]
(c) (i) Any one:
- It is waterproof
- Polyethene is more durable
- It has higher tensile streng
(ii) Any one:
- Paper is biodegradable
- It causes less pollution problems when disposed of
- It can be made from renewable materials
- It is air permenble

CE99_096
(i) Breaking down of lage hydroearbon (molecules) to small hydrocarbon (molecules) by [] heat with the heip of a catalyst.
(ii) Treat compounds with bromine in 1,1,1-triehforeethane / bromine water

Y can cause the bromine solution to change from brown to colourless rapidly.

OR, Treat compounds wilh acidified KMnO_{4}

Only Y can cause the acidified KMnO_{4} solution to chnnge from purple to colourless.
(iii) General fonuula of alkene is $\mathrm{C}_{n} \mathrm{H}_{2}$
$12 n+2 n=42$
$\mathrm{n}=3$
Y is $\mathrm{C}_{3} \mathrm{H}_{5}$
(iv) (1)

(2) Apply heat to Z until it softens/melts

Compress (inject) molten Z to the shape of a cup in a mould and allow it to cool.
(v) Anluantage:
to reduce the consumption of non-renewable energy source or fossil fuels.
Disadvantage:
burning plastic wastes produces air pollutants/toxic gases.
OR, the cost to remove the pollutants produced by burning plastic swastes is high.

CE00_07

(i)

(ii) Aud anti-bumping gamules to prevent bumping and ensure smooth heating.
$O R$ A small flame / an electric heating mantle / an oil (water) bath should be used because kerosene is flammable.
OR, Heat the mixture in a fume cupboard because slyrene vapour is irritant.
(iii) (1) carbon-carbon double bond / $\mathrm{C}=\mathrm{C}$

(iv) (1) To improve the hesi insulating properties of the material.
(2) Open-ended question:

Agree:

- landfilling causes less air poilution problems

OR, Disagree.

- degradation of polystyrene wastes takes a long time
- a lot of landfilling sites are needed
- incincration can produce energy

CE03_07a
(i)

(ii) addition
(iii) durable/water repeling / chemically inert / hight tensile strength
(iv) any one of answer:

	Answer I	Answer 2	Answer 3
(1)	incineration	landfilling	recycling
(2) Adyantage	can reduce the volume of solid waste OR. converts plastic wastes into energy	does not cause much air pollution $O R$. produces methane which is a fuel	saves petroleum which is a nonrenewable energy source OR, reduces the volume of solid wasle
Disadvantage	release toxic gases (CO/dioxins)	a lot of landfill sites are required OR, causes underground water poltution	difficult to separate from other wastes $O R$, cnergy consuming

CEO2_05
Chemical knowledge (total 6 marks)

- Members of a homologous series can be represented by the same general formula of alkenes: $\mathrm{C}_{n} \mathrm{H}_{2 n}$
- Successive members of a homologous scriss differ in their structure by one CH_{2} unit
- Formulae: ethene $\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)$, propene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$ etc.
- Members of a homologous series have the same furctional group
- Functional group of alkenes: $\mathrm{C}=\mathrm{C}$
- Strictures of alkenes: ethene $\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$; propene $\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}\right)$
- Their physical propertiés change gradually from one member to the next
- The meffing point / boiling point of alkene increase with increase in refative molecular mass
- Menbers of a homologous series have similar chemical properties
- One example of the reactions of alkenes which is characteristics of unsaturated [] hydrocarbons
e.g. $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$

Effective communication

CE03 05
Chemical ways of treating plastic wastes:
(any three of the following; in each case, 1 mark for advantage and 1 mark for disadvantage)

- Incimeration

Advamage: Operation cost is low. Volume of solid waste can be greatly reduced, energy can be recycled, reduce land wastage, etc.
Disadvantage: Incineration produces toxic gases, the cost of operating a controlled [1] incineration plant is high, etc.

