SECTION 9 Rate of Reaction

Multiple-Choice Questions

CE90 08

Which of the following contains the largest number of ATOMS at room temperature and pressure?

(Relative atomic masses: H = 1.0, N = 14.0, Cl = 35.5; Molar volume of gas at room temperature and pressure = 24 dm^3)

A. 2 mol of ammonia gas B. 3 mol of nitrogen gas C. 7 g of hydrogen gas D. 90 dm³ of hydrogen chloride gas

CE90 11

What volume of 0.5 M sulphuric acid is required to liberate 4.8 dm³ of carbon dioxide at room temperature and pressure from excess solid hydrogenearbonate? (Molar volume of gas at room temperature and pressure = 24 dm³)

Α.	0.2 dm ³	B.	0.4 dm ³
C,	2.0 dm ³	D.	4.0 dm ³

CE91 03

Solid X undergoes complete thermal dissociation according to the following equation:

 $X(s) \longrightarrow Y(g) + Z(s)$

On heating 4.90 g of solid X, 1.40 dm3 of gas Y and 2.30 g od solid Z are obtained at room temperature and pressure. What is the relative molecular mass of Y?

(Molar volume of gas at room temperature and pressure = 24 dm^3)

A.	32.0	в.	39.4
C,	44,6	D,	84.0

CE91 32

Which of the following gases contain the same number of molecules as 300cm³ of oxygen under the same temperature and pressure?

B. (3) and (4) only

D. (2), (3) and (4) only

(1) 150 cm³ of NH₃

(2) 200 cm³ of O₃

(3) 300 cm³ of He

(4) 300 cm³ of HCl

A. (1) and (2) only

C. (1), (3) and (4) only

CE93 09

0.21	gofa	gaseous hydrocarbon occupies 0.12 dm3 at room temperature and pressure. If this			
hyd	rocarbo	has the empirical formula CH2, what is its molecular formula?			
		omic masses: H = 1.0, C = 12.0;			
Mol	Molar volume of gas at room temperature and pressure = 24 dm^3)				
		B. C3H6			
C.	C4H8	D. C5H10			

CE94 47

1st statement At room temperature and pressure, the molar volume of exygen gas is greater than that of hydrogen gas,

2nd statement The relative atomic mass of oxygen is greater than that of hydrogen.

CE95 31

Question 31 refers to the following chemical equation: $Fc_2O_3(s) + 3CO(g) \longrightarrow 2Fc(s) + 3CO_2(g)$ What volume of carbon dioxide, measured at room temperature and pressure, is produced if 224 g of iron are formed? (Relative atomic mass: Fe = 56: Molar volume of gas at room temperature and pressure = 24 dm³) A. 16 dm³ B. 36 dm³ C. 72 dm³ D. 144 dm³

CE96 11

In an experiment, 1.6 g of sulphur are burnt completely in air to form sulphur dioxide. What volume of sulphur dioxide, measured at room temperature and pressure, is formed? (Relative atomic mass: S = 32.0: Molar volume of gas at room temperature and pressure = 24 dm³)

A,	0.6 dm ³	В.	1.2 dm ³
С,	2.4 dm ³	D.	12.0 dm ³

CE96 19

Under certain conditions, 60 cm³ of a gaseous compound, NxOy, decompose completely to give 60cm3 nitrogen gas and 30 cm3 of oxygen gas. (All gas volumes are measured at room temperature and pressure.)

Which of the following combinations is correct? 4

....

2	Ľ.
i	1
1	2
2	1
2	3

CE96 32

Which of the following statements concerning one mole of nitrogen gas is/are correct?			
(1)	It has a mass of 14.0 g.		
(2)	It occupies the same volume as 4.0 g of hel	ium g	as at room temperature and pressure.
(3)	It contains 6.02×10^{23} atoms of nitrogen.		
(Rela	tive atomic masses: He = 4.0, N =14.0; Avo	gadro	s constant = $6.02 \times 10^{23} \text{ mol}^{-1}$
 Ά.	(I) only	В.	(2) only
C.	(1) and (3) only	D.	(2) and (3) only

CE97 17

Which of the following gases occupies the largest volume at room temperature and pressure? (Relative atomic masses: H = 1.0, C = 12.0, N = 14.0, O = 16.0; molar volume of gas at room temperature and pressure = 24 dm^3)

- A. 1.0 g of ammonia
- C. 3.0 g of oxygen
- B. 2.0 g of nitrogen
- D. 4.0 g of carbon dioxide

CE97 34

One mole of sulphur atoms has a mass twice that of one mole of oxygen atoms. Which of the following statements is/are correct?

- (1) 2 g of sulphur and 1 g of oxygen each occupy the same volume at room temperature and pressure.
- (2) 2 g of sulphur and 1 g of oxygen each contain the same number of atoms.
- (3) The number of atoms contained in one mole of sulphur is twice that contained in one mole of oxygen.
- A. (1) only B. (2) only C. (1) and (3) only D. (2) and (3) only

CE98 28

7.5 g of calcium carbonate is added to 50.0 cm³ of 2 M hydrochloric acid. What is the volume of carbon dioxide liberated at room temperature and pressure?

(Relative atomic masses; C =12.0, O = 16.0, Ca = 40.0; molar volume of gas at room temperature and pressure = 24.0 dm^3)

Α.	0.9 dm ³	B.	1.2 dm ³
C.	1.8 dm ³	D.	2.4 dm ³

CE98 46

1st statement One mole of water occupies the same volume as one mole of carbon dioxide at room temperature and pressure.

One mole of water contains the same number

2nd statement

of atoms as one mole of carbon dioxide.

CE99 16

At room temperature and pressure, 8.0 g of oxygen and 20.0 g of gas X occupy the same volume. What is the molar mass of X?

(Relative atomic mass; O = 16.0; molar volume of gas at room temperature and pressure = 24 dm³)

Α.	20.0 g	B.	40.0 g
C.	60.0 g	D.	80.0 g

CE01 10

Consider the reaction:

 $4H_2(g) + Fe_3O_4(s) \longrightarrow 3Fe(s) + 4H_2O(l)$

What mass of iron would be obtained if 96.0 cm³ of hydrogen, measured at room temperature and pressure, is consumed in the reaction?

(Relative atomic mass: Fe = 56.0; molar volume of eas at room temperature and pressure = 24dm3)

Α.	0.056 g	В.	0.084 g
С.	0.168 g	D,	0.224 g

CE01 27

Suppose that the Avogadro number is L. How many atoms does 600 cm³ of oxygen at room temperature and pressure contain?

(Molar volume of gas at room temperature and pressure = 24 dm^3)

A.	1/40 L	B.	1/20 L
C.	25 L	D,	50 L

CE01 33

Consider the information below about the reaction of hydrogen with chlorine: $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g) \Delta H < 0$

- Which of the following statements can be deduced from the above information?
- (1) Heat is liberated when hydrogen chloride is formed.
- (2) Hydrogen and chlorine react at room temperature,
- (3) When measured at room temperature and pressure, the total gas volume before the reaction equals that after the reaction.
- A. (1) only B. (2) only D. (2) and (3) only C. (1) and (3) only

CE02 16

Gases X and Y react to give a gaseous product Z. The reaction can be represented by the equation:
$X(g) + 3Y(g) \longrightarrow 2Z(g)$
In an experiment, 40 cm ³ of X and 60 cm ³ of Y are mixed and are allowed to react in a closed
vessel. What is the volume of the resultant gaseous mixture?
(All volumes of are measured at room temperature and pressure.)

Α.	40 cm ³	В.	60 cm ³

C. 80 cm³ D. 100 cm³

242

Provided by dse

CE03_06

Sodium azide, NaN3, is used in air bags in cars. When there is a serious collision, the azide will decompose to give nitrogen. The decomposition can be represented by the equation:

 $2NaNa(s) \longrightarrow 2Na(s) + 3Na(s)$

What is the mass of sodium azide required to produce 72 dm³ of nitrogen at room temperature and pressure?

(Relative atomic masses: N = 14.0, $N_0 = 23.0$;

mola	r volume of gas at room temperature and pr	essure	= 24 dm ³)
Α.	65.0 g	B,	130.0 g
C.	195.0 g	D.	292.5 g

CE03 20

A sample of zinc granules of mass 1.8 g was added to 100 cm³ of 0.25 M hydrochloric acid. What is the theoretical volume of hydrogen produced at room temperature and pressure? (Relative atomic mass: Zn = 65.4; molar volume of gas at room temperature and pressure = 24 dm³)

Α.	0.30 dm'	В.	0.33 din ³
C.	0.60 dm ³	D.	$0.66 \ dm^3$

CE05SP 38

In an experiment, 8.1 g of magnesium was treated with 250 cm³ of 2.0 M hydrochloric acid. What volume of hydrogen was liberated at room temperature and pressure? (Molar volume of gas at room temperature and pressure = 24 dm³) A Adm³

1	1 444	13,	0 (1112
C.	8 dm ³	D,	12 dm ³

CE05SP 50

1st statement 2nd statement The volume of 10.0 g of gascous carbon 10.0 g of gaseous carbon dioxide contains the dioxide is the same as the volume of 10.0 g same number of molecules as 10.0 g of solid of solid carbon dioxide. carbon dioxide.

CE04 03

The relative atomic masses of hydrogen and oxygen are 1.0 and 16.0 respectively. Which of the following statements concerning 36.0 g of water is correct? (Molar volume of gas at room temperature and pressure = 24 dm³; Avogadro constant = 6.02×10^{23} mol⁻¹) A. It contains 4 mol of hydrogen atoms.

B. It contains 3 × 6.02 × 10²³ atoms.

C. It contains 6 × 6.02 × 1023 molecules,

D. It has a volume of 48 dm³ at room temperature and pressure.

CE04 06

Decomposition of KClO₃(s) at clovated temperatures gives KCl(s) and O₂(g) as the only products. What is the volume of O₂(g) produced, measured at room temperature and pressure. when 63.1 g of KClO₁(s) undergoes complete decomposition? (Relative atomic masses: O = 16.0, Cl = 35.5, K = 39.1; molar volume of gas at room temperature and pressure = 24 dm³) - - 2

Α,	3 dm ³	В.	12 dm*
С,	18 dm ³	D.	$36 \ dm^3$

CE05 35

NaHCO3 decomposes upon heating to form Na2CO3, CO2 and H2O. What is the volume of CO2 formed at room temperature and pressure if 336 g of NaHCO3 undergoes complete decomposition?

(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, $N_0 = 23.0$;

mole	ar volume of gas at room temperature and	d pressure	= 24 dm ³)	
A	12 cm ³	R	24 am3	

		21	2.4 0113
C.	48 cm ³	D,	96 cm ³

CE05 44

Which of the following statements concerning 1 mole of aluminium is/are correct? (Avogadro's constant = 6.02×10^{23} :

molar volume of gas at room temperature and pressure = 24 dm^3)

- (1) It can form I mole of Al3+ ions,
- (2) It can form 3 × 6.02 × 10²³ Al³⁺ ions.
- (3) It occupies 24 cm³ at room temperature and pressure.
- A. (1) only B. (2) only
- C. (1) and (3) only D. (2) and (3) only

CE06 41

Metal X forms an oxide with the formula X_2O , Upon strong heating, the oxide undergoes decomposition according to the following equation:

 $2X_2O(s) \longrightarrow 4X(s) + O_2(g)$ Complete decomposition of 2.90 g of the oxide gives 150 cm³ of oxygen, measured at room temperature and pressure. What is the relative atomic mass of X?

(Relative atomic mass: O =16.0; molar volume of gas at room temperature and pressure = 24dm3)

	,		
А.	54,0	В.	108.0
C.	216.0	D.	232.0

243

CE06_50

 1^{st} statement Under room temperature and pressure, 1 mol of O₂(g) occupies a smaller volume than 1 mol of O₁(g).

2nd statement

The number of atoms in 1 mol of $O_2(g)$ is less than that in 1 mol of $O_3(g)$.

CE07_39

 $CO_2(g)$, $SO_3(g)$ and $O_2(g)$ are composed of atoms of different elements. At room temperature and pressure, what is the ratio of the number of atoms involved in 100 cm³ of $CO_2(g)$, 100 cm³ of $SO_3(g)$ and 200 cm³ of $O_4(g)$?

(Molar volume of gas at room temperature and pressure = 24 dm³)

Α.	3:4:4	В,	3:4:2
C.	2:3:4	D.	1:1:2

CE07_40

When 10 g of PURE calcium carbonate (molar mass = 100.1 g) reacted with excess hydrochloric acid, 2.40 dm³ carbon dioxide was obtained at room temperature and pressure. However, in a similar experiment using 10 g of IMPURE calcium carbonate, 2.50 dm³ of carbon dioxide was obtained. Assuming that the impurity is a metallic carbonate, what would this impurity be? (Molar masses: MgCO₃ = 84.3 g, ZnCO₃ = 125.4 g, FeCO₃ = 115.8 g, CuCO₃ = 123.5 g; molar volume of gas at room temperature and pressure = 24dm³)

Α.	MgCO3	В.	ZnCO ₃
C.	FeCO3	D.	CuCO3

CE08_32

Nitroglycerin (C₃H₅N₃O₃) is an explosive and can explode according to the following equation: $4C_3H_5N_3O_9(I) \longrightarrow 12CO_2(g) + 12H_2O(g) + 6N_2(g) + O_2(g)$

0.1 mole of nitroglycerin undergoes explosion and the products are allowed to cool to room temperature. What is the total volume of gases left behind at room temperature and pressure? (Molar volume of gas at room temperature and pressure $\approx 24 \text{ dm}^3$)

Α.	11.4 dm ³	В,	17,4 dm ³
C.	45.6 dm ³	D.	69.6 dm ³

CE08_50

1 st statement	2 nd statement
When equal mass of Mg and Zn granules is added	Mg is more reactive than Zn.
separately to excess dilute H2SO4, a greater amount	
of gas will be produced by Mg than Zn.	

