SECTION 4 Acids and Bases

Multiple-Choice Questions

CE90 07

The reaction between lead(II) nitrate solution and sodium hydrogenearbonate solution can be represented by the equation below:

CE90 12

150.0 cm³ of 3.0 M sodium hydroxide solution is mixed with 50.0 cm³ of 1.0M sodium hydroxide solution. The concentration of the resultant solution is

A. 2.0 M. B. 2.5 M. C. 3.3 M. D. 4.0 M.

CE90 14

Which of the following statements concerning 25 cm³ of 1M hydrochloric acid and 25 cm³ of 1M ethanoic acid is/are correct?

- (1) They give the same colour change when the same quantity of universal indicator is added.
- (2) They react with marble chips at the same rate when the initial temperature are the same.
- (3) They require the same number of moles of sodium hydroxide for complete neutralization.
- A. (1) only B. (3) only C. (1) and (2) only D. (2) and (3) only

CE90_22

X is a white solid. When dilute hydrochloric acid is added to X, a colourless gas is liberated. An aqueous solution of X gives a white precipitate with silver nitrate solution. X is probably

A. ammonium chloride.

B. sodium ethanoate.

C. sodium carbonate,

D. calcium carbonate.

CE90 26

Dry zine chloride solid is a non-conductor of electricity because

A. it is a non-electrolyte.

B. it exists as molecules.

C. its ions are not mobile.

D. metallic bonding is not present.

CE90_35

Which of the following hydroxide is insoluble in BOTH excess sodium hydroxide solution and excess aqueous ammonia?

Λ. Cu(OH)₂

B. Zn(OH)2

C. Fe(OH)2

D. Al(OH)3

192

CE90 44

If dilute hydrochloric acid gets into a student's eye during an experiment, the first thing the student should do is to

A. dial 999 for help.

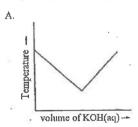
B, wash the eye with water.

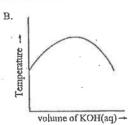
C. wash the eye with dilute ammonia solution.

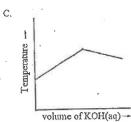
D. wash the eye with dilute sodium hydroxide solution.

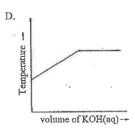
CE90 46

1st statement


2nd statement


A solution of dry hydrogen chloride in methylbenzene turns blue litmus paper red.


Gaseous hydrogen chloride contains hydrogen


CE91 13

Which of the following graphs represents what would be obtained in a thermometric titration of 2M hydrochloric acid with potassium hydroxide solution?

CE91 16

What volume of water should be added to 100 cm³ of 2M hydrochloric acid to change the acid concentration to 0.2M?

A. 100 cm³

B. 500 cm³

C. 900 cm³

D. 1000 cm³

CE91 18

22 g calcium carbonate are allowed to react with 200 cm³ of 0.5 M hydrochloric acid until no further reaction occurs. What is the mass of calcium carbonate left behind?

(Relative atomic masses: C = 12.0, O = 16.0, Ca = 40.0)

A. 2g

B. 5 g

C. 12 g

D. 17 g

CE91 20

What is the number of moles of Fe3+ ions in 0.1 dm3 of 0.5M Fe2(SO4)3 solution?

A, 0.1×0.5

B. $2 \times 0.1 \times 0.5$

C. $0.1 \times 0.5 \times 6.02 \times 10^{23}$

D. $2 \times 0.1 \times 0.5 \times 6.02 \times 10^{23}$

CE91 21

Iron(II) sulphate solution is mixed with chlorine water. Excess aqueous ammonia is then added to the mixture. What is the colour of the precipitate formed?

A. white C. green B. yello

D. brown

CE91 23

1.55 g of a hydrated sodium carbonate, $Na_2CO_3 * xH_2O$, react completely with 25 cm³ of 1 M hydrochloric acid. What is the value of x?

(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, Na = 23.0)

A. 1

B. 2

C. 4

D. 10

CE91 39

In an experiment to study the rate of reaction, 100 cm³ of 2 M hydrochloric acid are added to excess zine granules at room temperature. Which of the following modifications would increase the initial rate of reaction?

- (1) The concentration of hydrochloric acid is 4 M instead of 2 M.
- (2) The volume of hydrochloric acid is 200 cm³ instead of 100 cm³.
- The hydrochloric acid is replaced by 100 cm³ of 2 M sulphuric acid.

A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE91 45

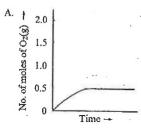
Which of the following statements about hydrogen chloride is/are correct?

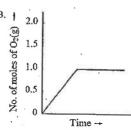
- (1) It forms dense white fumes with ammonia gas.
- (2) It dissolves in methylbenzene to form H⁺ and Cl⁻ ions.
- (3) It turns dry litmus paper red.

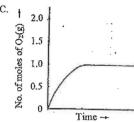
A. (1) only

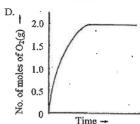
B. (2) only

. (1) and (3) only


D. (2) and (3) only


CE91 28


Hydrogen peroxide decomposes according to the following equation:


$$2H_2O_2(aq) \longrightarrow 2H_2O(1) + O_2(q)$$

A student made use of the above reaction to study how the rate of decomposition of 1.0 mole of hydrogen peroxide varied with time. Which of the following graphs is a correct representation of the result?

CE91 47

1st statement

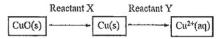
Distilled water is a poor conductor of electricity.

2nd statement

Distilled water contains an equal number of H+(aq) ions and OH-(aq) ions.

CE91 50

1st statement


Magnesium oxide dissolves faster in 1M hydrochloric acid than in 1M ethanoic acid.

2^{td} statement

Hydrochloric acid is a stronger acid than ethanoic acid.

CE92 11

Consider the following diagram:

Which of the following combinations is correct?

	Reactant X	Reactant Y
A.	$H_2(g)$	dilute H2SO4
B.	CO(g)	dilute HNO₃
C,	NH₃(g)	dilute HCl
D,	C(s)	concentrated HCl

CE92 17

Directions: 0.17 and 0.18 refer to the following experiment:

A student measured the conductivity of a certain acid. When he added barium hydroxide solution dropwise to the acid, he found that the conductivity of the acid gradually dropped to almost zero.

The acid is probably

A. hydrochloric acid.

sulphuric acid.

nitric acid.

ethanoic acid.

CE92 18

Which of the following reasons accounts for the change in the conductivity of the acid?

- Barium hydroxide is a weak electrolyte.
- The acid is a weak electrolyte.
- The neutralization reaction between barium hydroxide solution and the acid is exothermic.
- D. A precipitate is formed when barium hydroxide solution is added to the acid.