- Recycling

Advantage: Save materials, plastic wastes can be converted to useful products.
Disadvantage: The cost of operating a recycling plant is high, separation of the [1] different types of plastios in the waste is costly, low guality plastics are produced by mofting and re-moulding plastic wastes, elc.

- Landfilling

Advantage: Does not cause much alr pollution, a lot of plastic waste can be treated in a short period of time, etc.
Disadvastage: land wastage, it takes a long time for plastic wasles to degrade, may cause pollution of underground water, slow release of toxins from landfill sites, etc.

- Pyrolysis

Advantage: Save materials, usefull products (e.g. methane, ethane) can be obtained, etc.
Disadyantage: Requires a lot of energy.
Effective communication

CE04_06c
(i) In the presence of air, plastic wastes will be oxidized / burn / give CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
(ii) Fractional distiliation of the liquefied pyrolysis products.
(iii) Methane: fucl/steam cracking to give CO or $\mathrm{H}_{2} /$ production of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CHCl}_{3}\right.$ and $\left.\mathrm{CCl}_{4}\right)$ [1] Ethene: making starling materials for polymers (PE or PVC) / manufacture of ethanol [1] (or ethane-1,2-diol)
(accept other correct answers)
(iv) (1) Incineration / landfilling / recycling
(2) Advantage of pyrolysis (any one)

- useful prodtects can be obtained
- couse less air pollulion problems
- save materials
- not necessary to separate the plastic wastes

Advantage of incineration (ary one)

- low operation cost
- reduce solid waste volume / reduce land wastage
- not necessary to separale the plastic wastes
$O R$ Advantage of landfilling (any one)
- low operation cos!
- causes less air pollution problems
- not necessary to separate the plastic wastes

OR
Advantage of recycling (any one)

- low operation cost
- save materials
- catses less air pollution problems
- redice land wastage

CE05 _06
(a) (i)

or $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}_{6} \mathrm{H}_{5}$
(ii) PS is a mixture of polymeric molecules of different chain lengths.
(ii) Electric heating mantle / oll bath / sand bath should be used becanse kerosene is [2] flammable.
$O R$, Heat the mixture in a flame cupboard because styrene vapour is irritant.
(iii) Addition polymerization
(c) (i) Electricity leakage can be prevented. [11
(ii) Plastic does not corrodo casily. [1]
(iii) Low densily

CE0б_11

(a) Thermoplastics are made up of molecules with long carbon chains. The attraction between the polymers is weak yan der Waals* forces. At elevated temperatures, the molecules can move relative to cach other (translational motion).
In thermoseting plasties, there are eross-finks between the polymer molecules. There is [little motion between the chains,
Thermosetting plastics do not mett upon heatiug / cannot be reshaped at high [remperature. But, thermoplastics softer upon heating / can be moulded at high tcmperatures.
(b) (i)

$$
\mathrm{nH}_{2} \mathrm{C}=\mathrm{CH}_{2} \longrightarrow+\mathrm{CH}_{2}-\mathrm{CH}_{2} \uparrow_{\mathrm{n}}
$$

(ii) PE contains only $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds. These bonds are strong / unreactive / not [readily attacked by chenicals.

CE07 08
(a) (i)

(ii) Repeating unit:

Monomer: $\mathrm{CF}_{2}=\mathrm{CF}_{2} /$ tetrafluroethene

CE08_08

(a) Addition polymerization [1]

CEO9 04
(a) Corrosive
(b) (i)

$$
\left[\begin{array}{cc}
\mathrm{H} & \mathrm{H} \\
1 & 1 \\
\mathrm{C} & \mathrm{C} \\
1 & 1 \\
\mathrm{H} & \mathrm{H}
\end{array}\right]_{\mathrm{n}} \text { or }\left[\mathrm{CH}_{2}-\mathrm{CH}_{2}\right]_{\mathrm{n}}
$$