CE08_39

Consider the following information on two reactions involving magnesium ribbons of the same shane:

	Reaction mixture	
Reaction 1	1.5 g Mg + 100 cm ³ of 1 M HCl	
Reaction 2	1.5 g Mg + 100 cm ³ of 1 M H ₂ SO ₄	

Which of the following statements is correct?

(Relative atomic mass: Mg = 24.3)

- A. The magnesium reacts completely in Reaction 1.
- B. The sulphuric acid reacts completely in Reaction 2.
- C. The initial rates of Reaction 1 and Reaction 2 are the same.
- D. The initial rate of Reaction 1 is smaller than that of Reaction 2.

CE09 33

An oxide of metal M reacts completely with carbon to give 12.6 g of metal M and 2.38 dm³ of carbon dioxide measured at room temperature and pressure. What is the chemical formula of the oxide?

(Relative atomic masses: M = 63.5, O =16.0;

molar volume of gas at room temperature and pressure = 24 dm³)

Α.	MO	В,	MO ₂
C.	M ₂ O	D.	M_2O_3

CE09_40

Assuming that air contains 20% of oxygen by volume, how much air is required to burn completely 100 cm³ of ethane? (All volumes are measured at the same temperature and pressure.)

Α.	350 cm ³	В.	1000 cm ³
C.	1750 cm ³	D.	3500 cm ³

CE09_43

C.

Besker A contains 100 cm³ of 1 M HCl(aq), while beaker B contains 50 cm³ of 2 MHCl(aq). Equal mass of magnesium ribbons are added to the two beakers. Both magnesium ribbons disappear after reaction. Which of the following statements is/are correct?

- (1) The reaction occurring in both beakers have the same initial rate.
- (2) Same volume of gas, measured at the same temperature and pressure, is given out in both beakers.

B. (2) only

- (3) Magnesium chloride solutions of the same concentration are produced in both heakers.
- A, (1) only
 - (1) and (3) only D. (2) and (3) only

245

246

Provided by ds

CE10_37

What is the theoretical volume of carbon dioxide gas, measured at room temperature and pressure, that can be obtained by adding 100 cm³ of 2.0 M HCl(aq) to 0.80 g of Na₂CO₃(s)? (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, Na = 23.0, Cl = 35.5; molar volume of gas at room temperature and pressure = 24 dm³)

	But it is the provide the providet the provide the provide the provide the providet the pro		
Α.	90 dm ³	В.	180 din ³
C.	240 dm ³	D.	480 dm ³

CE10_46

At room temperature and pressure, 1 mole of gas A and 2 moles of gas B react completely to form 1 mole of gas C and 1 mole of gas D. If the temperature and pressure remain unchanged, which of the following will decrease after the reaction?

- (1) the mass of the gaseous mixture
- (2) the volume of the gaseous mixture
- (3) the total number of atoms making up the gases in the gaseous mixture

Α.	(1) only	B.	(2) only
C,	(1) and (3) only	D.	(2) and (3) only

CE11_33

In an experiment, excess calcium granules are added to 100.0 cm³ of 2.0M hydrochloric acid. What is the theoretical volume of hydrogen gas liberated at room temperature and pressure? (Molar volume of gas at room temperature and pressure = 24 dm^3)

Α.	0.6 dm ³	В.	$1.2 \ dm^3$
C.	2.4 dm ³	D.	4.8 dm ³

CE11_45

In an experiment to determine the initial rate of the reaction between dilute hydrochloric acid and magnesium carbonate powder, which of the following items may be measured at regular intervals as the reaction proceeds?

- (1) the colour intensity of the reaction mixture
- (2) the mass of the reaction mixture
- (3) the volume of gas liberated
- A. (1) only

C.	(1) and (3) only	D.	(2) and (3) only
24	(I) mine (D) only	124	(2) mid [5] 0my

DSEI1SP 25

Which of the following changes will NOT increase the initial rate of the reaction between 50 cm³

B. (2) only

- of 1 M HCI(aq) and excess calcium carbonate granules?
- A. Using 100 cm³ of HCl(aq) instead of 50 cm³ of HCl(aq).
- B. Using 2 M HCl(aq) instead of 1 M HCl(aq).
- C. Using 25 cm³ of 2 M HCl(aq) instead of 50 cm³ of 1 M HCl(aq)
- D. Using calcium carbonate powder instead of calcium carbonate granules.

Directions: Questions DSEI1SP 32 to DSEI1SP 33 refer to the following information,

An experiment was performed on the study of the rate of reaction between hydrochloric acid and sodium thiosulphate solution. 10 cm³ portions of 2.0 M hydrochloric acid were added to four separate conical flasks, W, X, Y and Z, each containing sodium thiosulphate solution which was prepared respectively as follows:

Conical flask	Sodium thiosulp	inte solution	
Conical hask	Concentration	Volume	Volume of water
W	1.0 M	80 cm ³	10 cm ³
x	1.5 M	60 cm ³	30 cm ³
Y	2.5 M	30 cm ³	60 cm ³
Z	3.0 M	20 cm ³	70 cm ³

DSEI1SP_32

In which of the above conical flasks does the reaction proceed at the fastest rate?

A.	W	В,	х
C.	X	D.	Z

DSEIISP_33

(1) (2)

Which of the following apparatus should be used when carrying out the above experiment in addition to the conical flasks?

syringe		
stop watch		

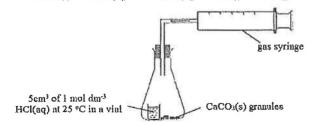
(3)	measuring cylinder		
А.	(1) and (2) only	В.	(1) and (3) only
C.	(2) and (3) only	D.	(1), (2) and (3)

DSE12PP_07

A scientist extracted a sample of 'nitrogen' from air by removing the oxygen and carbon dioxide. The scientist then compared the mass of a known volume of the 'nitrogen' sample (m_1) with that of the same volume of pure nitrogen (m_2) under the same set of conditions. The experiment was repeated a number of times. It was found that m_1 was consistently greater than m_2 .

Which of the following gases is likely to be present in the 'nitrogen' obtained to account for the result that m_1 is greater than m_2 ?

A. Neon


C. Methane

B. ArgonD. Water vapor

and a first of the second s

DSE12PP 25

The set-up shown below is used in an experiment to study the rate of the reaction: $CaCO_1(s) + 2HC(fag) \longrightarrow CaCl_2(ag) + H_2O(f) + CO_2(g)$

The conical flask is shaken to overturn the vial in order to start the reaction. The initial rate of the reaction with respect to the gas liberated is determined. The experiment is then repeated with only one of the conditions changed while the others remain unchanged.

Under which of the following situations would the initial rate be the same as that in the original experiment.

- A. using 10 cm3 of 1 mol dm-3 HCl(aq)
- B. using 5 cm3 of 2 mol dm-3 HCl(aq)
- C. using 5 cm³ of 1 mol dm⁻³ HCl(aq) which is preheated to 50 °C
- D. using powdered CaCO₃(s) of the same mass

DSE12PP_29

0.40 g of an impure sample of zine granules reacts with excess dilute sulphuric acid to give 100 cm³ of hydrogen, measured at room temperature and pressure. Assuming that the impurities in the zine granules do not react with sulphuric acid, what is the percentage by mass of zine in the sample? (Relative atomic masses: H = 1.0, Zn = 65.4;

molar volume of gas at room temperature and pressure = 24 dm³)

Α.	25	B.	34
C.	68	D.	73

DSE12PP 32

Some brands of washing powder contain enzymes, Which of the following statements about the action of the enzymes is/are correct?

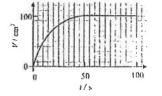
B. (2) only

(1) The activity of the enzymes increases with temperature.

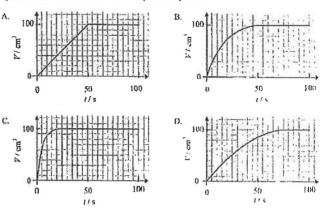
(2) The enzymes facilitate the removal of specific kinds of dirt.

- (3) The enzymes reduce the surface tension of water.
- A. (1) only
- C. (1) and (3) only D. (2) and (3) only

DSE12_25


What is the theoretical volume of carbon dioxide that can be obtained, at room temperature and pressure, when 1.2 g of Na₂CO₃(s) reacts with 50 cm³ of 1.0 M HNO₃? (Molar volume of gas at room temperature and pressure = 24 dm³; Relative atomic masses: H = 1.0, C = 12.0, N = 14.0, O = 16.0, Na = 23.0) A. 272 cm³ B. 544 cm³ C. 600 cm³ D. 1200 cm³

DSE13 25


In an experiment to study the rate of the following reaction, a small amount of powdered calcium carbonate was added to excess hydrochloric acid and the volume of gas liberated was recorded.

 $CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$

The graph below shows the volumes of gas liberated (17) a different times (1) during the experiment:

The experiment was repeated under the same conditions using the same mass of calcium carbonate granules instead of powdered calcium carbonate. Which of the following graphs would best represent the results obtained in the repeated experiment?

250

DSE13 33

For which of the following can their progress of reaction be followed by colorimetry?

- (1) $2MnO_4^{-}(aq) + 5C_2O_4^{2-}(aq) + 16H^{+}(aq) \longrightarrow 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$
- $SO_3^{2-}(aq) + 2H^{1}(aq) \longrightarrow SO_2(q) + H_2O(l)$ (2)
- $Br_2(aq) + HCO_2H(aq) \longrightarrow 2Br'(aq) + CO_2(g) + 2H^+(aq)$ (3)
- Α. (1) and (2) only B. (1) and (3) only
- C. (2) and (3) only D. (1), (2) and (3)

DSE14 25

H2O2(aq) decomposes into H2O(l) and O2(g) in the presence ofMnO2(s). Two experiments are performed to study this decomposition under the same conditions, except that 50 cm³ of 2M H2O2(aq) is used in Experiment (1), while 100 cm³ of IM H2O2(aq) is used in Experiment (2), Which of the following combinations is correct?

Rate of formation of O1(g) at the start Total volume of O2(g) formed A. Experiment (1) > Experiment (2) Experiment (1) = Experiment (2)B. Experiment (1) > Experiment (2) Experiment (1) > Experiment (2) C. Experiment (1) = Experiment (2)

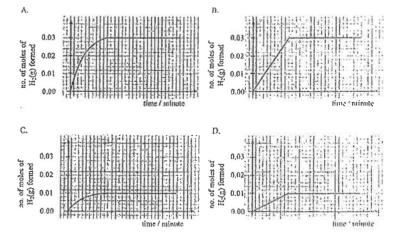
- D. Experiment (1) = Experiment (2)
- Experiment (1) = Experiment (2) Experiment (1) > Experiment (2)

DSE15 28

Which of the following pairs of chemicals, upon mixing under the same temperature, has the highest rate of gas formation?

- A. 0.10 g of Zn powder and 100 cm³ of 1.0 M HCl(ao) B. 0.10 g of Zn granules and 200 cm3 of 1.0 M HClfao) C. 0.10 g of Zn granules and 200 cm³ of 1.0 M H2SO4(ag)
- D. 0.10 g of Zn powder and 100 cm3 of 1.0 M H2SO4(ag)

DSE15 36


1st statement At room conditions, the volume of 1 mol of $SO_2(g)$ is larger than that of 1 mol of $N_2(g)$.

2nd statement

The number of atoms constituting 1 mol of SO2(g) is greater than that constituting 1 mol of $N_2(g)$

DSE16 25

In an experiment, 0.03 mol of Mg(s) is allowed to react with 20.0 cm³ of 1.0 M HCl(ag). Which of the following graphs best represents the results of the experiment?

DSE16 33

Which of the following statements are correct?

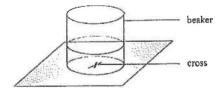
- (1) Magnesium oxide dissolves faster in 1 M HCl(aq) than 1 M CH3CO2H(aq).
- (2)Powdered marble dissolves faster in 1 M HCl(aq) than granular marble docs.
- H2O2(aq) decomposes faster in the presence of MnO2(s) than without MnO2(s). (3)
- Α, (1) and (2) only
 - (2) and (3) only D. (1), (2) and (3)

DSE16_34

C,

A.

Consider the following reaction:


 $Br_2(aq) + HCOOH(aq) \longrightarrow CO_2(g) + 2HBr(aq)$

B. (1) and (3) only

Which of the following can be measured in order to follow the progress of the reaction?

- (1) The volume of gas formed
- The turbidity of the reaction mixture (2)
- The color intensity of the reaction mixture (3)
 - (1) and (2) only B. (1) and (3) only
- (2) and (3) only C. D. (1), (2) and (3)

Direction: Ouestion DSE17 27 and DSE17 28 refer to the following set-up.