Solution X is 45 cm³ of 1.2 M HCl and Solution Y is 60 cm³ of 0.9 M CH₃COOH, Which of the following statement concerning X and Y is correct?

- A. X has a higher pH than Y.
- Both X and Y need the same volume of 1 M NaOH for neutralization.
- Both X and Y have the same electrical conductivity,
- D. Y has a faster rate of reaction with marble chips than X.

CE92 26

Consider the following chemical equilibrium:

$$Cr_2O_7^{2-}(aq) + H_2O(1) = 2CrO_4^{2-}(aq) + 2H^+(aq)$$

(orange)

(yellow)

Which of the following statements is correct?

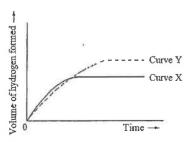
- A. Both dichromate ions and chromate ions are present in the reaction mixture.
- B. On adding NaOH(aq) to the mixture, the solution becomes orange.
- C. On adding dilute H2SO4 to the mixture, the position of equilibrium shifts to the right.
- D. On diluting with water, the solution becomes orange.

CE92 27

The following experiment results were obtained when 2 M HCl was allowed to react separately with 2 M NaOH and 2 M KOH:

Expt No.	Volume of acid	Volume of alkali	Rise in temperature
I	100 cm ³ of 2 M HCl	100 cm ³ of 2 M NaOH	T ₁ *C
2	200 cm ³ of 2 M HCl	200 cm ³ of 2 M KOH	T2°C

Which of the following is correct?


A.
$$T_1 = T_2$$

B.
$$T_1 = 2T_2$$

C.
$$2T_1 = T_2$$

D.
$$4T_1 = T_2$$

CE92_28

In the above graph, curve X was obtained by the reaction between 100 cm³ of 1 M HCl and excess zinc granules.

Which of the following changes would produce curve Y?

- A. Increasing the temperature by 10°C.
- B. Adding the same amount of zinc powder instead of zinc granules.
- C. Using 200 cm³ of 0.8 M HCl instead of 100 cm³ of 1 M HCl.
- D. Using 50 cm³ of 1.5 M HCl instead of 100 cm³ of 1 M HCl.

CE92 29

After 50 cm³ of 0.60 M H₂SO₄ have completely neutralized 100 cm³ of 0.6 M NaOH, the concentration of the resulting sodium sulphate solution is

A. 0.2 M

B. 0.3 M

C 06M

D. 1.2 M

CE92 36

Which of the following reagents form(s) a white precipitate with lead(II) nitrate solution?

- (1) notassium carbonate solution
- (2) dilute hydrochloric acid
- (3) sodium sulphate solution
- A. (3) only

B. (1) and (2) only

C. (1) and (3) only

D. (1), (2) and (3)

CE92 48

1st statement

2nd statement

In the reaction between calcium carbonate and hydrochloric acid, the reaction rate decreases with time.

The molar concentration of hydrochloric acid decreases as the reaction between calcium carbonate and hydrochloric acid proceeds.

CE92 49

1st statement

2nd statement

A solution of hydrogen chloride in methylbenzene can turn blue litmus paper red.

Hydrogen chloride dissolves in methylbenzene to form hydrogen ions.

CE93 07

$$CO_2(g) + CaCO_3(x) + H_2O(y) \longrightarrow Ca(HCO_3)_2(z)$$

In the above chemical equation, which of the following combination is correct?

	<u>x</u>	Y	Z
A.	aq	1	aq
В.	S	aq	s
C.	\$	1	s
D.	S	1	aq

CE93 11

The following substances were burnt in oxygen and the products were mixed with water. Which of these substances would produce a resulting solution with the highest pH value?

A. calcium

B. iron

C. sulphur

D. carbon

CE93 21

Three different pairs of metal wires are placed separately in petri dishes (as shown in the diagram below) containing a mixture of gelatin, potassium hexacyanoferrate(III) solution and phenolohthalein solution.

Dish I

Dish III

Dish II In Dish II, which of the following colours will develop around the iron wire and the copper wire?

	iron wire	copper wire
A.	pink	blue
В.	blue	pink
C.	pink	no colour
D.	blue	no colour

CE93 23

Which of the following statements about a solution of hydrogen chloride in water is correct?

- A. The hydrogen chloride exists as molecules in the solution.
- The hydrogen chloride is highly ionized in water,
- The pH value of the solution is greater than 7.
- D. The reaction between the solution and aqueous ammonia is exothermic.

CE93 27

Which of the following solutions forms a precipitate with excess aqueous ammonia?


- A. copper(11) chloride solution
- aluminium nitrate solution

C. zinc sulphate solution

sodium chloride solution

CE94 31

A sulphuric acid solution is titrated against 25.0 cm3 of 3.0 M sodium hydroxide solution. The results of the thermometric titration can be represented by the following graph.

Which of the following statement(s) is/are correct?

- (1) The temperature rises from X to Y because the reaction between the sulphuric acid solution and sodium hydroxide solution is exothermic.
- (2) The temperature drops from Y to Z because water is formed in the reaction between the sulphuric acid solution and sodium hydroxide solution.
- Z corresponds to the end point of the titration.
- (1) only A.

(2) only

C. (1) and (3) only D. (2) and (3) only

CE94 33

Which of the following statements concerning 25.0 cm³ of 0.1 M hydrochloric acid and 25.0 cm³ of 0.1 M ethanoic acid is/are correct?

- (1) They contain the same number of hydrogen ions.
- They require the same volume of 0.1 M sodium hydroxide solution for complete neutralization.
- They react with excess zinc granules at the same rate.
- A. (1) only

B. (2) only

(1) and (3) only

D. (2) and (3) only

CE94 43

Which of the following statements concerning a catalyst are correct?

- (1) It can change the rate of a reaction.
- (2) It can change the amount of product formed in a reaction.
- It remains chemically unchanged at the end of a reaction,
- (1) and (2) only A.

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

CE95 08

In order to prepare 250.0 cm³ of 0.1 M sodium hydroxide solution from 1.0 M sodium hydroxide solution, which of the following combinations of apparatus should be used?

- burette, measuring cylinder, pipette
- conical flask, measuring cylinder, volumetric flask
- C. burette, conical flask, wash bottle
- pipette, volumetric flask, wash bottle

CE95_09

A student performed a titration experiment in which he added an acid from a burette to an alkali contained in a conical flask. The following diagrams show the initial and final readings of the burette.

What was the volume of the acid added from the burette to the conical flask?

A. 24.5 cm³

B. 24.6 cm³

C. 24.7 cm³

D. 32.3 cm³

CE95 12

Which of the following pairs of solutions, when mixed, would give a neutral solution?