(ii) Polyethene lining is inert / does not react with acid.
It can prevent acid from reacting with the steel storage tank.
(c) mass of $\mathrm{HCl}=57000000 \times 38 \%=21660000 \mathrm{~g}$

$$
\text { mole of } \mathrm{HCl}=\frac{21660000}{1+35.5}=593424.7=593400
$$

$$
[\mathrm{HCl}]=\frac{593400}{50000}=11.87 \mathrm{M} \quad(\text { Accept } 11.86-11.90)
$$

CE10_12

CEII_07
(a)

(b) Addition polymerization [1]
(c) Prevent wetting the paper layer.
(d)

The box has an aluminium laye
Aluminium can react with oxygen so as to prevent the beverage from spoiling.
(c) ()

(ii) Monomer of PVC

AL99() 06 b

(i) CO: incomplete combustion of petrol

NO: combination of N_{2} and O_{2} at high teraperature,
$\mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}$
NO_{2} : ait oxidation of NO
$2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$
(ii) In the catalytic converter, Rheatalyzes the reaction
$2 \mathrm{NO}+2 \mathrm{CO} \longrightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$
Air is introduced to the converter and acts as an oxidizing agent.

Pt/Pd catalyzes the reactions

$2 \mathrm{CO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}$
(Accept any equation showing the oxidation of alkane with 5 to 10 carbon atoms.)
(iii) Lead/lead compounds can poison the catalysts $\mathrm{Pt} / \mathrm{Pd}$

ASL99() 07
(a)

(b) (i) Polymer is a mixture of polymer chain with different hydrocarbon length.
(ii) Average number of repeating unit $=\frac{\text { molecular mass of poly (propene) }}{\text { formula mass of repeating unit }}$

$$
=\frac{4.2 \times 10^{5}}{(12 \times 3+6)}=10000
$$

ASL99(II) 09 (modified)
(a) Chain initiation
$\xrightarrow{\text { Cl } 0_{0}^{\circ} \mathrm{Cl} \text { OV light or heat }\left(450^{\circ} \mathrm{C}\right)}$
Chain propagation

Chain termination

(b) (i) Dichloromettane is polar. $\mathrm{As} \mathbf{C - C l}$ bond is polar and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is an asymmetrical moleule.
Bond polarity (bond dipole moment) of $\mathrm{C}-\mathrm{Cl}$ cannot cancel out ench other,

(ii) As other products such as $\mathrm{CH}_{3} \mathrm{Cl}$ or CCl_{4} are also formed, which further [1] decrease the reaction yield of dichloromethane.

ASL99(11)_10 (modified)
(a) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$ [1]
$2 \mathrm{OO}(\mathrm{g})+2 \mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g})$[1]
$4 \mathrm{C}_{5} \mathrm{H}_{3}(\mathrm{~g})+(2 x+y) \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 x \mathrm{CO}_{2}(\mathrm{~g})+2 y \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ [1]
Catalyst converters can convert carbon monoxide and nitrogen ox [1]and carbon dioxide, and liydrocarbons to carbon dioxide and water
(b) (i) Carbon dioxide can intensify the gteenhonse effect.$[1]$
$[1]$
As the high concentration of carbon dioxide in the atmosphere can frap the infrared radiation on the Earth.
(ii) Replace the fossil fuel by alternative fuel such as hydrogen gas. [1](Aceept other reasomble answer)
(i) Presence of nitrogen dioxide[1]
(ii) Cause respiratory discase [1]

ASLOI(I)_06

(a) Crncking of naphtha gives a mixture of hydrocarbons whioh inchide propene. [1]

Fractional distillation of the gaseous produets can separate propene from other [1] bydrocarbons.
Polynicrization of propene at elevated tenperatures.
(b) The molccular size of repeating unt of PVC is larger than that of PP. Under the same [1] length of the polymer chain, there is a stronger van der Walls' force between PVC [1] polymer chains than that in PP .
(c) (i) The intermolecular attraction between polymer chains weakens if there are [1] plasticizer molecules befween the polymer chains, increasing the distance between two polymer chains.
(ii) The plasticizer molecules decompose under the prolonged stulight radiaton, and PVC restores its rigidity.
(d) Buring PVC wastes will produce toxic Cl_{2} gas / acidic HCl gas and others chlorinated compounds such as dioxin.