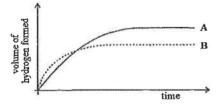
DSE17_27

A(aq) and B(aq) react to form a turbid mixture. Three trials of an experiment were performed to study the rate of the reaction. In each trial, A(aq) was mixed with H₂O(1) in the beaker. After that, B(aq) was added to the mixture, and immediately started to measure the time needed for the cross to become invisible when viewed from above. The table below shows the relevant data.

	Volume used / cm ³			Time / s
Trial	A(aq)	H2O(I)	B(aq)	runc / s
ţ	10.0	20.0	10.0	82
2	+ 10.0	10.0	20.0	41
3	20.0	10.0	10.0	82

Which of the following statements concerning the rate of the reaction is correct?

- A. It depends on [A(aq)], and also depends on [B(aq)].
- B. It increases with [A(aq)], but does not increase with [B(aq)].
- C. It increases with [B(aq)], but does not increase with [A(aq)].
- D. It does not depend on [A(aq)], and also does not depend on [B(aq)].


DSE17_28

Of which of the following reactions can the rate be studies by the above set-up?

- A. $CaCl_2(aq) + H_2SO_4(aq) \longrightarrow CaSO_4(aq) + 2HCl(aq)$
- B. Na₂CO₃(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H₂O(l) + CO₂(g)
- C. $2FeSO_4(aq) + 2H_2SO_4(aq) \longrightarrow Fe_2(SO_4)_3(aq) + 2H_2O(1) + SO_2(g)$
- D. Na₂S₂O₃(aq) + 2HCl(aq) \rightarrow S(s) + SO₂(aq) + H₂O(l) + 2NaCl(aq)

DSE18 25

100 cm³ of 1.0 M HCl(aq) reacts with excess zine granules giving curve A in the graph below.

Which of the following changes may give curve B?

- A. Increase the temperature by 5 °C.
- B. Use the same mass of zinc powder instead of zinc granules.
- C. Use 200 cm³ of 0.8 M HCl instead of 100 cm³ of 1.0 M HCl(aq).
- D. Use 50 cm³ of 1,50 M HCl(aq) instead of 100 cm³ of 1.0 M HCl(aq).

DSE18_33

Consider the following two reactions:

Reaction	Reactants		
(1)	1.0 g of Na2CO3(s)	÷	100 cm ³ of 1.0 M HCl(aq)
(11)	1.0 g of Na2CO3(s)	+	100 cm ³ of 1.0 M CH ₃ COOH(aq)

Which of the following statements are correct if the two reactions are performed under the same experimental conditions?

(Relative atomic masses : C = 12.0, O = 16.0, Na = 23.0)

- (1) The decrease in mass for the two reaction mixture is the same.
- (2) The initial rate of Reaction (I) is higher than that of Reaction (II).
- (3) The heat given out for the two reactions is the same.

Á.	(1) and (2) only	В,	(1) and (3) only
C.	(2) and (3) only	Ð,	(1), (2) and (3)

DSE18 36

Consider the following statements and choose the best answer:

1 st statement	2 nd statement	
The molar volume of bromine is larger than	The molecular size of bromine is larger than	
that of fluorine at room temperature and	that of fluorine,	
pressure.		

DSE19_34 Consider the following reaction :

 $\frac{MnO_2(s)}{2H_2O_2(aq)} \xrightarrow{MnO_2(s)} 2H_2O(1) + O_2(g)$

Which of the following statements is / are correct if the concentration of H₂O₂(aq) changes from 2 M to 1 M, while the other conditions remain unchanged?

B, (2) only

- (1) The consumption of MnO₂(s) will decrease.
- (2) The rate of formation of O2(g) will decrease.
- (3) The volume of O2(g) formed will decrease.

A. (1) only

C.

(1) and (3) only D. (2) and (3) only

253

254

Provided by

DSE19 35

Consider the following reaction :

 $5NaBr(aq) + NaBrO_3(aq) + 6HCl(aq) \longrightarrow 3Br_2(aq) + 6NaCl(aq) + 3H_2O(1)$ (colourless)

Which of the following can be measured in order to follow the progress of the reaction ?

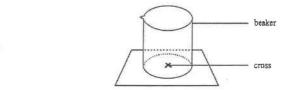
- (1) pH of the reacting mixture
- (2) pressure of the reaction system
- (3) colour intensity of the reacting mixture
- A. (1) and (2) only B. (1) and (3) only
- C. (2) and (3) only D. (1), (2) and (3)

DSE20_25

25. Consider the following reaction :

 $4H_2(g) + Fe_3O_4(s) \rightarrow 3Fe(s) + 4H_2O(l)$

What is the minimum volume of $H_2(g)$ at room conditions required to form 0.168 g of Fe(s)?


(Molar volume of gas at room conditions = 24 dm^3 ; Relative atomic mass : Fe = 55.8)

A.,	24 cm
B.	48 cm
C,	96 cm

- C. 96 cm³ D. 192 cm³
- 192 0

DSE20 35

35. Refer to the following set-up :

Which of the following reactions can the effect of concentration on rate be studied by the above set-up ?

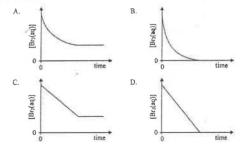
- (2) $Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow S(s) + SO_2(g) + H_2O(1) + 2NaCl(aq)$
- (3) $Mg(s) + ZnSO_4(aq) \rightarrow MgSO_4(aq) + Zn(s)$

Α.	(1) and (2) only
B.	(1) and (3) only
Ċ.	(2) and (3) only
D.	(1), (2) and (3)

DSE21 25

$HCO_2H(aq) + Br_2(aq) \rightarrow 2HBr(aq) + CO_2(g)$

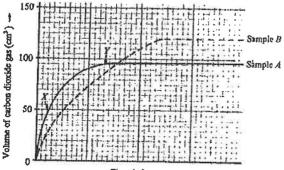
5.0 cm³ of 0.05 M HCO₂H(aq) are separately added to four conical flasks each containing $Br_2(aq)$ prepared by mixing different volumes of 0.05 M $Br_2(aq)$ and water as shown in the table below :


Conical flask	Volume of 0.05 M Br ₁ (aq) / cm ³	Volume of water / cm3
A	1.0	4.0
B	2.0	3.0
С	3.0	2.0
D	4.0	1.0

25. In which of the above conical flasks does the reaction have the fastest initial rate ?

DSE21 26

26. Which of the following graphs best represents the variation of [Br₁(aq)] in the reaction mixture of conical flask B with time ?



Direction: Questions 25 and 26 refer to the following experiment on the study of the rate of reaction between HCO₂H(aq) and Br₂(aq) at a certain temperature. It is given that the rate depends on both the concentrations of HCO₂H(aq) and Br₃(aq):

Structural Questions

CE90_026

Two different samples of calcium carbonate (A and B), each weighing 0.8 g and containing inert impurities, were allowed to react with excess dilute hydrochloric acid under the same laboratory conditions. The volumes of carbon dioxide gas evolved with time are shown in the graph below:

Time(+) -+

(i) Draw a diagram to show how the above experiment can be performed in the laboratory.

(ii) Explain why the slope of the curve for sample A is steeper at X than at Y.

(iii) From the two curves, deduce TWO differences between sample A and sample B.

(iv) (1) What is the total volume of gas liberated from sample B?

(2) Hence, calculate the percentage of calcium carbonate in sample B.

(Relative atomic masses: C = 12.0, O = 16.0, Ca = 40.0;

Molar volume of gas under the laboratory conditions = 24 dm^3)

(10 marks)

CE92_02c

1.0 g of calcium carbonate is added to 50.0 cm³ of 0.1 M nitric acid. At the end of the reaction, 55.0 cm³ of a certain gas are collected at room temperature and pressure.

(i) Draw a diagram of the set-up suitable for this experiment.

(ii) Calculate the theoretical volume of the gas which would be liberated at room temperature and pressure.

(iii) Explain any difference between the theoretical volume and the volume of the gas collected. (Relative atomic masses: C = 12.0, O = 16.0, Ca = 40.0;

Molar volume of gas at room temperature and pressure = 24.0 dm^3)

(6 marks)

CE92 03b

Neon, a monatomic gas, occurs naturally as a mixture of three isotopes. The relative abundance of these isotopes is tabulated below:

Γ	Isotope	20 Ne	21 ₁₀ Ne	²² 10Ne
-	Abundance / %	90.52	0.31	9.17

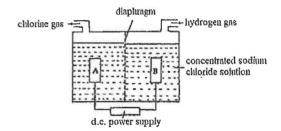
(i) State the number of electrons in the outermost shell of a neon atom.

(ii) Explain why neon gas is monatomic.

(iii) What is meant by the term 'isotope'?

(iv) Calculate

(1) the relative atomic mass of neon.


(2) the density (in g dm⁻³) of neon gas at room temperature and pressure.

(Molar volume of gas at room temperature and pressure = 24.0 dm^3)

(7 marks)

CE92 05a

Sodium hydroxide can be manufactured by the electrolysis of concentrated sodium chloride solution in the following set-up, where A and B are inert electrodes.

- (i) Explain which electrode, A or B, is the cathode.
- (ii) Using the concept of preferential discharge of ions, explain the electrode reactions and why sodium hydroxide can be manufactured by the above electrolysis.
- (iii) If 234 g of sodium chloride are used up during the electrolysis, calculate the volume of hydrogen liberated at room temperature and pressure.

(Relative atomic masses: Na = 23.0, Cl = 35.5;

Molar volume of gas at room temperature and pressure = 24.0 dm^3)

(9 marks)

257

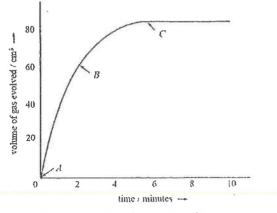
Provided by dse

CE93 04b

To determine the percentage by mass of calcium carbonate in egg shells, a student added 100 cm^3 of 2 M hydrochloric acid to 0.3 g of egg shells in a container. After 30 minutes, all the egg shells dissolved and 67 cm³ of carbon dioxide were collected at room temperature and pressure.

(i) Write an equation for the reaction between calcium carbonate and hydrochloric acid.

- (ii) Calculate the percentage by mass of calcium carbonate in the egg shells.
- (iii) The rate of reaction between the egg shells and 2 M hydrochloric acid was slow. Suggest TWO method to increase the rate of this reaction without using other chemicals. Explain your answer in each case.


(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, Ca = 40.0; Molar volume of gas at room temperature and pressure = 24.0 dm³)

(8 marks)

CE94 08a

The rate of decomposition of hydrogen peroxide solution in the presence of manganese(IV) oxide was studied by means of the following experiment.

50.0 cm³ of a hydrogen peroxide solution was mixed with 0.5 g of powdered mangauese(IV) oxide in a conical flask. The volumes of gas evolved at room temperature and pressure at different times are shown in the graph below.

- (i) Write an equation for the decomposition of hydrogen peroxide.
- (ii) Compare the rates of decomposition of the hydrogen peroxide solution at points A, B and C, and explain why these rates are different.
- (iii) Calculate the original molarity of the hydrogen peroxide solution.
- (iv) If the experiment is repeated with an equal volume of the hydrogen peroxide solution and 1.0 g of powdered manganese(IV) oxide, would the shape of the curve obtained be the same? Explain your answer.

(Molar volume of gas at room temperature and pressure = 24.0 dm^3)

(8 mraks)

258

CE95_07a

The label on a bottle of 'Effervescent Caloium' tablets is shown below.

Effervescent	Calcium
Each bottle contains 10 tablets.	
Each tablet contains:	
Calcium carbonate	625 mg
Vitamin C	1000 mg
Citrle acid	1350 mg
Dosage: 1 tablet daily	
Administration : Dissolve one to	blet in a glass of water.
Warning : (1) Keep out of reach	
(2) Keep	

- Effervescence occurs when a tablet of 'Effervescent Calcium' is added to water, Based on the information given on the label, explain why effervescence occurs.
- (ii) Suppose that a student puts a tablet of 'Effervescent Calcium' into an excess amount of water and collects the gas liberated.
 - Assuming that the tablet completely dissolves, calculate the theoretical volume of gas liberated,
 - (2) It is found that the volume of gas collected in the experiment is less than the theoretical volume calculated in (1). Give ONE reason to explain the difference, assuming that there is no leakage of gas in the experiment.

(8 marks)

CE96_07a

The boxes below show some information about two atoms. Hydrogen (H) and deuterium (D):

- (i) Suggest a term to indicate the relationship between a hydrogen atom and a deuterium atom.
- (ii) State the number of neutrons in a deuterium atom.
- (iii) Deuterium reacts with oxygen in the same way as hydrogen.

 $2D_2(g) + O_2(g) \longrightarrow 2D_2O(i) \Delta H$ is negative

The product of the reaction is known as 'heavy water'.

- (1) Explain why deuterium reacts with oxygen in the same way as hydrogen.
- (2) Draw the electronic structure of 'heavy water', showing the electrons in the outermost shells ONLY.
- (3) What is meant by 'ΔH is negative'?
- (4) What is the formula mass of 'heavy water'?
- (5) 100 cm³ of deuterlum and 100 cm³ of oxygen, both measured at room temperature and pressure, are allowed to react. Calculate the mass of 'heavy water' produced.

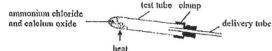
(9 marks)

CE00_09a

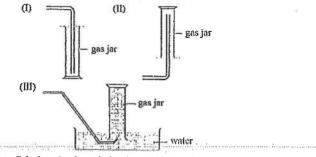
X, Y and Z are three different metals. The table below shows the result of two experiments carrie	d
out using the metals or their oxides.	