- A. 10 cm³ of 1 M sulphuric acid and 10 cm³ of 1 M sodium hydroxide solution
- B. 10 cm³ of 1 M sulphuric acid and 10 cm³ of 2 M sodium hydroxide solution
- C. 10 cm³ of 2 M sulphuric acid and 20 cm³ of 1 M sodium hydroxide solution
- D. 20 cm3 of 2 M sulphuric acid and 10 cm3 of 2 M sodium hydroxide solution

CE95_16

What volume of water is required to dilute 100 cm³ of 8 M hydrochloric acid to a concentration of 2 M?

A. 200 cm³

B, 300 cm³

C. 400 cm³

D. 700 cm³

CE95 18

Metal X reacts with dilute hydrochloric acid to liberate hydrogen, but metal Y and metal Z have no reaction with dilute acid. The oxide of metal Y decomposes on heating but the oxide of metal Z does not.

Which of the following arrangements represents the order of increasing reactivity of the three metals?

 $A. \quad X < Y < Z$

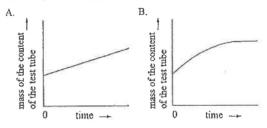
B. Y < Z < X

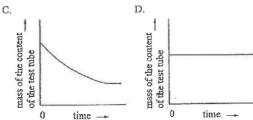
 $C. \quad X < Z < Y$

 $D, \quad Z < Y < X$

CE95 24

Consider the following equation.


$$2\text{FeSO}_4 \cdot 7\text{H}_2\text{O}(x) \longrightarrow \text{Fe}_2\text{O}_3(y) + \text{SO}_3(z) + \text{SO}_2(g) + 14\text{H}_2\text{O}(l)$$


Which of the following combinations is correct?

	X	У.	$\underline{\mathbf{z}}$
A.	aq	S	g
В.	aq	S	J
C,	S	aq	S
D.	S	8	g

CE95 27

A certain amount of silver exide is heated in a test tube. Which of the following graphs represents the correct plot of the mass of the contents of the test tube against time?

CE95 35

Which of the following substances, when mixed with lemon juice, would give off gas bubbles?

- (1) iron nails
- (2) milk of magnesia
- (3) polyethene wrap
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE95 39

Which of the following substances can conduct electricity?

- (1) molten zinc chloride
- (2) an aqueous solution of magnesium sulphate
- (3) a mixture of ethanol and water
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE95 46

1st statement

2nd statement

The basicity of ethanoic acid is four,

One molecule of ethanoic acid contains four

atoms of hydrogen.

CE95 49

1st statement

2nd statement

If a student accidentally spills some hydrochloric acid on his hand, he should immediately wash his hand with sodium Sodium hydroxide solution can neutralize hydrochloric acid.

hydroxide solution,

CE96.04

Consider the following chemical equation:

$$2HNO_3(aq) + CaCO_3(x) \longrightarrow Ca(NO_3)_2(y) + H_2O(z) + CO_2(g)$$

Which of the following combinations is correct?

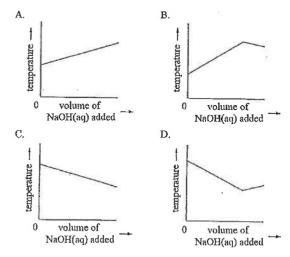
	<u>x</u>	X	<u>z</u>
A.	8q	aq	1
B.	aq	aq	aq
C.	S	aq	1
D.	S	S	aq

CE96 06

Which of the following substances is used by farmers to increase the pH of soil?

A. ammonium nitrate

B. calcium hydroxide


C. citric acid

D. potassium hydroxide

CE96 10

A student added 16 cm³ of 2M sodium hydroxide solution, in 2 cm³ portions, to 10 cm³ of 2M nitric acid. He measured the temperature of the mixture immediately after each addition of the sodium hydroxide solution.

Which of the following graphs represents the relationship between the temperature of the mixture and the volume of sodium hydroxide solution added?

CE97 13

Which of the following statements concerning the reaction of aqueous ammonia with hydrochloric acid is correct?

- A. The reaction is exothermic.
- B. A white precipitate is formed.
- C. Ammonium chloride and chlorine are produced.
- D. The product ammonium chloride is a covalent compound.

CE97_14

The formula of a metal carbonate is X_2CO_3 , $100\,\mathrm{cm}^3$ of a solution containing 0.69 g of the carbonate requires 50 cm 3 of 0.20 M hydrochloric acid for complete reaction. What is the relative atomic mass of metal X?

(Relative atomic masses: C=12.0, O=16.0)

A. 19.0

B. 23.0

C. 39.0

D. 78.0

CE97 31

Which of the following statements concerning citric acid is/are correct?

- (1) It is a strong acid.
- (2) It is present in oranges.
- (3) It exists as a solid at room temperature.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE97 37

Which of the following substances would react with sodium hydroxide solution?

- (1) ammonium chloride solution
- (2) copper(II) sulphate solution
- (3) ethanoic acid
- A. (1) and (2) only

- B. (1) and (3) only
- C. (2) and (3) only
- D. (1), (2) and (3)

CE97 49

1st statement

2nd statement

When filling a pipette with a solution, a pipette filler is preferred to sucking with the mouth. It is more accurate to fill a pipette with a solution by using a pipette filler than by sucking with the mouth.

CE98 09

Which of the following substances has a pH less than 7?

A. lemon juice

B. soap solution

C. glass cleaner

D. milk of magnesia

CE98 13

In an experiment, 10 cm³ of 1M hydrochloric acid is added slowly into 10 cm³ of 1M sodium hydroxide solution. Which of the following statements concerning this experiment is correct?

- A. The temperature of the mixture increases.
- B. The pH of the mixture increases.
- C. The mixture does not conduct electricity at the end of the experiment.
- D. The concentration of sodium ions in the mixture remains unchanged.

CE98 16

The formula of a solid dibasic acid is H_2X , 2,88g of the acid is dissolved in some distilled water and the solution is then diluted to 250.0 cm³ with distilled water. 25.0 cm³ of the diluted solution requires 16.0 cm³ of 0,40M sodium hydroxide solution for complete neutralization. What is the molar mass of H_2X ?

A. 22.5 g

B. 45.0 g

C. 90.0 g

D. 180.0 g

CE98 18

Which of the following ions has the same number of protons as the hydroxide ion, OH-?

A. O2-

B. F-

C. Na*

D. Mg2+

CE98 23

Which of the following is NOT the appropriate substance for preparing zinc sulphate by directly mixing with dilute sulphuric acid?