ASL02(II)_10
(a) At high temperature, $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ in the ais conbine to form $\mathrm{NO}(\mathrm{g})$
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})$
Burning sulphur inpurities in the coat produces sulphur dioxide.
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g}) \longrightarrow \quad[1 / 2]$
(b) (i) A catalyst con speed tip the reaction by providing an alternative pathway with [1] lower activation energy.
(ii) $6 \mathrm{NO}(\mathrm{g})+4 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow 5 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(c) $2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{CuO}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CuSO}_{4}(\mathrm{~s}) \quad$ [1]
(d) (i) $2 \mathrm{CuSO}_{6}(\mathrm{~s})+\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Cu}(\mathrm{s})+[\mathrm{l}]$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(ii) Heating Cu in the air

ASL03(II) 08 (modificd)
(a) (

Under sunlight or under ultra-violet radiation
Use a mixture of CH_{4} and Cl_{2} in a mole ratio of $1: 1$ [1]
(ii) Chain initiation

$$
\left(\mathrm{Cl}_{0}^{-\mathrm{Cl}}\right) \xrightarrow{\text { UV light or heal }\left(450^{\circ} \mathrm{C}\right)} \quad 2(\mathrm{Cl}
$$

Chain propagation

Chain termination

(b) $\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHCl}_{3}$ and CCl_{4}
(i) (D) Athigh temperature $\mathrm{N}_{2}(\mathrm{~g})$ reacts with $\mathrm{O}_{2}(\mathrm{~g})$ to give $\mathrm{NO}(\mathrm{g})$

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-2 \mathrm{NO}(\mathrm{~g}) \quad[1 / 2]
$$

$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ [1/2]
(II) Acid rain / photochemical smog [1]
OR, $2 \mathrm{CO}(\mathrm{g})+2 \mathrm{NO}(\mathrm{g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}(\mathrm{~g})+\frac{3 n+1}{2} 0_{2}(g)
$$

$$
\mathrm{n} \text { is an integer }
$$

(II) Nitrogen dioxide oxidizes C in PM to $\mathrm{CO}_{2}(\mathrm{~g}) /$ gaseous products. [1]
$\mathrm{C}(\mathrm{s})+\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$ [1]

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$[1]

(iv) SO_{2} (or other sulphiur compound) would poison the catalyst.
(a) (i) The $\mathrm{C}-\mathrm{Cl}$ bonds and $\mathrm{C}-\mathrm{H}$ bonds in PVC are polar. The rigidity of PVC is due to the strong van der Waals' force (dipole-dipole attraction) which occurs between sfightly negative chlorine atoms on one polyme chain and the slightiy [1] positive hydrogen atoms on an adjacent chain.
(ii) The intermolecular attraction between the polymer chains weakens if there are [i] plasticizer molecules between the polymer chains.
(b) (i)

(iii) Air is good insulator. Trapping of air in expanded PS would cnhance the [1] heat insulating properties.

ASLOS(11)_11
(a) (i) Incomplete combistion of fuel / petrol / diese
(ii) At high temperature $/$ the temperature of the car engine, $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ [I] combine to form $\mathrm{NO}(\mathrm{g})$
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
The $\mathrm{NO}(\mathrm{g})$ formed in then oxidized to $\mathrm{NO}_{2}(\mathrm{~g})$ [1]
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
(b) (i) Photochemical smog/acid rain
(ii) Carcinogen / causing respiratory illnesses
c) The catalyst $(\mathrm{Pt} / \mathrm{Rd})$ in the catalytic converter speeds up the reaction of $\mathrm{NO}(\mathrm{g})$ with $\mathrm{CO}(\mathrm{g})$ to give $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2}(\mathrm{~g})$ which are les harmful.
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g})$
(d) Yes

The HCs in diesel contains a mucls bigher percentage of carbon. Incomplete [combustion will give a greater amount of particulates.