Experiment	х	Y	Z,
Adding the metal to water	Effervescence	No observable change	No observable change
Heating the metal oxide	No observable change	Metal produced	No observable change

- (i) Based on the above information, arrange the three metals in order of increasing reactivity. Explain your answer.
- (ii) An oxide of Y has the formula YO. When 1.08 g of this oxide is heated strongly, it decomposes completely to give 60.0 cm³ of oxygen, measured at room temperature and pressure. Calculate the relative atomic mass of Y.


(Relative atomic mass: O = 16.0;

molar volume of gas at room temperature and pressure = 24.0 dm³)


(6 marks)

CE03 06a

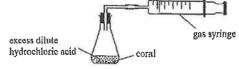
Anunonia gas can be prepared by heating a mixture of annonium chloride and calcium oxide in the set-up shown below:

- (i) The reaction of ammonium chloride with calcium oxide also gives calcium chloride as a product. Write the chemical equation for the reaction of ammonium chloride with calcium oxide.
- (ii) Why is it necessary to clamp the test tube with its mouth pointing downwards as shown?
- (iii) Decide which of the following set-ups, (1), (II) or (III), should be connected to the delivery tube to collect the ammonia gas produced. Explain your answer.

(iv) Calculate the theoretical volume of ammonia gas, measured at room temperature and

260

pressure, which can be obtained from the reaction of 1.0 g of ammonium chloride with excess calcium oxide.


(Relative atomic masses: H = 1.0, N = 14.0, CI = 35.5;

molar volume of gas at room temperature and pressure = 24.0 dm³)

(9 marks)

CE04_08a

Coral consists mainly of calcium carbonate. An experiment was carried out to determine the percentage by mass of calcium carbonate in a sample of coral using the set-up shown below:

- (i) Write a chemical equation for the reaction of calcium carbonate with dilute hydrochloric acid.
- (ii) The mass of the sample used was 0.36 g. At the end of the experiment, 78 cm³ of carbon dioxide was collected at room temperature and pressure.

Calculate

- (1) the number of moles of carbon dioxide collected; and
- (2) the percentage by mass of calcium carbonate in the sample.
- (iii) Assuming that there was no leakage of gas in the set-up, suggest ONE source of error in the experiment.

(Molar volume of gas at room temperature and pressure = 24.0 dm³;

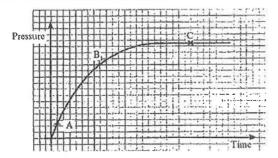
relative atomic masses: C = 12.0, O = 16.0, Ca = 40.0)

(7 marks)

CE06_12

For question 12, candidates are required to give answers in paragraph form. For this question, 6 marks will be awarded for chemical knowledge and 3 marks for effective communication.

You are provided with the following materials:


magnesium ribbon and 2M hydrochloric acid

Design an experiment to determine the molar volume of hydrogen at room temperature and pressure. (You may use apparatus commonly available in a school faboratory.)

(6 + 3 marks)

CE09_10

In an experiment, a data-logger with pressure sensor was used to study the rate of decomposition of hydrogen peroxide (H_2O_2) in the presence of manganese(IV) oxide. The relation between the pressure and time measured is shown in the curve below.

- (a) The decomposition of hydrogen peroxide gives water and oxygen. After the experiment, it was found that the manganese(IV) oxide used did not undergo any chemical change.
 - (i) State the function of manganese(IV) oxide.
 - (ii) Explain why a pressure sensor could be used in this experiment.
 - (iii) Write a chemical equation for the decomposition of hydrogen peroxide. Hence discuss the changes, if any, in the oxidation numbers of hydrogen and oxygen in the reaction.

(5 marks)

- (b) (i) Explain why the respective rates of decomposition of hydrogen peroxide differ at points A, B and C on the curve.
 - (ii) On the graph above, sketch a curve that should be obtained if the initial concentration of the hydrogen peroxide is *hulf* of its original value, while all other conditions remain unchanged.

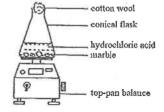
(4 marks)

AL99(I)_07

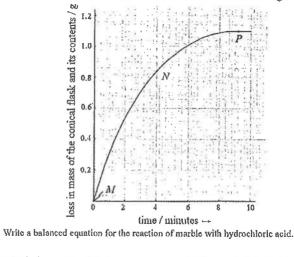
In a chemical kinetics experiment, samples of the reaction mixture are removed at regular time intervals for titrimetric analysis.

Suggest TWO methods by which the reaction in the samples removed can be stopped or slowed down.

(2 marks)


ASL99(11) 11

(a)


(d)

marble.

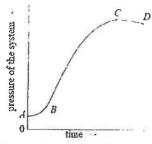
In an experiment, 50.0 cm³ of 1.0 M hydrochloric acid was allowed to react with 10.0 g of marble (in excess). The progress of the reaction was monitored using the set-up shown below.

The graph below shows the loss in mass of the conical flask and its contents against time.

- (b) What is the purpose of placing some cotton wool at the mouth of the flask? (1 mark)
- (c) Suggest how to determine the rate of loss in mass of the conical flask and its contents at point N from the graph.
 - Account for the change in shape of the curve from point M to point P,
- (3 marks) (c) The experiment was repeated using 50.0 cm³ of 0.5 M hydrochloric acid and 10.0 g of

Sketch a curve on the same graph to show the variation of the loss in mass of the conical flask and its contents against time.

(1 mark)


263

(1 mark)

(2 marks)

ASL00(II) 07

A chemical kinetics experiment was carried out using a roll of magnesium ribbon which had been exposed to air for some time. A piece of the magnesium ribbon of mass 0.12 g was placed in a flask containing 15.0 cm³ of 1.0 M hydrochloric acid. The progress of the reaction was followed by measuring the pressure of the system at different times. The graph on below shows the results of the experiment,

(a) Show, by calculation, that magnesium was the limiting reactant.

(2 marks)

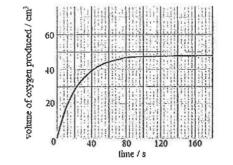
- (b) Account for the variation of pressure of the system as shown in the graph
 (i) from A to B,
 (2 marks)
 (ii) from B to C, and

 - (iii) from C to D.

(2 marks)

(1 mark)

(c) The experiment was repeated using the same mass of the magnesium ribbon and 15.0 cm³ of 2.0 M hydrochloric acid. Sketch, on the same graph, the variation of pressure of the system in the repeated experiment, Explain your answer.


(4 marks)

ASLOI(II) 07 [Similar to DSE17 10]

The decomposition of hydrogen peroxide can be catalysed by catalase which is an enzyme.

$$2H_2O_2(aq) \xrightarrow{\text{catalyst}} 2H_2O(l) + O_2(g)$$

In an experiment to study the rate of decomposition of hydrogen peroxide, 10.0 cm³ of 0.40 M hydrogen peroxide solution and a small amount of catalase were used. The graph on below shows the results of the experiment.

(a) Draw a labelled diagram of the experimental set-up used.

(2 marks)

(b) Account for the change in the rate of decomposition of hydrogen peroxide as shown in the graph.

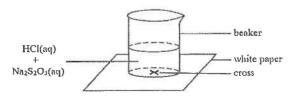
(3 marks)

(c) The experiment was repeated using 30.0 cm³ of 0.20 M hydrogen peroxide solution while keeping other conditions unchanged. Sketch, on the same graph, the results of the repeated experiment.

(1 mark)

(d) Suggest another substance which can catalyse the decomposition of hydrogen peroxide. (1 mark)

264


265

Provided by dse

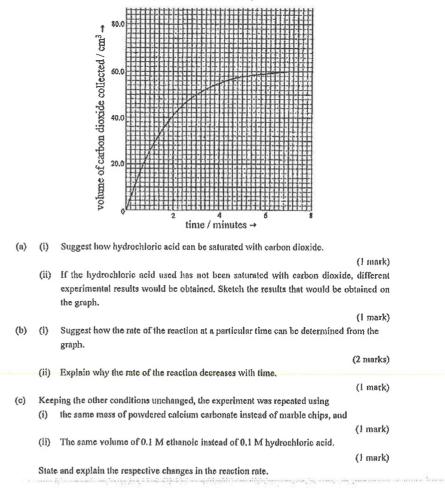
ASL02(II)_11

The set-up shown below was used to investigate how the concentration of $S_2O_3^{2-}(aq)$ affects the rate of the following reaction.

 $S_2O_3^{2-}(aq) + 2H^{+}(aq) \longrightarrow S(s) + SO_2(g) + H_2O(l)$

10.0 cm³ of 1.0 M HCl(aq) and 25.0 cm³ of H₂O(1) were mixed in a beaker. 5.0 cm³ of 0.040 M Na₂S₂O₃(aq) was then added to the mixture and simultaneously a stop-watch was started. The time, t, required for the cross to disappear when viewed from above was recorded. The experiment was repeated using the same volume of HCl(aq) but different volumes of H₂O(1) and Na₂S₂O₃(aq). The table below lists the results obtained.

D		Volume used / cm ³			
Experiment	1.0 M HCl(aq)	H ₂ O(I)	0.040 M Na2S2O3(aq)	1/s	
	1	10.0	25.0	5.0	170
	2	10.0	20.0	10.0	83
	3	10.0	15.0	15.0	56
	4	10.0	10.0	20.0	42
	5	10.0	5.0	25.0	33
	6	10.0	0.0	30.0	у
(i) (ii)	the cross	s, when viewed from	ı above, disa	this investigation, and	(I mar (I mar
> = 1					
) Plot	a graph (of $\frac{2}{t}$ against the volu	ume of 0.040) M Na ₂ S ₂ O ₃ (aq)used.	
		of $\frac{2}{t}$ against the volution of the test of the test of the drawn from the test of test			(3 mark


(d)	From your grant	actimate the value of u in the table

ASL03(II) 10

An experiment was carried out to study the rate of the following reaction:

 $CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$

A sample of marble chips was allowed to react wth 0.1 M hydrochloric acid, which had been saturated with carbon dioxide. The graph below shows the experimental results obtained.

(1 mark)

ASL04(I)_05 (modified) Glycerine has the following structure:

(a) Give the systematic name of glycerine.

(I mark)

(b) When glycerine is treated with a mixture of concentrated nitric(V) acid and concentrated sulphurlc(VI) acid, trinitroglycerine is formed.

$$\begin{array}{c} H \\ H \\ H \\ -C \\ -OH \\ H \\ -C \\ -OH \\ H \\ -C \\ -OH \\ H \\ H \end{array} \xrightarrow{conc. HNO_3} H \\ -C \\ -ONO_2 \\ H \\ -C \\ -ONO_2 \\ H \\ -C \\ -ONO_2 \\ H \\ H \\ Trinitroglycerine \end{array}$$

Trinitroglycerine is an explosive. Nitroglycerin can explode to give carbon dioxide, water, nitrogen and oxygen gas as following equation.

$$C_3H_5N_3O_9(I) \longrightarrow CO_2(g) + H_2O(g) + N_2(g) + O_2(g)$$

(i) Balance the above equation for the explosion of nitroglycerin.

(1 mark)

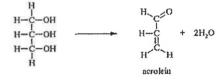
(ii) Calculate the theoretical volume in cm³, measured at room temperature and pressure, of gas produced when 1 g of trinitroglycerine explodes completely. (Formula masses: C₃H₃N₃O₉ = 227;
 Molar volume of gas at room temperature and pressure = 24 dm³)

(2 marks)

(iii) Calculate the enthalpy change of decomposition of trinitroglycerine, from the enthalpy terms given below.

	ΔH ^o f, 298K / kJ mol ⁻¹
C3H5N3O9(1)	-364
CO ₂ (g)	-394
H ₂ O(g)	-242

(2 marks)


Besides forming a large volume of gases, give another TWO reasons why trinitroglycerine would undergo explosion upon ignition.

(2 marks)

(c) A sample of glycerine, after being stored for a long time, may contain acrolein. The

268

formation of acrolein can be represented by the following equation:

 Suggest a chemical test to show the possible presence of acrolein in a sample of glycerine.

(2 marks)

(1 mark)

 (ii) Acrolein readily undergoes addition polymerization. Draw the repeating unit of the polymer formed.

(- ...

ASL $05(11)_08$ X₂(g) undergoes decomposition according to the following equation:

$$X_2(g) \longrightarrow 2X(g)$$

In an experiment to study the decomposition of $X_2(g)$, 0.100 mol of $X_2(g)$ was charged into a closed container of volume 1 dm³ kept at a constant temperature. The graph below shows the variation of the concentration of $X_2(g)$ in the container with time.

(a) From the graph, calculate the average rate of decomposition of $X_2(g)$ in the time internal from the start of the experiment to the 40th seconard.

(2 marks)

(b) Sketch, on the same graph, the variation of the concentration of X(g) with time during the experiment.

(2 marks)

(c) Explain, in molecular terms, why the decomposition of $X_2(g)$ is faster at a higher temperature. (2 marks)

ASL06(I) 07

A student performed an experiment to investigate the rate of reaction between zine and and acid. 6 g of zine granules was added to a conical flask containing 100 cm³ of 2 M hydrochloric acid at 20 °C. Afterwards the experiment was repeated with the following changes. In each case, state and explain whether the expected reaction rate would increase or decrease.