A. zinc

B. zinc carbonate

C. zinc hydroxide

D. zinc nitrate

CE98 25

Dilute sodium hydroxide solution is added successively to four different solutions. Which of the following combinations is correct?

	Solution	Observation
A.	ammonium chloride	white precipitate
В.	lead(II) nitrate	yellow precipitate
C.	potassium dichromate	orange precipitate
D.	iron(III) sulphate	brown precipitate

CE98 31

What is the purpose of adding quicklime (calcium oxide) to soil?

- A. to neutralize the acidity of the soil.
- B. to act as a fertilizer for the soil.
- C. to kill micro-organisms in the soil.
- D. to increase the amount of calcium ions in the soil.

CE98 43

Which of the following substances are commonly found in canned grapefruit juice?

- (1) citric acid
- (2) benzoic acid
- (3) ethanoic acid
- (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE99 06

The concentration of an aqueous solution of an acid is 1.0 M. 25.0 cm³ of this acid solution requires 37.5 cm³ of 2.0 M sodium hydroxide solution for complete neutralization. What is the basicity of the acid?

A. i

B. 2

C. 3

D. 4

CB99 20

Which of the following solutions would produce a white precipitate with sodium hydroxide solution?

- A. lead(II) nitrate solution
- B. iron(III) nitrate solution
- C. copper(II) nitrate solution
- D. potassium nitrate solution

CE99 25

In an experiment, 1.00 M sodium hydroxide solution was added to 25.0 cm³ of 1.00 M sulphuric acid until the acid was completely neutralized. What is the concentration of sodium sulphate (correct to two decimal places) in the resulting solution?

A. 1.00M

B. 0.50M

C. 0.33M

D. 0.25M

CE99 45

1st statement

2nd statement

Sulphur is classified as a non-metal.

Sulphur does not react with dilute acids.

CE00 11

Different volumes of 2.0 M potassium hydroxide solution and 2.0 M sulphuric acid are mixed in a polystyrene cup. In which of the following combination would the temperature rise be the greatest?

	Volume of 2.0 M KOH(aq) /cm3	Volume of 2.0 M H2SO4(aq) /cm3
A.	20.0	40.0
B.	30.0	30.0
C.	40.0	20.0
D.	45.0	15.0

CE00_29

Which of the following compounds would react with ammonium chloride on heating?

- A. concentrated nitric acid
- B. concentrated hydrochloric acid
- C. sodium hydroxide solution
- magnesium sulphate solution

CE00 33

In an experiment, a piece of calcium metal was added to a beaker of water. Which of the following statements concerning the experiment is/are correct?

- The calcium metal sank to the bottom of the beaker.
- (2) The calcium metal burnt with brick red flame.
- (3) At the end of the experiment, an alkaline solution was found in the beaker.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE01 06

When potassium carbonate solution and calcium chloride solution are mixed, calcium carbonate is precipitated. Which of the following mixtures would produce the greatest amount of precipitate?

- A. 5 cm³ of 1 M K₂CO₂(aq) + 15 cm³ of 1 M CaCl₂(aq)
- B. 10 cm³ of 1 M K₂CO₃(aq) + 10 cm³ of 1 M CaCl₂(aq)
- C. 15 cm³ of 1 M K₂CO₃(aa) + 8 cm³ of 1 M CaCl₂(aa)
- D. 18 cm³ of 1 M K₂CO₃(ag) + 5 cm³ of 1 M CaCl₂(ag)

CE01 07

Which of the following statements concerning water is correct?

- A. It reacts with calcium to give a colourless gas.
- B. It is a strong electrolyte.
- C. It turns anhydrous cobalt(II) chloride from pink to blue,
- D. It is immiscible with methanol.

CE01 15

A mixture consists of one mole of sodium carbonate and one mole of sodium hydrogenearbonate. What is the least number of moles of hydrochloric acid required to liberate all the available carbon dioxide from the mixture?

A. 1.5

B. 2.0

C. 3.0

D. 4.0

CE01 23

Phosphoric acid is a tribasic acid with formula H₃PO₄. Which of the following formulae is INCORRECT?

A. CaH₂PO₄

B. Mg3(PO4)2

C. (NH₄)₂HPO₄

D. Na₂HPO₄

CE01 34

In a titration experiment, 25.0 cm³ of diluted vinegar is titrated against a standard solution of sodium hydroxide with phenolphthalein as indicator. Which of the following statements concerning this experiment is/are correct?

- (1) The colour of phenolphthalein changes from colourless to pink at the end point.
- (2) The colour of phenolphthalein changes from pink to colourless at the end point,
- 3) A measuring cylinder is used to measure the volume of the diluted vinegar.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE02_02

Which of the following compounds, when dissolved in water, gives a green solution?

A. copper(II) sulphate

B. nickel(II) sulphate

C. cobalt(II) sulphate

D. iron(ll) sulphate

CE02 05

Consider the aqueous solutions listed below:

- (1) 1 M ethanoic acid
- (2) I M hydrochloric acid
- (3) I M ammonia solution

Which of the following represents the increasing order of pH of the solution?

A. (1), (2), (3)

B. (2), (1), (3)

C. (3), (1), (2)

D. (3), (2), (1)

CE02_17

Which of the following solution does NOT react with sodium hydroxide solution?

- A. ammonium chloride solution
- B. potassium carbonate solution
- C. copper(II) nitrate solution
- D. zine sulphate solution

CE02 32

A black powder is suspected to be earbon or a mixture of carbon and copper(II) oxide. Which of the following methods can be used to identify the black powder?

- (1) adding dilute sulphuric acid to the powder
- (2) adding sodium hydroxide solution to the powder
- (3) heating the powder strongly
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE02 42

In which of the following is ammonia used?

- (1) the manufacture of nitric acid
- (2) the making of fertilizers
- (3) the making of antiacids
- A. (1) and (2) only

B, (1) and (3) only

C. (2) and (3) only

D, (1), (2) and (3)

CE03 04

Which of the following statements concerning nitric acid is INCORRECT?

- A. It is manufactured from ammonia.
- B. It is used to make explosives.
- C. It is used to make fertilizers.
- D. It is a dehydrating agent.

CE03 26

20.0 cm³ of 2.0 M aqueous ammonia required 16.0 cm³ of sulphuric acid for complete neutralization. What is the concentration for the sulphuric acid?

(Relative atomic masses: H = 1.0, O = 16.0, S = 32.1)

A, 61.3 g dm⁻³

B. 122.6 g dm⁻³

C. 183.9 g dm⁻³

D. 245.2 g dm^{-3}

CE03 30

40 cm³ of 2 M hydrochloric acid was mixed with 40 cm³ of 2 M sodium hydroxide solution in a polystyrene cup and the maximum rise in temperature was recorded. Which of the following pairs of solutions, mon mixing, would produce a similar rise in temperature?