ASL08(I)_09 (modified)
(a) $\mathrm{CH}_{2}=\mathrm{CHCONH}_{2}$
(b) $\mathrm{Add} \mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Br} 2 / \mathrm{CCl}$

The presence of propenamide cause the reddisth brown reagent to turn colorless. [1]
(c) $\mathrm{Br}_{2}+\mathrm{CH}_{2}=\mathrm{CHCONH}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{BrCHBrCONH}_{2}$[1]

DSEISP_02

(a)

(b) Addition polymerization [1]
(c) Durable / water repelling /chemically inert / high tensile strength [1]
(d) (i) Incineration [1]
(ii) Advantage: can reduce the volume of solid waste / converts plastic waste into energy.
Disadvantage: releases toxic gas ($\mathrm{CO} /$ dioxin) / CO_{2} which is a greenhouse gas .
(particulates which cause respiratory diseases (darkening of building) / cost to remove air pollutant from flue gas is high.
(i) Landfilling [i]
(ii) Advantage: does not cause much air polktion/produces methane which is a [i] fuel. Disadvantage: a lot of landfill sites are required/causes underground [1] water pollution.
(i) Recyeling
(ii) Advantage: sayes petroleum which is a non-renewable energy sotires / reduces [1] the volume of solid waste / does not cause nuch air pollution / can help to conserve plastic materials.
Disadvantage: dimicull to separate PE from other wastes / recycling is energy consuming.

DSE12PP_05
(a) Mole ratio of $\mathrm{C}: \mathrm{H}=\frac{81.8}{12}: \frac{18.2}{1}=6.82: 18.2=3: 8$ Alkane has the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$[1]
$\therefore \mathrm{X}$ is propane $/ \mathrm{C}_{3} \mathrm{H}_{8}$ [1]
(b) Fractional distillation of the petroleum gaseous fraction.

OR, Cracking of naphtha/ heavy oil (or any appropriate petroleum fraction) followed by fractional distillation of the products.
(c) (i) $\mathrm{X}: \mathrm{C}_{3} \mathrm{H}_{8}$ easily undergoes complete combustion to give CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The [1] products pose hitte harm to the enviromment.
(ii) Kerosene : kerosene undergoes incomplete combustion to give a luminous [1] flame. The flame can be more easily seen.

DSE12PP_07
(b) (i) (1 PP is a poor conductor of heat. Using PP container to hold CaO(s) will) protect hands for skin burns.

PP can withstand the high temperature caused by the reaction of $\mathrm{CaO}(\mathrm{s})$ wilh $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.

DSE12_02
(a) (i) Cracking / Cntalytic cracking / Thermal cracking
(ii) This process can produce small molecules / alkene / ethene / petrol/ hydrocarbons of lower molecular mass from large hydrocarbons to meet the [I] tndustrial demand / to make useful materials /to make useful fuels.
$O R$, This process can produce more small molecules / alkenes / ethene / petrol/bydrocarbons of lower molecular masses from large hydrocarbons
(b)

(c)
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}^{\stackrel{\text { O }}{\mathrm{C}} \mathrm{C}^{\mathrm{O}} \mathrm{CH}_{3}}$
(ii) Bromine test - ellenyl eflanoate cant decolorize orange / brown / yellow bromine / Br 2 solution immediately while ethyl ethanoate cannot. (NOTAccept Br)
(Require to mention the reaction of Br_{2} with ethenyl ethanoate is much faster than elliyl elhanoate)
$O R$, Treating with scidified potassium permanganate solntion - ethenyl ethanoate can decolorize purple acidified potassium permanganate solution while ethyl ethanoate cannot.
(Also accept treating with potassium permanganate solution (without acidification) with the correct descriptions of observations - change from purple to brown (precipitate)).