(a) 6 g of zinc powder was used instead of zinc granules.
(1 mark)
(b) 100 cm³ of 2 M ethanole acid was used instead of hydrochloric acid.
(1 mark)
(c) The temperature was raised to 50 °C.

ASL06(II)_10

Ammonia reacts with oxygen in the presence of platinum to give nitrogen monoxide.

$$4NH_3(g) + 5O_2(g) \xrightarrow{Pt} 4NO(g) + 6H_2O(g) = h H < 0$$

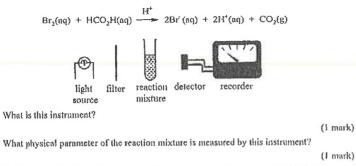
(a) NH₁(g) and O₂(g) are allowed to react in a vessel of constant volume. Find the rate of consumption of O₂(g) if the rate of formation of NO(g) is 1.24×10^{-4} mol dm⁻³ s⁻¹.

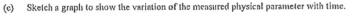
(2 marks)

(1 mark)

(1 mark)

(b) Platinum is a catalyst in the above reaction. What is meant by the term 'catalyst'? (1 mark)

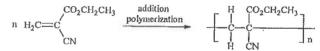

(c) State an important industrial product that can be obtained from NO(g).

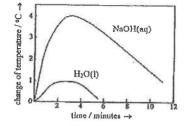

ASL08(1) 07

(n)

(b)

The diagram below shows the essential components of an instrument for studing the kinetics of the reaction:




(1 mark) 270

AL08(I) 08a

Super glue works as an adhesive by addition polymerization as shown below:

Two experiments were carried out to study the effects of NaOH(aq) and H₂O(l) on the polymerization. The conditions of the experiments were the same except that one was conducted in the presence of NaOH(aq) and the other in the presence of H₂O(l). Figure shows the change of temperature of two reaction mixtures with time.

(i) Account for the increase and decrease in temperature of the reaction mixtures.

(ii) Suggest a reason for the significant difference in the two curves.

(2 marks)

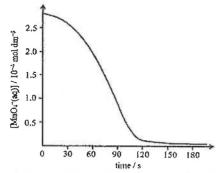
ASL10(1)_02

A student made the following remark:

'The rate of an elementary gaseous reaction increases with temperature because the average kinele energy of the reactant molecules increases with temperature.'

Is the explanation provided by the student regarding the increase in reaction rate appropriate? Elaborate your answer.

(3 marks)


AL10(II)_02b [Similar to DSE12PP 10]

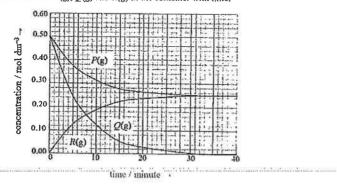
(i) Complete and balance the equation of the following reaction under an acidic condition:

 $MnO_4^{-}(aq) + C_2O_4^{2-}(aq) + \longrightarrow Mn^{2+}(aq) + CO_2(g) +$

(1 mark)

(ii) An experiment was performed to study the kinetics of the reaction in (i). The graph below shows the results obtained;

(I) Suggest a physical method for monitoring the concentration of MnO₄⁻(aq) ions in the reaction mixture.


(1 mark)

(II) Suggest an explanation for the variation of the concentration of MnO₄-(aq) ions with time.

(3 marks)

DSE11SP_10

P(g) reacts with Q(g) irreversibly to give R(g). A mixture of P(g) and Q(g) is allowed to react in a closed container of volume 1 dm³ kept at a constant temperature. The graph below shows the changes in concentrations of P(g), Q(g) and R(g) in the container with time.

(a) With reference to the above graph, deduce the chemical equation for the reaction in terms

272

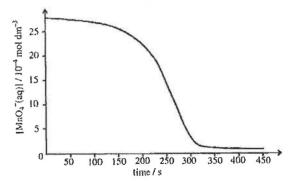
of P(g), Q(g) and R(g).

(b) If the mixture of P(g) and Q(g) is allowed to react at the same temperature but in a closed container of volume 2 dm³ instead, will the time required for the reaction to complete remain the same? Explain.

(1 mark)

(2 marks)

(c) Explain why the collisions between molecules of P(g) and Q(g) will not necessarily lead to a reaction.


(2 marks)

DSE12PP 10 [Similar to AL10(II)_02b]

The equation below shows the reaction of potassium permanganate with sodium ethanedioate under acidic conditions:

 $2MnO_4(aq) + 5C_2O_4^{2-}(aq) + 16H^{+}(aq) - 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$

A student conducted an experiment to study the rate of this reaction. The results are shown in the graph below:

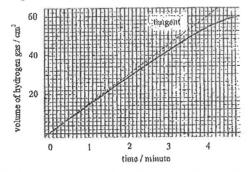
(a) Suggest ONE physical method that can be used to monitor the concentration of MuO₄⁻(aq) ions in the reaction mixture.

(1 mark)

- (b) Based on the experimental results, the student suggested that one of the products might have catalysed the reaction.
 - (i) What evidence from the above graph supports the student's suggestion? Explain your answer.

(2 marks)

(ii) Suggest how the student can show whether or not Mn²⁺(aq) is a catalyst for this reaction.


(2 marks)

ovided by

DSEI2_11

(-	-	-	-			<u></u>	-	-	-	-	-	-	-	-		<u> </u>
		· -		4	C	B		U =						4		1 m m	

In an experiment, 50 cm³ of 2.0 M HCl(aq) was added to a conical flask containing 2.0 g of zinc powder. The curve in the graph below shows the volume, measured at room temperature and pressure, of the hydrogen gas liberated in the first few minutes of the experiment. The dotted line in the graph is the tangent to the curve at the start of the reaction.

(a) The 'initial rate' of a reaction is defined as the instantaneous rate at the start of the reaction. With reference to the graph above, calculate the initial rate of the reaction with respect to the volume of hydrogen gas liberated.

(1 mark)

(b) Explain qualitatively the effect on the initial rate of the reaction of replacing the 2.0 M HCt(aq) with 2.0 M H₂SO₄(aq).

(1 mark)

(c) Upon completion of the reaction, all the zine powder was used up. Calculate the theoretical volume of hydrogen gas liberated measured at room temperature and pressure. (Molar volume of gas at room temperature and pressure = 24 dm³; Relative atomic mass; Zn = 65.4)

(3 marks)

DSE13_11

Safety airbags are important devices installed in vehicles. During a serious car crash, the chemicals in the airbag immediately react to release a large amount of gas. An airbag hence inflates instantly, protecting the passenger. The main chemicals in safety airbags are sodium azide (NaN₃) and potassium nitrate (KNO₃). The equations below show the reactions involved when an airbag is inflated.

 $2N_{8}N_{3}(s) \longrightarrow 2N_{8}(s) + 3N_{2}(g)$ $10N_{8}(s) + 2K_{8}N_{3}(s) \longrightarrow K_{2}O(s) + 5N_{8}O(s) + N_{2}(g)$

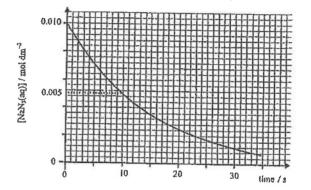
(a) Explain why the NaN₃(s) and KNO₃(s) used in the airbags are in the form of fine powder. (1 mark)

(b) An airbag contains 100.0 g of NaN3(s) and 200.0 g of KNO3(s). Calculate the theoretical

274

volume, measured at room temperature and pressure, of the gas produced when the bag is inflated.

(Formula masses: NaN3 = 65.0, KNO3 = 101.1;


Molar volume of gas at room temperature and pressure = 24 dm³)

(3 marks)

(c) The main function of NaN₃(s) is to produce N₂(g) for inflating the airbags. Suggest why it is necessary to include KNO₃(s) in the airbags.

(1 mark)

(d) Sodium azide is a toxic chemical. Thus any NaN₃ waste remained during the manufacture of safety airbags needs special treatment before disposal. The treatment involves first dissolving NaN₃ in water, and then reacting the solution formed with excess nitrous, HNO₂(aq). The graph below shows the variation of the concentration of NaN₃(aq) in the reaction mixture with time in one such process:

(i) Calculate the average rate of consumption of NaN3(aq) in the first 10 seconds.

(1 mark)

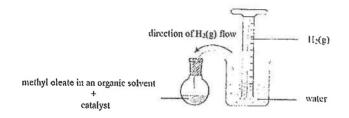
(ii) Suggest how the instantaneous rate of consumption of NaN₂(aq) at the 10th second can be determined from the graph.

(1 mark)

275

DSEI4 10

You are provided with common laboratory apparatus, calcium carbonate and 1M hydrochloric acid. Outline how you would perform a fair comparison in studying the effect of different concentrations of acid on the rate of production of carbon dioxide from the following reaction:


$$CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_3(g)$$

(4 marks + 1 mark

DSE15 09

Consider the reaction below:

$$CH_{3}(CH_{2})_{7}CH=CH(CH_{2})_{7}CO_{2}CH_{3}(l) + H_{2}(g) \xrightarrow{catalyst} CH_{3}(CH_{2})_{7}CH_{2}CH_{2}(CH_{2})_{7}CO_{2}CH_{3}(l)$$
methyl oleate

At room temperature and pressure, a micro-scale experiment was performed using the set-up shown below in which 0.080 g of methyl oleate in an organic solvent was allowed to react with excess H₂(g). The H₂(g) flowed from the inverted measuring cylinder to the reacting flask through the tubing.

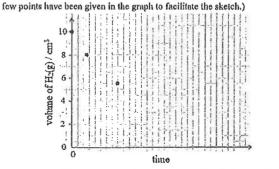
State one advantage of conducting this reaction in a micro-scale experiment. (a)

(1 mark)

(b) Explain why the right end of the tubing was placed at the uppermost position of the inverted measuring cylinder.

(1 mark)

(¢) State an expected observation in the inverted measuring cylinder during the reaction,


(I mark)

Calculate the theoretical volume of H2(g) needed for the reaction to complete at room (d) temperature and pressure.

(Molar volume of gas at room temperature and pressure = 24 dm³; Relative molecular mass: methyl oleate = 296,0)

(c) (i) Sketch, in the graph below, the variation of the volume of H₂(g) in the measuring cylinder with time from start until the completion of the reaction. You should label this sketch as 'A'. (The measuring cylinder initially contained 10.0 cm³ of H₂(e). The first

(ii) In the same graph above, give another sketch as required in (i) butt only using 0.040 g of methyl oleate for the reaction while the other conditions remain unchanged. You should label this sketch as 'B'.

(1 mark)

DSE16 11

Under certain conditions, a pink compound X react with NaOH(aq) to give a colorless product. Three trials of an experiment were conducted to study the kinetics of the reaction. Firstly, three NaOH(an) solutions were prepared by mixing different volume of 2.0 M NaOH(an) and H2O(i) at 25 °C, after that, one drop of X was added top each of the them and the time needed for the pink color to disappear was recorded. The relevant data is shown below:

	Volume of 2.0 M NaOH(aq) used / cm ³	Volume of H ₂ O(I) used / cm ³	Time needed for the pink color to disappear / s
Trial 1	5.0	0	61
Trial 2	4.0	1.0	76
Trial 3	3.0	2.0	101

Why is it necessary to make the total volume of the reaction mixtures the same for the trials? (a) (1 mark)

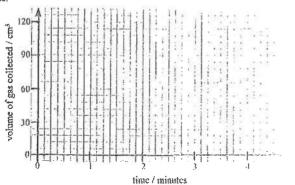
Given that at 25 °C, $[H^{+}(aq)][OH^{-}(aq)] = 1.0 \times 10^{14} \text{ mol}^2 \text{ dm}^{-6}$, calculate the pH of the (b) NaOH(aq) solution prepared in Trial 2.

(2 marks)

- Based on the information provided, deduce one factor which affects the rate of this reaction. (c) (2 marks)
- Detection of color change using naked eye is not accurate enough. Suggest an instrumental (d) method that can be used to more accurately detect the color change.

(1 mark)

DSE17_10 [Similar as ASL01(II)_07]


In an experiment performed under room conditions as shown below, 5.00 cm^3 of $H_2O_2(aq)$ decomposed into $O_2(g)$ and $H_2O(1)$ in the presence of a catalyst. $O_2(g)$ was continuous released from the start of the experiment until the third minute when a total of 60 cm³ of gas was collected. After that, no more gas was collected.

(a) Calculate the initial concentration of $H_2O_2(aq)$, in mol dm⁻³,

(2 marks)

(b) In the graph below, sketch the variation of the volume of gas collected with time in the first 4 minutes.

(c) The experiment is repeated using H₂O₂(aq) at a higher temperature but other conditions remain unchanged. Explain whether the total volume of gas obtained would still be 60 cm³. (The volume of gas is measured at room conditions.)

(1 mark)

(d) Suggest another method that can be used to follow the progress of this reaction.

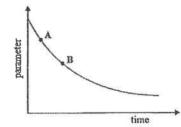
(1 mark)

DSE18 02

This question involves the preparation of ammonia gas and the investigation of the properties of animonia gas in a laboratory.

(a) Solid calcium hydroxide reacts with solid ammonium chloride to form ammonia gas. Draw a labelled diagram to show the set-up involved and how ammonia gas is collected.

(2 marks)


DSE18 11

Consider the following reaction:

.