- A. 40 cm³ of 2 M ethanoic acid and 40 cm³ of 2 M potassium hydroxide solution
- B. 40 cm³ of 2 M ethanoic acid and 40 cm³ of 2 M ammonia solution
- C. 40 cm³ of 2 M nitric acid and 40 cm³ of 2 M notassium hydroxide solution
- 40 cm³ of 2 M nitric acid and 40 cm³ of 2 M ammonia solution

CE03 43

Which of the following pairs of solution would form a precipitate when they are mixed?

- (1) NH₄Cl(an) and K₂SO₄(aq)
- (2) NH₃(aq) and Pb(NO₃)₂(aq)
- (3) (NH₄)₂CO₃(aq) and CaCl₂(aq)
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE05SP 17

Consider the following equation:

$$O_2(g) + 4Fe(OH)_2(x) \longrightarrow 2Fe_2O_3(y) + 4H_2O(z)$$

Which of the following combinations is correct?

	\bar{x}	$\boldsymbol{\mathcal{Y}}$	<u>z</u>
A.	\$	S	1
В.	S	aq	ps
C.	aq	S	aq
D.	ลต	ag	1

CE05SP 18

A white solid dissolves in water to give a colourless solution. The solution reacts with dilute hydrochloric acid to give a gas. The solid is probably

A. calcium oxide.

- calcium carbonate.
- C. potassium hydroxide.
- D. potassium carbonate.

CE05SP_36

A sample of connected sulphuric acid has density of 1.83 g cm⁻³ and contains 94% of sulphuric acid by mass. What is the concentration (correct to one decimal place) of sulphuric acid in the sample?

A. 17.5 M

B. 18.3 M

C. 18.7 M

). 19.8 M

CE05SP 45

In an experiment, zinc granules are allowed to react with 100 cm³ of 2 M sulphuric acid at room temperature and pressure. In which of the following situations would the rate of reaction be increased at the initial stage?

- (1) using the same mass of zinc which is in powder form
- (2) adding some ice to the reaction mixture
- (3) using 200 cm³ of 2 M sulphuric acid instead of 100 cm³ of 2 M sulphuric acid
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE04 08

Which of the following pairs of ions would react together to form a white precipitate?

- A. Ca2+(aq) and SO42-(aq)
- B. Cu²⁺(aq) and NO₃-(aq)
- C. Ni²⁺(aq) and CO₃²⁻(aq)
- D. NH₄⁺(aq) and OH⁻(aq)

CE04_11

A white solid is found around the mouth of a reagent bottle containing limewater. The white solid is likely to be

A. calcium oxide.

B. calcium hydroxide.

C. calcium carbonate.

D. calcium hydrogencarbonate.

CE04 14

Chlorine can be prepared from concentrated hydrochloric acid and potassium permanganate according to the following equation:

$$2KMnO_4 + xHCl \longrightarrow 2KCl + 2MnCl_2 + vH_2O + zCl_2$$

What is the value of x?

A. 4

B. 5

C. 8

D. 10

CE04 20

Which of the following concerning aqueous ammonia is correct?

- A. It contains both ammonia molecules and ammonium ions.
- B. It is commonly used as the active ingredient in toilet cleaners.
- C. It reacts with iron(III) sulphate solution to give a green precipitate.
- D. It gives a colourless solution with phenolphthalein.

CE04 44

When solid acid is added to an aqueous solution of sodium hydrogenearbonate, the mixture fizzes.

Which of the following ions/ compounds are responsible for the fizz?

- (1) sodium ions
- (2) hydrogenearbonate lons
- (3) citric acid
- (4) water
- A. (1), (2) and (3) only

B. (1), (3) and (4) only

(2), (3) and (4) only

D. (1), (2), (3) and (4)

CE05 14

Which of the following compounds has the highest basicity?

A. HCl

B. HCOOH

C. H₂SO₄

D. CH3COOH

CE05 22

500 cm³ of calcium hydroxide contains 3.7 g of calcium hydroxide. What is the molarity of the solution?

(Relative atomic masses: H = 1.0, O = 16.0, Ca = 40.1)

A. 0.05M

B. 0.10M

C. 0.13M

D. 0.26M

CE05 29

1st statement

2nd statement

Citric acid is an electrolyte.

When citric acid is dissolved in water, citric

acid molecules becomes mobile.

CE05 34

Which of the following statements concerning 20 cm³ of 1 M CH₃COOH and 10 cm³ of 1 M H₂SO₄ is correct?

- A. They have the same pH values.
- B. They have the same electrical conductivity.
- C. They react with magnesium at the same rate.
- D. They require the same number of moles of sodium hydroxide for complete neutralization.

CE05 38

Which of the following pairs of substances would NOT react together?

- A. copper, dilute ethanoic acid
- B. copper(II) oxide, dilute ethanoic acid
- C. copper(II) hydroxide, dilute sulphuric acid
- D. copper(II) carbonate, dilute sulphuric acid

CE05 39

Directions: Q.39 to 41 refer to the following information.

In an experiment to determine the concentration of sulphuric acid in a brand of toilet cleaner, 25.0 cm³ of the cleaner was first diluted to 250.0 cm³ with distilled water. Upon titration with 0.950 M sodium hydroxide solution using phenolphthalein as indicator, 25.0 cm³ of the diluted cleaner required 27.1 cm³ of the sodium hydroxide solution to reach the end point.

Which of the following types of apparatus should be used to measure 25.0 cm³ of the toilet cleaner?

A. pipette

B. burette

C. measuring cylinder

D. volumetric flask

CE05 40

What is the colour change at the end point of the titration?

A. from colourless to pink

B. from pink to colourless

C. from yellow to red

D. from red to yellow

CE05 41

What is the concentration of sulphuric acid in the undiluted toilet cleaner?

A. 1.29 M

B. 2.58 M

C. 5.15 M

D. 10.3 M

CE05 50

1st statement

2nd statement

2 M hydrochloric acid reacts faster with 1 g of zinc granules than with 1 g of zinc powder.

The surface area of 1 g of zinc powder is larger than that of 1 g of zinc granules.

CE06 07

Compound X is soluble in water, Addition of sodium hydroxide solution to a solution of X gives a white precipitate. The precipitate does not dissolve upon the addition of excess alkali. X may be

A. MgCl₂

B. ZnCl₂

C. FeSO₄

D. (NH4)2SO4

CE06_10

Solution X is prepared by mixing 100.0 cm³ of 2.0 M Na₂SO₄(aq) with 50.0 cm³ of 1.0 M Na₂NO₃(aq). What is the concentration of Na⁺(aq) ions in X?