DSEL2 10
Any THREE

- Install catatytic converters in car
- Use mileaded petrol
- Replace diesel with LPG for vehicles / Use LPG for vehicles/mini-bus/bus/axi
- Install scnubbers in power plant
- Using Ultra Low Sulphur Diesel / Use low sulphur coal in power plant / use low Suphur fiels.
- Use electrostatic precipitator
- Remove dust by mechanical fiftering

DSE12 15
Chain initiation
($\mathrm{Br}\left(\int_{0-0}^{\mathrm{O}} \mathrm{Br}\right) \xrightarrow{\text { UV light or heat }\left(450^{\circ} \mathrm{C}\right)}$
Chain propagation

Chain termination

DSE13 06

- Cracking of naphtha gives a mixture of hydrocarbons which inctude propene,
- Fractional disfillation of tho gaseous products can separate propene from other [1] hydrocarbons.
- Polymerization of propene at elevated temperatures $/>45^{\circ} \mathrm{C} / \mathrm{high}$ pressare $/>5$ atm
/in the presence of a suitable catalyst / Zieg;er-Natta catalyst gives polypropene (Polymerization + any 1 condition).
(Polymerization of propene can be described in the form of a chemical equation.)
- Communication

DSE13_10

(o) (i) Accept both 'agree' and 'disagree' answers. Award I matk for a sound argument.
Agrec: The hydrogen can be obtained from remewable source (with one proper example) (E.g. electrolysis of water using the electricity generated from hydropower / reforming of CH_{4} obtained from animal manure.)
Disagree: The hydrogen gas used is produced from fossil fuel such as steam reforming of nature gas.
Disagree: (Electrical) energy is consumed in the production of hydrogen (from water).
(NOT Accept the answer is yes, because the hydrogen can be obtained from the electrolysis of water, and so the fuel cells do not consume fossil fuel.)
(ii) Agree: Only water is produced from the hydroges-oxygen fivel celis
$O R, \quad \mathrm{No} \mathrm{CO} 2 / \mathrm{SO}_{2} / \mathrm{NO}_{x} / \mathrm{CO} /$ intiburth hydrocarbon in the exhaust.

DSE14 03

(a) Add $\mathrm{Br}_{2}(\mathrm{aq})$ or Br_{2} (organic solycat) / acidified $\mathrm{KMnO}_{4}(\mathrm{aq}) /$ neutral or alkaline $\mathrm{K}_{\mathrm{MnO}}^{4}$ (aq).
Reddish brown or brown or orange Br (ag) decolorized or becomes colorless (paler).
OR, Purple $\mathrm{KMnO}_{4}(\mathrm{aq})$ decolorized or becomes colorless (palar)
$O R$, Purple $\mathrm{KMnO}_{4}(\mathrm{aq})$ becomes brown.
NOT accepted ; yellow $\mathrm{Br}_{2}(\mathrm{aq}), \mathrm{Br}_{2}, \mathrm{Bromine}, \mathrm{Br}_{2}(\mathrm{~g}), \mathrm{Br}(\mathrm{I}) \ldots .$.
(b) (i) 1,1-dichtorocthene
(ii) Addition (polymerization)

NOT accept: additional polymerization

c) 'Saran' is more heat resistant / has a higher meling point / is less soluble in oil

Because the pelar attraction (force) between 'Saran' polymer chains is stronger than that between PE
$O R$, the molecular size of Saran are layer, home it has a latger difpersion forces or van del Waals' force or intermolecular forces than in PE
(d) Incineration of food wrap made from 'Saxan' will produce toxic gases / harnuful gases [1] /dioxin / hydrogen chlorite / $\mathrm{HC} /$ chorine / Cl_{2}, while that made from PE will not.

DSEP4_06
(a) (i) Components having different boiling points can be separated from cacho other by fractional distillation
The longer the carbon chain, the higher is the boiting point.
(ii) Cracking of heavy oil/ heavy hydrocarbons [1]
(b) (i) Catalytic converter[1]

DSE15_06
(a) Substitution
(b) Light/ullra-videt / UV/heat / radical initiator (e.g. benzoyl peroxide) [1]
(c) Orange / brown color of bromine fades away

Orange / brown color of bromine changes to colorless (siowly)
(bromine color: NOT accept 'yellow')
(d) Bratom does not have the stable noble gas electronic configuration.