 $Br_2(aq) + HCO_2H(aq) \longrightarrow 2HBr(aq) + CO_2(g)$

In an experiment to study the rate of consumption of $Br_2(aq)$, equal volumes of 0.01 M $Br_2(aq)$ and 1.0 M HCO₂H(aq) were mixed. The progress of the reaction was followed by measuring a certain parameter of the reaction system using a colorimeter. The graph below shows the results from the start of the reaction.

(a) Assume that the rate of change of the parameter with time can represent the rate of reaction.
 (i) According to the shape of the curve above, suggest what the parameter should be.

(1 mark)

(ii) The initial rate of the reaction can be determined by a suitable sketch on the above graph. Draw the suitable sketch on the above graph, and describe how the initial rate of the reaction can be obtained from the sketch.

(2 marks)

(iii) According to the graph above, the rate of reaction at A is higher than that at B. Explain this at molecular level.

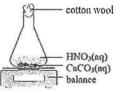
(2 marks)

(b) Suggest another method that can follow the progress of the reaction.

(1 mark)

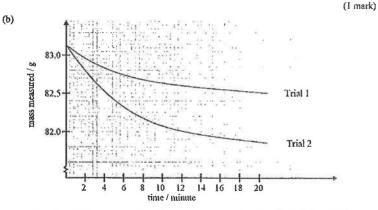
DSE20_13 *13.

DSE21 10


10

10. (b)

13. With reference to the set-up shown below, describe how the effect of concentration of HCl(aq) on the rate of the reaction can be studied. Your answer should include TWO labelled curves sketched on the graph below, one using solid line and the other one using dotted line. Label all curves and axes.

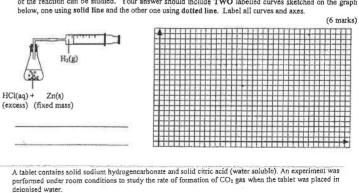

Two trials of an experiment were performed using the set-up below to study the reaction between nitric acid and calcium carbonate. A gas was formed in the reaction.

The chemicals used are listed in the table below while other experimental conditions were the same.

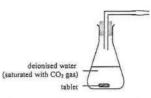
Trial	Mass of CaCO ₃ (s) added / g	Volume of 3.0 M HNO3(aq) added / cm ³	Volume of H2O(l) added / cm ³
1	3.0	10.0	20.0
2	3.0	20.0	10.0

(a) Write the chemical equation for the reaction between nitric acid and calcium carbonate.

(i) Calculate the average rate of formation of the gas from the 2nd minute to the 12th minute for Trial 2.

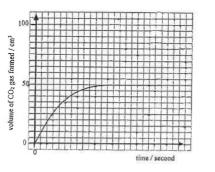

(2 marks)

(ii) Explain ONE difference in the shape of the curves for Trial 1 and Trial 2.


(2 marks)

(c) Suggest how the effect of surface area of solid reactant on the rate of reaction can be studied using the above sel-up.

(I mark)


(a) The diagram below shows an incomplete set-up for the experiment :

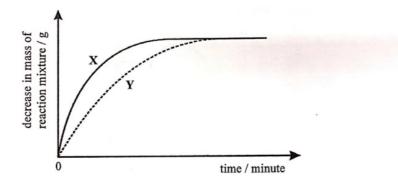
- Explain why the deionised water used should be saturated with CO₂ gas before the start of the experiment.
- (ii) Add suitable drawing (with label) to the above diagram to show how the volume of the CO₂ gas formed can be measured.

(2 marks)

(i) The graph below shows the variation of the volume of CO₂ gas formed with time for the experiment:

Assuming that citric acid was in excess and no other substances reacted with sodium hydrogencarbonate, calculate the mass of sodium hydrogencarbonate in the tablet. (Molar masses : sodium hydrogencarbonate ≈ 84.0 g, citric acid = 192.0 g; Molar volume of gas at room conditions ≈ 24 dm³)

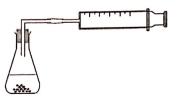
(ii) Sketch another curve (using dotted line) on the above graph to show the expected experimental result if the tablet is ground into a powder, with all other experimental conditions remaining unchanged.


(3 marks)

2022

25. A mixture consists of methane and ethane. 50 cm³ of this mixture completely burns in oxygen to form 80 cm³ of carbon dioxide at room conditions. What is the volume of methane in this mixture at room conditions ?

(Molar volume of gas at room conditions = 24 dm^3)

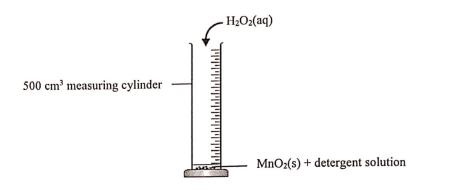

- A. 10 cm³
- B. 20 cm³
- C. 30 cm³
- D. 40 cm³
- 26. 50 cm³ of 0.10 M HCl(aq) reacts with excess calcium earbonate powder in an open conical flask giving curve X in the graph below.

Which of the following changes may give curve Y?

- A. Increase the temperature by 10 °C.
- B. Use 25 cm³ of 0.10 M HCl(aq) instead of 50 cm³ of 0.10 M HCl(aq).
- C. Use 50 cm³ of 0.05 M HCl(aq) instead of 50 cm³ of 0.10 M HCl(aq).
- D. Use the same mass of calcium carbonate granules instead of calcium carbonate powder.

31. Consider the experimental set-up shown below :

Under room conditions, which of the following pairs of reactants can the progress of their reaction be followed by the above set-up ?


- (1) $Zn(OH)_2(s)$ and $HNO_3(aq)$
- (2) Mg(s) and HCl(aq)
- (3) KBr(s) and $Cl_2(aq)$

	(1) only	
Α.	(II) Only	

- B. (2) only
- C. (1) and (3) only
- D. (2) and (3) only

2022

10. At room conditions, $H_2O_2(aq)$ would decompose into $O_2(g)$ and $H_2O(l)$ very slowly in the absence of $MnO_2(s)$. An experiment was performed as shown in the set-up below :

When 10.0 cm³ of 3.00 M $H_2O_2(aq)$ was mixed with a small amount of $MnO_2(s)$ and detergent solution at room conditions, $O_2(g)$ started to be released rapidly and foam was produced. The $MnO_2(s)$ remained chemically unchanged at the end of the reaction.

10.

(c)

(a) Write a chemical equation for the decomposition of $H_2O_2(aq)$.

Upon completion of the reaction, all the $H_2O_2(aq)$ was used up. Calculate the theoretical volume of $O_2(g)$ released at room conditions.

(Molar volume of gas at room conditions = 24 dm^3)

(2 marks)

(d) In the experiment, the time taken for the foam to rise from the mark at 100 cm³ to the mark at 200 cm³ of the measuring cylinder was 18 seconds, while the time taken for the foam to rise from the mark at 200 cm³ to the mark at 300 cm³ was 63 seconds. Explain these results.

Section C Analytical Chemistry

Answer ALL parts of the question.

- 3. (a) Answer the following short questions :
 - (i) Suggest a chemical test to show how SO₂(g) and CO₂(g) can be distinguished.

(2 marks)

- (ii) Illustrate how CH₃CH₂CHO(l) and CH₃COCH₃(l) can be distinguished from their respective $-\frac{1}{c} - \frac{1}{c} - \frac{$
- (iii) Which one of the following chemicals is the most suitable for drying ethyl butanoate?

concentrated sulphuric acid, solid sodium hydroxide, anhydrous sodium sulphate (1 mark)

(b) A solid sample consists of a compound Y and a small amount of an impurity Z. The following steps were performed in an experiment to obtain pure Y(s) from this solid sample. (Given : Y is more soluble in deionised water at 80 °C than at 25 °C.)

Step (1): 1.40 g of this solid sample was added to 50 cm³ of deionised water and heated to 80 °C.

- Step (2) : Water-insoluble activated charcoal was then added to remove Z. The mixture obtained was filtered when it was still hot.
- Step (3): The hot filtrate obtained was allowed to cool slowly to 25 °C. Y(s) was formed.
- Step (4) : The cooled mixture was filtered to collect Y(s). After washing and drying, 0.75 g of Y(s) was collected.
- It is given that no more than 3.04 g of Y(s) can dissolve in 100 cm³ of deionised water at 80 °C. Show, by calculation, that all of Y in this solid sample should have dissolved in Step (1).
- (ii) Explain why the mixture was filtered in Step (2).
 (1 mark)
 (iii) Name the process of the formation of Y(s) in Step (3).
 (1 mark)
 (iv) Suggest one reason why the mass of Y(s) collected in Step (4) was smaller than the mass of Y in this solid sample.
 (1 mark)
- (v) Y and Z can be separated by chromatography. Thin layer chromatography (TLC) and column chromatography were performed separately with this solid sample using the same stationary phase and mobile phase.
 (Given : *R_f* value of Y is greater than that of Z.)
 - (1) Sketch a labelled chromatogram of TLC to show the expected result.
 - (2) Explain whether the first-collected fraction in the column chromatography is Y or Z. (3 marks)

Provided by dse.life

1

Marking Sche	me		-				
MCQ							
CE90_08	A	CE90_11	A	CE91_03	С	CE91_32	в
CE93_09	B	CE94_47	С	CE95_31	D	CE96_11	В
CE96_19	с	CE96_32	в	CE97_17	С	CE97_34	В
CE98_28	в	CE98_46	с	CE99_16	D	CE01_10	С
CE01_27	в	CE01_33	С	CE02_16	в	CE03_06	B (63%)
CE03_20	A (41%)	CE05SF_38	В	CE05SP_50	С	CE04_03	A (35%)
CE04_06	C (58%)	CE05_35	C (68%)	CE05_44	A. (52%)	CE06_41	B (57%)
CE06_50	C (54%)	CE07_39	A (42%)	CE07_40	A (43%)	CE08_32	A (32%)
CE08_50	B (24%)	CE08_39	D (54%)	CE09_33	A (51%)	CE09_40	C (60%)
CE09_43	B (49%)	CE10_37	B (67%)	CE10_46	B (51%)	CE11_33	C (65%)
CE11_45	D (72%)	DSEI1SP_25	A	DSE11SP_32	В	DSEI1SP_33	С
DSE12PP_07	в	DSE12PP_25	A	DSB12PP_29	С	DSE12PP_32	в
DSE12_25	A (69%)	DSE13_25	D (79%)	DSE13_33	B (81%)	DSE14_25	A (73%)
DSE15_28	D (78%)	DSE15_36	C (60%)	DSE16_25	C (77%)	DSE16_33	D (72%)
DSB16_34	B (77%)	DSE17_27	C (73%)	DSE17_28	D (57%)	DSE18_25	D (76%)
DSE18_33	A (58%)	DSB18_36	C (65%)	DSE19_34	D	DSE19_35	в

DSE20 25 C DSE20 35 A

Structural Questions CE90 02b [2] (i) [1] (ii) at X, the rate is faster. Concentration of acid for reaction is higher and the mass of calcium [1] carbonate is larger. at Y, the rate is slower. All the calcium carbonate is used up and the reaction OR. stops. (iii) More carbon dioxide gas is collected from B (120 cm³) than from A (96 cm³) [1] thus sample B has a higher purity (or less impurities) than sample A [1] The initial rate of sample A is greater than that of sample B (steeper slope for A than B) [1] thus more surface area / smaller particle size in A than in B [1] (iv) (1) volume of $CO_2 = 120 \text{ cm}^3$ [1] (2) $CaCO_3 + 2HC1 \longrightarrow CO_2 + H_2O + CaCl_2$ mole of CaCO₂ = moles of CO₂ = $\frac{0.12}{24}$ = 0.005 [1] mass of $C_{B}CO_{3} = 0.005 \times (40 + 12 + 16 \times 3) = 0.5 g$ [1] % of CaCO₂ = $\frac{0.5}{0.8} \times 100\% = 62.5\%$ [1] CE92 02c [2] (i) gas syringe conical flask CaCO 0.1 M HNO3 (ii) $CaCO_3 + 2HNO_3 \longrightarrow CO_2 + H_2O + Ca(NO_3)_2$ moles of $CaCO_3 = \frac{0.1}{40 + 12 + 16 \times 3} = 0.01$ moles of HNO₃ = $0.1 \times \frac{50}{1000} = 0.005$ [1] 0.005 mole of HNO3 can only react 0.0025 mole CaCO3, so CaCO3 is in excess. mole of CaCO₁ reacted = mole of CO₂ formed = 0.0025 mole [1] volume of $CO_7 = 0.0025 \times 24 = 0.06 \text{ dm}^3 \text{ or } 60 \text{ cm}^3$ [1] (iii) The actual volume of CO₂ formed is smaller than the theoretical volume because some [1] CO₂ formed dissolves in water.