A. 1.5 M

B. 1.7 M

C. 3.0 M

D. 3.3 M

CE06_28

1st statement

2nd statement

Solid citric acid reacts with magnesium to

Citric acid contains ionisable hydrogen atoms.

give hydrogen.

CE06 31

Oxalic acid is a dibasic acid. 10.0 cm³ of an aqueous solution of oxalic acid requires 30.0 cm³ of 0.10 M KOH(aq) for complete neutralization. What is the concentration of the oxalic acid solution?

A. 0.15 M

B. 0.20 M

C. 0.30 M

D. 0.60 M

CE06 39

Which of the following solutions when mixed with 50.0 cm³ of 1.0 M hydrochloric acid would NOT result in a change in pH?

A. 50.0 cm³ of 1.0 M sodium chloride solution

B. 50.0 cm³ of 1.0 M ethanoic acid

C. 50.0 cm3 of 1.0 M nitric acid

D. 50.0 cm³ of 1.0 M sulphuric acid

CE06 47

In a titration experiment, which of the following apparatus should be rinsed with the solution it is about to contain?

(1) burette

(2) pipette

3) conical flask

(1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE06 48

1st statement

2nd statement

Carbon dioxide can effectively be prepared by the action of dilute sulphurle acid on Carbonate reacts with dilute acids to give

carbon dioxide.

calcium carbonate.

CE07_15

What is the volume of 0.5 M hydrochloric acid required to react with 1.49 g of lithium oxide for complete neutralization?

(Relative atomic masses: Li = 6.9, O = 16.0)

A. 50 cm³

B. 100 cm³

C, 200 cm³

D. 260 cm³

CE07 17

20 cm³ of calcium chloride solution contains 1.0×10^{-2} moles of Cl⁻(aq) ions. What is the molarity of the solution?

A. $1.0 \times 10^{-4} \text{ M}$

B. $2.5 \times 10^{-4} M$

C. $2.5 \times 10^{-1} M$

D. $5.0 \times 10^{-1} M$

CE07 35

Different metals are dropped into water or dilute hydrochloric acid. Assuming that the experimental conditions are the same, which of the following comparisons concerning the initial rates of hydrogen formation is correct?

	Initial rate of hydrogen formation		Initial rate of hydrogen formation
A.	Ca and H ₂ O	>	Ba and HCI
B.	Fe and HCl	>	K and H ₂ O
C,	K and H ₂ O	>	Ca and H ₂ O
D.	Cs and H ₂ O	>	Ca and H ₂ O

CE07 47

A student pours two different acids respectively into two test tubes, each containing a piece of magnesium ribbon of the same mass, until the ribbons are completely covered by the acids. If she wishes to compare the relative strength of the acids by observing the initial rate of evolution of gas, which of the following items should be the same?

- (1) volume of acids
- (2) concentration of the acids
- (3) basicity of the acids

A. (I) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE08_01

Which of the following statements concerning acid rain is INCORRECT?

- A. Acid rain refers to rain with pH less than 5.6.
- B. Acid rain can corrode iron window frames and marble buildings.
- C. One major air pollution that causes the formation of acid rain is carbon dioxide.
- D. Acid rain will be formed when the gases discharged by power stations using fossil fuels enter the atmosphere.

CE08 07

30.0 cm³ of 0.10 M KOH is completely neutralized by 20.0 cm³ of dilute H₂SO₄ to form K₂SO₄ solution. What is the molarity of the salt solution obtained?

A. 0.03 M

B. 0.05 M

C. 0.06 M

D. 0.10 M

215

CE08 17

The basicity of an acid is

- A. a value to express the concentration of the acid.
- B. the number of hydrogen atoms in one acid molecule.
- C. the number of moles of any base which can completely react with one mole of the acid.
- the number of hydrogen ions which can be produced by complete ionization of one acid molecule.

CE08 20

A small piece of potassium is dropped into a trough of water containing methyl orange. Which of the following observations is/are correct?

- (1) The potassium moves about on the water surface with a hissing sound.
- The potassium dissolves in water and the solution turns red.
- (3) The potassium burns with a golden yellow flame.

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE08 30

1st statement

2nd statement

If concentrated hydrochloric acid is dripped onto one's hand, one should wash the hand immediately with concentrated ammonia solution. Concentrated ammonia solution is a

weak alkali.

CE08 33

When calcium granules are added to water, colourless gas bubbles are formed. The mixture is then filtered to obtain a clear solution. Which of the following is correct if excess dilute hydrochloric acid is added to the clear solution?

A. Gas bubbles are formed.

B. There is no visible change.

C. A white precipitate is formed.

D. The clear solution turns brick red.

CE08 37

The following table shows some information on mixing hydrochloric acid with sodium hydroxide solution;

	Mixtu	re	Temperature rise / °C
25 cm ³ of 1 M HCl	+	25 cm ³ of 1 M NaOH	w
50 cm ³ of 1 M HCl	+	50 cm ³ of I M NaOH	x
25 cm ³ of 2 M HCl	+	25 cm ³ of 2 M NaOH	y
50 cm ³ of 2 M HCl	+	50 cm ³ of 2 M NaOH	

Which of the following concerning the values of temperature rise is correct?

 $A. \quad w < x < y < z$

B. w < x = y < z

C. w = y < x = z

 $D, \quad w = x < y = z$

CE08 43

Which of the following pieces of apparatus should be used when an acid is titrated with an alkali?

- (1) burette
- (2) pipette
- (3) conical flask
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE08 45

In an experiment, a solution containing 3 moles of KOH reacts with another solution containing 1 mole of an acid for complete neutralization. Which of the following deduction is/are correct?

- (1) I mole of the acid provides 3 moles of H+(aq) ions.
- (2) The acid is three times as concentrated as the KOH(aq).
- (3) The acid is a strong acid.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE09 10

X is an acid. 25.0 cm³ of 0.20 M solution X requires 30.0 cm³ of 0.50 M sodium hydroxide solution for complete neutralization. What is the basicity of X?

A. 1

В. 2

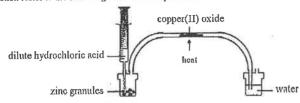
C. 3

D. 4

CE09 14

Which of the following is NOT an industrial product made from sulphuric acid?

A, fertilizer


B. paint additive

C. soapless detergent

D. sulphur dioxide preservative

CE09 17

This question refers to the following micro-scale experiment.

Which of the following types of reaction is/are involved in the experiment?

- (1) redox reaction
- (2) neutralization
- (3) thermal decomposition
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE09 23

Which of the following substances can be used to distinguish between magnesium nitrate solution and silver nitrate solution?