OR $\quad \mathrm{Br}$ atom does not have the satabe oetef electronic configuration.
$O R \quad$ The electronic configuration of Br atom does not fulfill the actet rule.
(e) (i) $\mathrm{CH}_{2} \mathrm{Br}_{2} / \mathrm{CHBr}_{3} / \mathrm{CBr}_{4}$
(ii) Use (large) excess amount of CH_{4}
$O R, \quad \mathrm{Br}_{2}$ is the limiting reactant.
DSE15_08
(a) $\mathrm{C}_{\mathrm{b}} \mathrm{H}_{3 n+2}$
[1]
(b) (i) Covalent bond(s) broken $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}=\mathrm{O}$

Covantbona(s) broken $\quad c-1 \quad$ a $\quad 0$
(c) - Natural gas burns (more) completely but coal does not./

Burning coal would produce soot/ carbon monoxide but burning natural gas would not.

- Compared with natural gas, coal contains more impurities./

Burning coal would produce more pollutant, stach as $\mathrm{SO}_{2,}$, metal compound dust, NO_{2}.

DSE16_03
(a) cracking

To produce petrol / to prodice alkenes /
to produce smaller hydrocarbons from larger hydrocarbons / to convert heavy oil to petrol
(b) The reaction will be faster when using broken unglazed porcelain inslead of a large piece of unglazed porcelain due to larger surface area.
(c) (i) $\quad \begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{18}-\mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{CH}_{3} \mathrm{Cl}-\mathrm{CH}_{2} \\ & \mathrm{C}_{3} \mathrm{H}_{18}-\mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{C}_{3} \mathrm{H}_{6}\end{aligned}$
$\mathrm{C}_{8} \mathrm{H}_{18} \cdots \mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{C}_{3} \mathrm{H}_{6}$
(ii) (I) Orange / browa Br_{2} solution turns to colorless / decolorize (bromine colour: accept "reddish brown" or "red"; not accept "yellaw") (2) $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br}$

DSE16_05
(a)

Propenoic acid

Addition
(Do not accept "additional")
(c) B is a mixture of polymer molecules with different lengths.

OR. Polymer molecules are of different length / carbon elains / a values.

DSEI7_0.

(a) A propene molecule has $\mathrm{C}=\mathrm{C}$ bond whereas propane molecuie has not.
(Not accept: Propens is unsaturated while propane is saturated, / Propente is an alkene while propane is an alkane.)

DSE17 08

(a) $2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \longrightarrow 16 \mathrm{CO}_{2}+48 \mathrm{H}_{2} \mathrm{O}$

The stoichiometric coefficients should be whole numbers
(b)

(c) FOR : Using carbon capture techniques, the CO_{2} produced in power stations can be [1] trapped and stored, thus the emission of carbon dioxide into the atmosphere will be reduced. / Compared with petrol-driven car, power stations have higher energy efficiency, and will reduce CO_{2} emissions. / Using renewable encrgy sources like solar energy to power the electric car will reduce CO_{2} enissions.
AGAINST: The electricity used in powering car is mainly produced by buming of [1] fossil fuels, and the CO_{2} so produced will still be emitted into the atmosphere. / Producing batteries for electric car will increase CO_{2} emissions.
(d) Limited supply of air or oxygen / too large anount of petrol.
(c) (i) Calalytic converter [1]
(ii) Particulates / supended particuiate / Sulphur dioxide / PM [1]