CE92_03b

281

Provided by dse.life

(i)	8 electrons	[1]
(ii)	Neon has a stable octet structure with 8 outermost shell electrons.	[1]
(iii)	for the second	[1]
(iv)	(1) Relative atomic mass of Ne = $\frac{20 \times 90.52 + 21 \times 0.31 + 22 \times 9.17}{100} = 20.19$	[2]
	$\frac{100}{100} = 20.19$	

(2) Density of Ne gas
$$= \frac{20.19}{24} = 0.84 \text{ g dm}^{-3}$$
 [2]

CE92_05a

(i)	B is the o	cathode because reduction occurs at B, 2H ⁺ + 2e ⁻ H ₂	[1]					
(ii)	Cathode	(B) attracts Na ⁺ and H ⁺ ions.	[1]					
	H ⁺ is pr	referentially discharged because H is in a lower position than Na in the	[1]					
	electrochemical series,							
	Anode (A	A) attracts Cl- and OH- ions.	[1]					
	Cl' is preferentially discharged because the concentration of Cl' is high.							
Finally, as H ⁺ and Cl ⁻ are preferentially discharged, Na ⁺ and OH ⁻ are left.								
(iii)	Oxidatio	n: $2Cl^{-}(aq) \longrightarrow Cl_{2}(g) + 2e^{-}$	[1]					
	Reductio	$2e^- + 2H^+(aq) \longrightarrow H_2(g)$						
	Overall:	$2Cl^{-}(aq) + 2H^{+}(aq) \longrightarrow Cl_{2}(g) + H_{2}(g)$						
	When I r	nole H2 if formed, 2 moles of CI- is used.						
	moles of	NaCl used $=\frac{234}{23+35.5}=4$	[1]					
	moles of	H_2 formed = $\frac{4}{2}$ = 2	[1]					
		of H ₂ formed = $2 \times 2.4 = 48 \text{ dm}^3$	[1]					
	(of ante v		1.41					
CE9	3_04b							
(i)	CaCO3 +	2HCl \longrightarrow CaCl ₂ + H ₂ O + CO ₂	[1]					
(ii)	I mole C	aCO3 gives 1 mole of CO2						
	moles of	$CO_2 \text{ formed} = \frac{67 \times 10^{-3}}{24} = 0.0028$						
		2.1	[1]					
	mass of l	$CaCO_3 = 0.0028 \times (40 + 12 + 16 \times 3) = 0.028 \text{ g}$	[1]					
	% mass	of CaCO ₃ in egg shell = $\frac{0.28}{0.3} \times 100\% = 93\%$						
~			[1]					
(iii)		crush the egg shell into small piece	[1]					
	reason:	to increase the reacting surface area	[1]					
	method:	heating	[1]					
	reason:	heating can increase the energy of the particles of reactants	[1]					
			C-1					
		e he ^{es} hada manazan munan hannan alaman alaman bahara bahara mula bararan mula bararan mula bararan da						

CE94 08a

CES	4_08n	
(i)	$2H_2O_2 \longrightarrow 2H_2O + O_2$	[1]
(ii)	The rate of decomposition of H_2O_2 in descending order is $A > B > C$.	
	The rate of decomposition depends on the concentration of H2O2.	
	The concentration of H2O2 is highest at A, so the rate of decomposition is the fastest.	[1]
	At C, all the H2O2 are used up, the reaction stops.	[1]
(iii)	moles of $O_2 = \frac{84 \times 10^{-3}}{24} = 0.0035$	[1]
	moles of $H_2O_2 = 0.0035 \times 2 = 0.0070$	[1]
	$[H_2O_2] = \frac{0.007}{50 \times 10^{-3}} = 0.14 \text{ M}$	[1]
(iv)	No, the slope of the curve will increase	
	As MnO2 is a catalyst	[1]
	powdered MnO2 increase the surface area of catalyst that can increase the rate of reaction,	[1]
CE9	5_07a	
(i)	Citric acid / vitamin C (ascorbic acid) when dissolves in water gives H*(aq)	[1]
	which reacts with calcium carbonate to give gas (CO2) bubbles.	[1]
	$CaCO_3 + 2H^+ \longrightarrow Ca^{24} + CO_2 + H_2O$	[1]
(ii)	(i) $CaCO_3 + 2H^4 - Ca^{24} + CO_2 + H_2O$	
	no. of moles of CO_2 evolved = no. of moles of $CaCO_3$ present	[1]
	moles of CaCO ₃ present $=\frac{625 \times 10^{-3}}{100} = 6.25 \times 10^{-3}$	[1]
	100	[1]
	Theoretical volume of gas = $6.25 \times 10^{-3} \times 24 = 0.15 \text{ dm}^3$	[1]
	(2) Some of the CO ₂ produced dissolved in water / CO ₂ is (fairly) soluble in water.	[1]
CE9	6_07a	
(i)	isotope	[1]
(ii)	One / 1	[1]
(iii)	(1) H and D have the same electronic structure (or electronic arrangement).	[1]
	(DO NOT accept H and D have same no. of electrons in their outermost shells)	
	(2) (0) (0) (0)	[1]
		13
	(3) The reaction is exothermic / gives out heat / release energy	[1]
	(4) Formula mass = $2 + 2 + 16 = 20$	[1]
	$(5) 2D_2(g) + O_2(g) \longrightarrow 2D_2O(l)$	
	In the mixture, no, of moles of $D_2 = no$, of moles of O_2	
	moles of $D_2 = \frac{100 \times 10^{-3}}{24} = 0.004167$	[1]
	O_2 is in excess, no. of moles of D_2O produced = 0.004167 mole	12. p. 1
	mass of D_2O produced = 0.004167 × 20 = 0.0833 g (0.083 - 0.084 g)	[2]

284

ife

ase

Provided by

CE00 (09a
--------	-----

(i)	Reactivity: $Y < Z < X$	[1]
		Y is the least reactive because only the oxide of Y decomposes on heating and the oxides	[1]
		of X and Z are stable to heat.	
		X is the most reactive metal because only X can react with water but Y and Z do not react	[1]
		with water.	
(i	i)	60×10^{-3}	
		moles of O_2 produced = $\frac{60 \times 10^{-3}}{24} = 2.5 \times 10^{-3}$	[1]
		2YO — 2Y + O ₂	
		moles of YO heated = $\frac{2.5 \times 10^{-3}}{2} = 1.25 \times 10^{-3}$	
		-	[1]
		$1.25 \times 10^{-3} = \frac{mass}{molar \ mass \ of \ YO} = \frac{1.08}{atomic \ mass \ of \ Y + 16}$	
			r11
		So, relative atomic mass of $Y = 200$	[1]
0	E.O.	2.06-	
(1		3_06a 2NH4Cl + CaO → CaCl2 + H2O + 2NH3	[1]
) i)	The water vapour produced will condense near the mouth of the test tube.	[1]
6	"	The test tube will crack when the cold water flows back to the hot test tube.	[1]
6	ii)	(II) should be used	[1]
(1	13)	Ammonia is less deuse than air	(1)
		and is very soluble in water.	[1]
G	v)		[1]
(,	''		r., 5
		moles of $NH_4Cl = \frac{1}{53.5} = 0.01869$	$\left[1\right]$
		Theoretical volume of $NH_3(g) = 0.01869 \times 24 = 0.45 \ dm^3$	[1]
			(-)
¢	E0	4 08a	
(i)	$CaCO_{1}(s) + 2H^{+}(aq) \longrightarrow Ca^{2+}(aq) + H_{2}O(l) + CO_{2}(g)$	[1]
		OR , $CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(1) + CO_2(g)$	
(i	i)		
		(1) moles of CO_2 collected $= \frac{78 \times 10^{-3}}{24} = 3.25 \times 10^{-3}$	[2]
		(2) mass of $CaCO_3$ in the sample = $3.25 \times 10^{-3} \times 100 = 0.325$ g	[1]
		% by mass of $CaCO_3 = \frac{0.325}{0.36} \times 100\% = 90.27\%$	[2]
		$\%$ by mass of call $O_3 = \frac{1}{0.36} \times 100\% = 90.21\%$	
(1	ii)	Any ONE of the following:	[1]
		• the sample of coral contains other substances which react with HCl(aq) to liberate a	
		gas	

some CO₂(g) dissolves in water

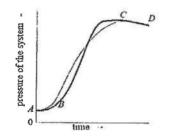
	CE06_12 Chemical knowledge			
Description of procedure (max, 4M) Use sand paper to remove oxide layer on the magnesium ribbon. Weigh the piece of magnesium ribbon in grams (w). Put the piece of magnesium ribbon in a conical flask connected to a gas syringe. Add 2M hydrochloric acid to the Mg ribbon until in excess. Collect the hydrogen gas liberated using the syringe. Measure the volume of H ₂ (g) collected (v cm ³).				
Mola	Mg(s) ar volu	me of H ₂ () $\longrightarrow Mg^{2*}(aq) + H_2(g)$ (g) ass of Mg (cm ³)	
		ommunica		[3]
CE0	9_10			
(a)	(i)	catalyst /	increase the rate of the reaction (decomposition).	[1]
	(ii)	Gas evol	ved in the reaction. / Oxygen affects the pressure,	[1]
	(iii)		$ 2H_2O + O_2$	[1]
	()		n number of hydrogen remains unchanged.	[1]
			n number of oxygen (increases) from -1 to 0,	П
		OAluano	and (decreases) from -1 to -2.	1.0
(b)	(i)	ALA:	The rate of reaction is high because the concentration of H_2O_2 is high.	[1]
(0)	0	At B:	The rate of reaction decreases because the concentration of H_2O_2	n in
		ALD.	decreases during reaction.	[1]
		At C:	The reaction stops because all the H_2O_2 has been used up.	[1]
	(ii)	Curve:	The feather stops because an the 11202 has been used up.	[1]
	00		e of curve is smaller.	1.3
			te at the end of the curve is about half the original one.	
		THE YALL	is at the end of the early is about hare the original one.	
		Prestore		

286 Provided by dse.life

AL09(1) 07

Any TWO of the following: Lower the temperature of the sample of reaction mixture removed by immersing it in ice/ice-salt mixture. Dilute the sample with water / an appropriate solvent.

Remove one of the reactant/catalyst by adding an appropriate quenching agent.


ASL09(II) 11

(a)	$CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + CO_2(g) + H_2O(1)$	[2]
(b)	Allow CO2(g) to escape but prevent the splashing of bydrochloric acid out of the	III
	flask.	
(c)	Draw a tangent line to the curve at point N.	[1]
	Determine the slope of the tangent line.	[1]
(d)	At the point M (beginning), the concentration (amount) of hydrochloric acid is the	[1]
	highest, and the reaction rate increases with the amount of acid.	
	From point M to N , the concentration (amount) of hydrochloric acid decreases	[1]
	gradually, and the reaction rate also decreases with decreasing concentration of acid.	
	At point P_1 all add is used up and the reaction stop. \therefore reaction rate drops to zero.	[1]
(e)	Slope of curve: smaller	[1]
	Maximum height of the curve: reduced by half	

ASLOO(II)_07

(a)	Mg(:	s) + $2H^{\dagger}(aq) \longrightarrow Mg^{2+}(aq) + H_2(g)$	
	Mole	of HCl used = $1 \times 15 \times 10^{-3} = 0.015$	[1]
	Mole	e of Mg used = $\frac{0.12}{24.3} = 4.94 \times 10^{-3}$	[1]
	Since	e mole ratio of Mg to HCl is 1 : 2, Mg is a limiting reagent.	
(b)	(i)	Acid is firstly used to dissolve the oxide layer on magnesium, and no H2 gas	[1]
		forms at the beginning.	
		$MgO(s) + 2H^{+}(aq) \longrightarrow Mg^{2+}(aq) + H_2O(l)$	
		Once MgO layer is removed, acid starts to react to Mg to give H2 gas and	[1]
		build up the pressure.	
		$Mg(s) + 2H^{+}(aq) \longrightarrow Mg^{2+}(aq) + H_2(g)$	· .
	(ii)	Acid reacts with Mg to give H2 gas and the reaction rate decreases with time	[1]
		as the concentration of acid gradually decreases. Hence, the increases in pressure gradually decrease till point C.	
	(iii)	When the Mg ribbon is completely used, no more H_2 gas formed, and the pressure of the system reaches the maximum.	[1]
		Reaction stops and solution cools down to the room temperature. Volume of	[1]

H₂ gas shrinks and reduces the pressure.

Similar shape of the curve, Higher rate from B to C Same level of maximum pressure built in the system.

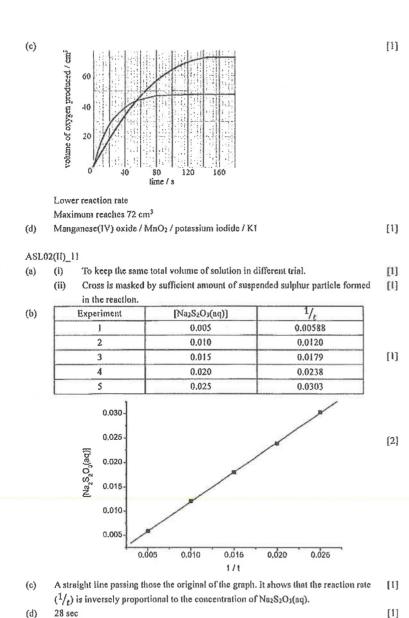
Explanation:

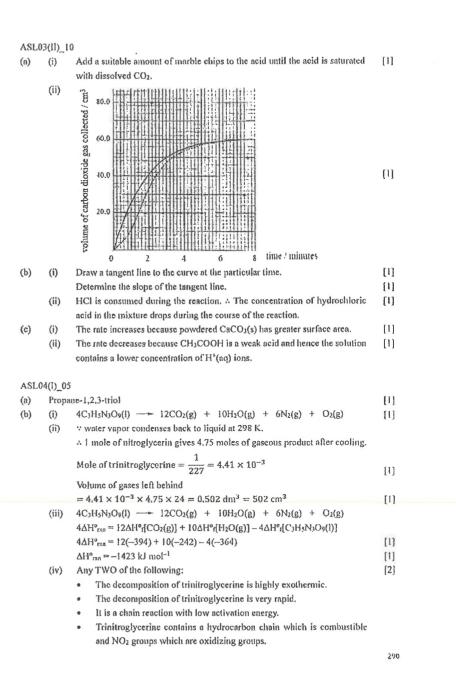
As the concentration of hydrochloric acid used increases from 1.0 M to 2.0 M, which [1] turns to increase in the reaction rate at the beginning, As the mass of magnesium ribbon remains unchanged and Mg is a limiting reagent, [1] there is no change in the total amount of H₂ gas formation. * pressure reaches the same level earlier, as the one using 1.0 M hydrochloric acid.