- (1) zinc strip
- (2) ammonium nitrate solution
- (3) potassium chloride solution
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE09 29

1st statement

2nd statement

Copper(II) carbonate dissolves in water to give a blue solution.

All solid compounds with copper(II) as the

only cations are blue in colour.

CE09 32

Which of the following chemicals can best be used to remove the oil dirt inside the drainage pipe in kitchen?

A. nitric acid

B. sodium chloride

C. hydrochloric acid

D. sodium hydroxide

CE09 35

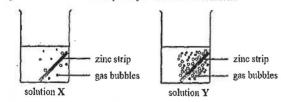
Directions: Ouestions 35 and 36 refer to the following information.

The table below shows how solutions X and Y are respectively made from two monobasic acids A and B.

solution X	solution Y
40 cm ³ of 0.2 M acid A	20 cm ³ of 0.4 M acid B
+	+
10 cm3 of distilled water	30 cm ³ of distilled water

What is the concentration of acid A in solution X?

A. 0.2 M


B. 0.16 M

C. 0.01 M

D. 0.008 M

CE09 36

Two identical zinc strips are added to solutions X and Y. The diagrams below show how gas bubbles are given out when the zinc strips are just added to the solutions.

Which of the following deductions is correct?

- A. Acid A is weaker than acid B.
- B. Acid B is weaker than acid A.
- C. The concentration of acid A in solution X is higher than that of acid B in solution Y.
- D. The concentration of acid B in solution Y is higher than that of acid A in solution X.

CE09 37

Comparing the same volume of 0.5 M NaOH(aq) and 0.5 M NH₃(aq), which of the following is NOT correct?

	0.5M NaOH(aq)	0.5M NH3(aq)
A.	higher pH	lower pH
B.	higher electrical conductivity	lower electrical conductivity
C.	forms precipitate with FeSO ₄ solution	does not form precipitate with FeSO ₄ solution
D.	larger temperature rise when completely	smaller temperature rise when completely
	neutralized by 1 M HCl	neutralized by 1 M HCl
		·

CE09 48

CB09_46	
1 st statement	2 nd statement
All salt solutions are neutral.	All salts are formed from neutralization,

CE10 19

Besides pipette, which of the following apparatus must be used in order to prepare 250.0 cm³ of 0.100 M Na₂CO₃(aq)?

A.	burette	B.	conical flask
C.	volumetric flask	D.	measuring cylinder

CE10 20

A mixture of (NH4)₂SO₄(aq) and MgSO₄(aq) is heated with excess NaOH(aq). Which of the following observations is correct?

- A. No pungent gas is evolved and no precipitate is formed.
- B. No pungent gas is evolved but a white precipitate is formed.
- C. A pungent gas is evolved but no precipitate is formed.
- D. A pungent gas is evolved and a white precipitate is formed.

CE10 23

The oxide of metal Z reacts with dilute hydrochloric acid to form a colourless solution. Which of the following metals may Z be?

- (1) zinc
- (2) copper
- (3) silver
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE10 28

1	ś١	statement	

2nd statement

Solid citric acid can turn dry blue litmus

Solid citric acid contains hydrogen jons.

paper red.

CE10 35

Solid acid T has a relative molecular mass of 192.0. A sample of 0.80 g of T is dissolved in water to form a solution which requires 25.0 cm³ of 0.50 M sodium hydroxide solution for complete neutralization. What is the basicity of T?

A. 1

B. 2

C. 3

D. 4

CE10 39

20.0 cm³ of 1.0 M NaCl(aq) is mixed with 10.0 cm³ of 2.0 M Na₂CO₃(aq). What is the concentration of Na⁺(aq) ions in the resulting solution?

A. 1,3M

B. 1,5M

C. 2.0M

D. 3.0M

CE10 40

Which of the following steps should be involved in an experiment to prepare copper(II) sulphate crystals?

- A. adding excess CuCl₂(s) to H₂SO₄(aq)
- B. adding CuCl₂(s) to excess H₂SO₄(aq)
- C. adding excess CuO(s) to H₂SO₄(aq)
- D. Adding CuO(s) to excess H2SO4(aq)

CE10 42

Which of the following hazard warning labels should be displayed on a bottle of concentrated hydrochloric acid?

(1)

(2)

(3)

A. (1) only

C. (1) and (3) only

B. (2) only

D. (2) and (3) only

CE10 43

Solution Y is added dropwise to a solution of NaOH containing several drops of phenolphthalein. The mixture changes from pink to colourless. Which of the following substances may Y be?

(I) HCl(aq)

(2) KCl(aq)

(3) Cl₂(aq)

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE10 44

In an experiment, 10 g of zinc granules is added to 100 cm³ of 1 M HCl(aq) in a beaker. Which of the following changes to the experiment can increase the initial rate of the reaction?

(1) Use 200 cm3 of 1 M HCl(aq) to replace 100 cm3 of 1 M HCl(aq).

(2) Use 50 cm³ of 2 M HCl(aq) to replace 100 cm³ of 1 M HCl(aq).

(3) 10 g of zinc granules of greater size are used instead.

A. (1) only

B, (2) only

C. (1) and (3) only

D. (2) and (3) only

CE10 45

Which of the following reaction is/are neutralization?

(1) $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$

(2) 2CH₃COOH + MgO → (CH₃COO)₂Mg + H₂O

3) $CH_3COOH + CH_3CH_2OH \Rightarrow CH_3COOCH_2CH_3 + H_2O$

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE11 12

Which of the following statements concerning KOH(aq) is correct?

A. The reaction between KOH(aq) and dilute hydrochloric acid is exothermic.

B. There are more hydrogen ions than hydroxide ions in KOH(aq).

C. Adding water to KOH(aq) can increase the pH.

D. KOH(aq) cannot conduct electricity.

CE11 19

What is/are the potential hazard(s) of mixing an acidic toilet cleaner with chlorine bleach?

(1) A toxic gas is liberated.

(2) A large amount of heat is given out.

(3) A flammable substance is produced.

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE11 20

Which of the following gases can be dried by using concentrated sulphuric acid?

(1) ammonia

(2) sulphur dioxide

(3) hydrogen chloride

B. (2) only

A. (1) only C. (1) and (3) only

D. (2) and (3) only

CE11 24

Gas Y dissolves in water to form an acidic solution. Which of the following gases would Y be?

(1) oxygen

(2) chlorine

(3) sulphur dioxide

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE11 28

1st statement

2nd statement

Unnofluted rainwater can erode limestone.

Carbon dioxide in air dissolves in unpolluted

rainwater to form carbonic acid,

CE11 29

1st statement

2nd statement

Dilute ethanoic acid can conduct electricity.