DSE18-04
(a) Petroleum is formed when farge qumtities of dead marine orgatisms (such as [1] plenktons and algae),
that are buried underneath sedimentary rock and subject to intense heat and pressure [1]
for a long time.
(b) (i) \qquad
(ii) But-1-ene or methypropene
(c) (i) Pass excess H_{2} to ethene in the pressure of $\mathrm{Pt} / \mathrm{Pd} / \mathrm{Ni}$
$O R \quad$ Catalytic hydrogenation
(ii) Ethene turns $\mathrm{Br}_{2}\left(\mathrm{In}_{1} \mathrm{CH}_{3} \mathrm{CCl}_{3}\right)$
from brown / orange to colorless, white ethate does nol. [1]
(Noi accept yellow)
(Accept $\mathrm{KMnO} / \mathrm{H}^{+}$- purple to colorless
KMnO_{4} - purple to brown (precipitate)
$\mathrm{KMnO}_{4} / \mathrm{OH}^{-}$- purple to brown (precipitate))
(Accept: combustion test; ethene gives more sooty flame, while ethane gives less sooty flame)

DSE18_09
Five knowledge points (1 mark for eacl point), a maximum of 4 marks:

- Unsaturated compounds / compounds will $\mathrm{C}=\mathrm{C}$ bonds can midergo addition polymerization.
- No small molecules will be eliminated during addition polymerization,
- High temperature / high pressure / catalyst is used. (Any 2 conditions)
- Structure of monomer: $\mathrm{CF}_{2}=\mathrm{CF}_{2}$
- Structure of the repeating unit: $-\mathrm{CF}_{2}-\mathrm{CF}_{2}-$ OR the polymer: $-\left[\mathrm{CF}_{2}-\mathrm{CF}_{2}\right]_{\mathrm{n}}-$ Communication mark
Chemical knowledge $=0$ to 2 , communication mark $=0$
Chemical knowfedge $=3$ (0 4, communication mark $=0$ or 1)
DSE19_03
(a) (i) Bromine (ins organic solyent)
(Not accept aqueous bromine solution)
(ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3}(\mathrm{CHBr})_{2} \mathrm{CH}_{3}$ consumed / n colourless product is formed.

DSE19_0 0
5. (8) Chlorine / Cl_{2}
(not accept $\mathrm{Cl}_{2}(\mathrm{aq})$)
(b) Light / ho / ultra-violet / UV / radical intitator

Incemplefe answer or diffail to understand, communtation marl - -)

1,3-dichloro-2,2-dimethylpropane or 1,1-dichloro-2,2-dimethylpropane
(Also accept 1,3-dichlorodimethylpropanc or 1,1-dichlorodimethylpropane) (The structure and the systematic name must be matched.)
(ii) The structure other to the answer in (i)
(iii) stractural isomer/position isomer[1]

DSE20_08
8. (Any 5 points from below: 1 mark for each point

Separation or

- Cracking of (crude oil) / beavy oil / gas oil / fuel oil / naphtha /etc, gives a mixture of smat molecules / mixture with ethene $/ \mathrm{CH}_{2}=\mathrm{CH}_{2}$. (Accept: $\mathrm{C}_{2} \mathrm{H}_{4}$)
(Not accept lubricating oil / bitumen etc)
 (The equation must be balanced) (Ignore state symbols)
Fractional distillation of the above mixture ? small molecules gives ethene/ $\mathrm{CH}-\mathrm{CH}$
- Accept: $\mathrm{C}_{2} 4$) Adition reaction of ethene $/ \mathrm{CH}_{2}-\mathrm{CH}$ and bromine $/ \mathrm{Br}_{2}$ gives 1,2 -dibromocthanc BCHCH2Bt.
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{BrCH}_{2} \mathrm{CH}_{4} \mathrm{Br}$
Ugnore state symbols, need to stow catbon carbon double bend
Note: Candidates bave to show the cortect process sequince, ie factonal distilation, cracking
Fractiomal distilation and addition
- Commurication mark
(Chenical knowledge $=0$ to 3, cominunication mark $=0$.
Chemical knowiedge $=0$ to 3, communicaton matk $=0$.
5
\qquad


```都
```

(d) (i)

\qquad

[^0]: \qquad

[^1]: (1 mark)