ASL01(II)_07

H2O2(aq) + catalyst

(b) At the beginning, H2O2(aq) has the highest concentration, and the reaction rate [1] reaches the maximum.

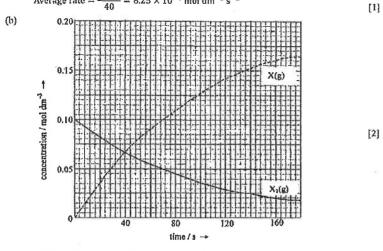

As time goes by, the reaction rate decreases as the concentration of $H_2O_2(aq)$ [1] decreases with time.


The reaction stops when all H2O2(aq) are used up. No more O2 gas produces after [1] 120th second.

[2]

Provided by ds

[2]



- Shake the sample with acidified KMnO4(aq), presence of acrolein can (c) (i) [1] decoloize purple color of KMnO4(aq). (1)
 - Shake with Tollen's reagent, presence of nerolein can form a silver OR. mirror.

ASL05(II) 08

(a)	Change in concentration = $0.100 - 0.067 = 0.033 \text{ mol dm}^{-3}$		
	Average rate $= \frac{0.033}{2} = 8.25 \times 10^{-4}$ mai dm ⁻³ c ⁻¹		

(c)	The kinetic energy of molecules increases with temperature.		
	At a higher temperature, the percentage of molecules with K.E. greater than the	[1]	
	activation energy increases.		
	A rate of decomposition increases		

ASL06(I) 07

- (a) Increase, because there is an increase in the total surface area for the contact of [1] reactants.
- Decrease, because 2 M ethanoic acid solution has a smaller concentration of H⁺(aq) (b) [1] than 2 M hydrochloric acid.
- Increase, because higher temperature leads to an increase in the fraction of reactant (c) particles with energy not less than the activation energy / in effective collision frequency.

ASL06(II) 10

[1]

[I]

[1]

291

	00(11)_10	
(a)	rate of consumption of $O_2 = \frac{5}{4} (1.24 \times 10^{-4}) \text{ mol dm}^{-3} \text{ s}^{-1}$	[1]
	$=1.55 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$	[1]
(b)	Catalyst is a substance which can change the rate of reaction but itsolf remains chemically unchanged after the reaction.	[1]
(c)	Nitrie acid / nitrogenous fertilizers, etc.	[1]
ASL	08(I)_07	
(a)	Colorimeter	[1]
(b)	Absorbance	[1]
(2)	absorbance / absorption intensity	[1]

AL08(I)_08a

(i)	The polymerization is an exothermic reaction.	[1]
	A lot of heat is evolved at the initial stage of the reaction as the concentration of	[½]
	the monomer is high and the rate of reaction is fast.	
	When the reaction has proceeded from some time, the chain of polymer grows and	[12]
	the viscosity of the reaction mixture increases. Rate of reaction decreases.	
	OR, Reaction stops at the end and heat is lost to surrounding.	
(ii)	NaOH(aq) can catalyze the polymerization better than $H_2O(l)$.	[1]
ASL	10(1)_02	
Acce	pt both 'yes' and 'no' answers. Mark will be awarded only to the elaboration.	
The I	rate of reaction depends on the collision frequency of the reactant molecules.	[1/2]
Only	those colliding molecules with KE greater than activation energy (E_{α}) of the reaction	[1]
can n	eacl.	
When	n temperature increases, average KE of molecules increases,	[1/2]

Chance of collision between molecules increases and, more importantly, a greater [1]

percentage of colliding molecules has KE> Ea

140

ided by

	ALIO	\L10(II)_02b				
	(i)		$h_4^-(aq) + 5C_2O_4^{2-}(aq) + 16H^4(aq) \longrightarrow 2Mn^{24}(aq) + 10CO_2(g) + 8H_2O(l)$	[1]		
	(ii)	(I)	Colorimetry	[1]		
		(11)	The reaction of $MnO_4^{-}(aq)$ with $C_2O_4^{2-}(aq)$ is slow possibly because both $MnO_4^{-}(aq)$ and $C_2O_4^{2-}(aq)$ are negatively charged (repulsion) / the reaction involves breaking the strong non-polar C-C bond.	[1]		
			It is likely that one of the products $(Mn^{2+}(aq))$ is a catalyst for the reaction (autocatalysis).	[1]		
			The rate of reaction is slow at the beginning because of the low concentration of $Mn^{2+}(aq)$. When [Mn ²⁺ (aq)] builds up, the reaction will proceed rapidly.			
			When MnO4-(aq) ions are almost used up, the rate slows down.	[1]		
	DSEI	SP_10				
	(8)	From	the curve, 1 mole of P(g) reacts with 2 moles of Q(g) to give 1 mole of R(g).	[1]		
			$+ 2Q(g) \longrightarrow R(g)$	[1]		
1	(b)		me required will become longer.	(1)		
			arger container, the concentrations of reactants become less and hence the on frequency decreases.	[1]		
	(c)	Collid	ing molecules will undergo reaction only if they possess an energy greater	[1]		
		than th	he activation energy and collide in the right orientation.	[1]		
	DSE12	2PP_10				
	(a)		imetry / using colorimeter	[1]		
	(b)	(i)	The rate of consumption of MnO_4 "(aq) ions is slow at the beginning (from 0 to 180 s) and then increases rapidly (from 200 to 340 s).	[1]		
			It is likely to be due to the building up of the concentration of the products which catalyzes the reaction.	[1]		
		(ii)	Repeat the experiment with a few drops of $Mn^{2+}(aq)$ firstly added to the reaction mixture.	[1]		
			Consumption of MnO_4 (aq) lons will be faster at the beginning if Mn^{2+} (aq) is a catalyst.	[1]		
	DSEX	2 11				
	(8)	-	$rate = \frac{60}{4} = 15 \text{ cm}^3/\text{min} (0.25 \text{ cm}^3/\text{s}) \text{ (Accept 14.8 - 15.2)}$	[1]		
	(b)		s a monobasic acid, while H2SO4 is a dibasic acid. Initial rate increases if	[1]		
		${ m H_2SO_4}$ is used. / Initial rate increases as the concentration of ${ m H^+}$ increases in M ${ m H_2SO_4},$				
	<i>.</i> .		fore, the frequency of effective collisions increases.			
	(c)	Mole	of $Zn = \frac{2}{65.4} = 0.0306$	[1]		
			f H ₂ formed = 0.0306 × 24000	(1)		
		= 734	cm ³ / 0.734 dm ³ (Accept 730 - 744 cm ³ / 0.73 - 0.74 dm ³)	[1]		

DSE13 11 The airbag has to be inflated instantly when a car crash occurs. Fine powder can greatly increase the reaction rate / can give a fast reaction by [1] providing a (very) large surface area for a reaction involving solid reactants. (b) Reaction 1: Mole of N₂ produced from the decomposition of NaN₃ = $\frac{100}{65} \times \frac{3}{2} = 2.31$ Reaction 2: Moles of Na produced $=\frac{100}{65}=1.54$ Moles of KNH₃ produced = $\frac{200}{101.1} = 1.98$ Since 5 mol of Na react with 1 mol of KNO3, KNO3 is in excess No, of mole of N₂ produced from reaction $2 = \frac{100}{65} \times \frac{1}{10} = 0.154$ Volume of gas produced = $(2.31 + 0.154) \times 24 = 59.1 \text{ dm}^3$ Accept: 58,8 - 59,2 dm³ KNO3 is added to react with sodium which is (highly) reactive / corrosive / [1] flammable / strongly reducing. $\frac{0.01-0.005}{10} = 0.0005 \text{ mol dm}^{-3}\text{s}^{-1} \text{ (5.0 \times 10^{-4} \text{ mol dm}^{-3}\text{s}^{-1})}$ (i) (Accept 0.0005 M s⁻¹ / 0.03 mol dm⁻³ min⁻¹ / 1.8 mol dm⁻³ hr⁻¹) (ii) Determine the slope of the tangent of curve at t = 10 s. **DSEI4 10**

(0)

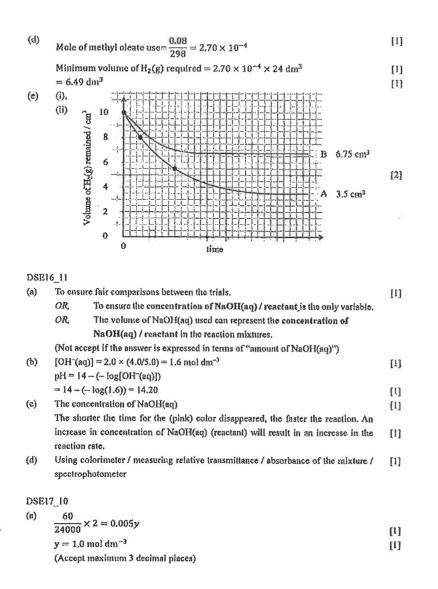
(d)

293

(a)

47	
- Proper way to follow the progress of the reaction (e.g. measure the volume of CO_2 evolved / measure the loss in mass of the reaction mixture over a certain time interval	[1]
/ measure the pressure of the CO2 formed in a sealed reaction vessels.) (accept graphical representation)	
 Dilute 1M HCl to different concentrations by adding water. 	[1]
- Repeat the experiment with dilute HCI.	[1]
- State one requirement for carrying out fair comparison (e.g. CaCO) used should be of	[1]
the same amount / under same experimental conditions such as same temperature or	
pressure)	
- Communication mark	(1)
DSE15_09	
(a) Save cost (on chemicals) / minimize (chemical) hazards / save time on carrying out experiment / reduce the consumption of chemicals / reduce chemical waste.	[1]
(b) Prevent sucking back of water / prevent water from entering the reacting flask.	[1]
(c) Water level inside the measuring cylinder rises / The gas volume inside the measuring cylinder reduces.	[1]

294

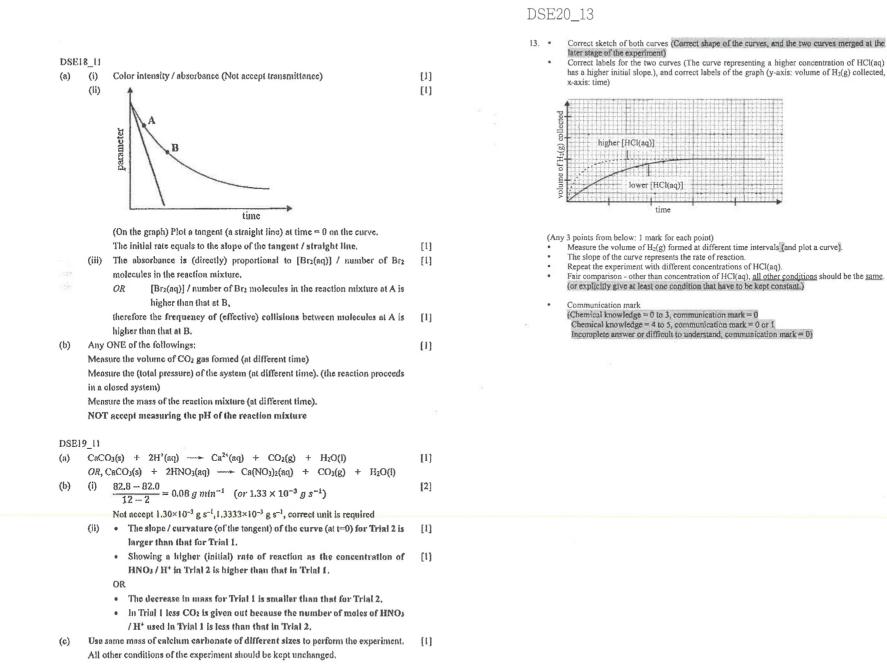

m

[1]

11]

[1]

[1]



(b)		
	The curve starts from point (0, 0), the slope decreases and becomes a horizontal line	[1]
	at the 3 rd minute.	
	The total volume of gas obtained is 60 cm ³ .	[1]
(c)	$60\ \mbox{cm}^3$ of gas would be collected because the number of moles of H_2O_2 is the same	(1)
	for both experiments.	
	OR, 60 cm ³ of gas would be collected because increasing the temperature will	
	only increase the rate of the reaction, but not affect the amount of product	
	formed.	
	(Not accept ambiguous answer like "same amount of H2O2").	
(d)	Follow the change in (total) pressure / mass in the system.	[1]
	(Accept: monitor the system with a pressure gauge / an electronic balance.)	
DSE	18_02	
(a)	Set-up for preparation - boiling tube with reagents and HEAT (with stopper)	m
	(Accept heating the reagents in a flask)	
	Upward delivery of ammonia gas (without stopper)	m
	(Accept collecting the gas with a gas syringe.)	
	Hicat	

295

296

Provided by dse

Provided by dse.life

3

T