Ethanoic acid molecules ionize in water to

produce mobile ions.

CE11_43

In an experiment, 10 cm³ of 1.0 M sulphuric acid is mixed with 30 cm³ of 0.5 M sodium hydroxide solution. Which of the following statements concerning this experiment is/are correct?

(1) 0.015 mole of water is formed.

(2) The pH of the resulting mixture is greater than 7.

(3) After water is completely evaporated from the resulting mixture, pure sodium sulphate solid can be obtained.

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

ASL05(I) 01

Which of the following substances can be used to dry SO₂(g)?

A. Al₂O₃(s)

B. PbO₂(s)

C. P4O10(s)

D. CaO(s)

ASL12(T)_03

Which of the following salts will produce an aqueous with pH greater than 7 at 298K?

A. NaNOs

B. NaCN

C. NH₄NO₃

D. KCl

DSEIISP 08

The following hazard warning labels are displayed on the reagent bottle of an acid.

What information about this acid can be obtained from the labels?

A. It is very concentrated and flammable.

B. It is very concentrated and oxidizing.

C. It is flammable and corrosive.

D. It is corrosive and oxidizing.

DSE11SP_14

500 cm³ of calcium hydroxide solution contains 3.7 g of calcium hydroxide. What is the molarity of the solution?

(Relative atomic masses: H = 1.0, O = 16.0, Ca = 40.1)

A. 0.05 M

B. 0.10 M

C. 0.13 M

D. 0.26 M

DSEIISP 16

In an experiment to determine the concentration of sulphuric acid in a brand of toilet cleaner, 25.0 cm³ of the cleaner was first diluted to 250.0 cm³ with distilled water. Upon titration with 0.950 M sodium hydroxide solution using phenolphthalein as indicator, 25.0 cm³ of the diluted cleaner required 27.1 cm³ of the sodium hydroxide solution to reach the end point?

Which of the following types of apparatus should be used to measure 25.0 cm³ of the toilet cleaner?

A. Pipette

B. Burette

C. Measuring cylinder

D. Volumetric flask

DSELISP 17

In an experiment to determine the concentration of sulphuric acid in a braud of toilet cleaner, 25.0 cm³ of the cleaner was first diluted to 250.0 cm³ with distilled water. Upon titration with 0.950 M sodium hydroxide solution using phenolphthalein as indicator, 25.0 cm³ of the diluted cleaner required 27.1 cm³ of the sodium hydroxide solution to reach the end point?

What is the color change at the end point of the titration?

A. From colorless to pink

B. From pink to colorless

C. From yellow to red

D. From red to vellow

DSEIISP 18

In an experiment to determine the concentration of sulphuric acid in a brand of toilet cleaner, 25.0 cm³ of the cleaner was first diluted to 250.0 cm³ with distilled water. Upon titration with 0.950 M sodium hydroxide solution using phenolphthalein as indicator, 25.0 cm³ of the diluted cleaner required 27.1 cm³ of the sodium hydroxide solution to reach the end point?

What is the concentration of sulphuric acid in the undiluted toilet cleaner?

A. 1.29 M

B. 2.58 M

C. 5.15 M

D. 10.3 M

DSEIISP 20

A black powder is suspected to be carbon or a mixture of carbon and copper(ii) oxide. Which of the following methods can be used to identify the black powder?

- (I) Adding dilute sulphuric acid to the powder.
- (2) Adding sodium hydroxide solution to the powder.
- (3) Heating the powder strongly,

A. (1) only

B. (2) only

(1) and (3) only

D. (2) and (3) only

DSE12PP 08

At 298 K, the pH of 0.10 mol dm⁻³ HCl(aq) is 1. Which of the following statements is correct?

- A. At 298 K, the pH of 0.20 mol dm⁻³ HCl(aq) is 2.
- B. At 298 K, the pH of 0.20 mol dm⁻³ HCl(ag) is 0.5.
- C. At 298 K, the pH of 0.01 mol dm⁻³ HCl(aq) is 2.
- D. At 298 K, the pH of 0.01 mol dm⁻³ HCl(aq) is 0.1.

DSE12PP_09

When 25 cm³ of 1.00 mol dm⁻³ NaOH(aq) is mixed with 25 cm³ of 1.00 mol dm⁻³ HCl(aq), the temperature of the mixture rises by 6°C. Which of the following reactants, when mixed under the same conditions, would give a similar temperature rise?

- A. $25~{\rm cm^3~of~2.00~mol~dm^{-3}~NaOH(aq)}$ and $25~{\rm cm^3~of~2.00~mol~dm^{-3}~HCl(aq)}$
- B. 50 cm³ of 1.00 mol dm⁻³ NaOH(aq) and 50 cm³ of 1.00 mol dm⁻³ HCl(aq)
- C. 50 cm³ of 0.50 mol dm⁻³ NaOH(aq) and 50 cm³ of 0.50 mol dm⁻³ HCl(aq)
- D. 100 cm³ of 0.25 mol dm⁻³ NaOH(aq) and 100 cm³ of 0.25 mol dm⁻³ HCl(aq)

DSE12PP 13

10 cm³ of 0.25 mol dm⁻³ calcium nitrate solution is mixed with 40 cm³ of 0.10 mol dm⁻³ nitric acid. What is the concentration of nitrate ions in the resulting solution?

A, 0.18 mol dm⁻³

B. 0.13 mol dm⁻³

C 0.080 mol dm⁻³

D 0.050 mol dm⁻³

DSE12PP 19

Which of the following reagents would undergo neutralization with limewater?

(1) HCl(aq)

(2) Na₂SO₄(aq)

(3) SO₂(g)

(1) only

(2) only

(1) and (3) only

D. (2) and (3) only

DSE12PP 20

A salt has the formula (NH₄)₂SO₄•FeSO₄•6H₂O. Which of the following is/are the expected observation(s) when an aqueous solution of this salt is treated with aqueous sodium hydroxide

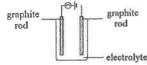
(1) formation of a dirty green precipitate

formation of a brown precipitate

evolution of a gas with a pungent odor

(1) only

(2) only


(1) and (3) only

D. (2) and (3) only

DSE12PP 24

Which of the following methods can be used to distinguish between 0.1 mol dm⁻³ HCl(aq) and 0.1 mol dm-3 CH3CO2H(aq)?

- (1) Add magnesium ribbon of the same length to each solution and compare the rate of evolution of gas bubbles.
- (2) Add 10 cm3 of 0.1 mol dm-3 NaOH(aq) to 10 cm3 of each solution and compare the temperature change.
- Use each solution as electrolyte in the set-up shown below and compare the brightness of the bulb.

A. (1) and (2) only

(1) and (3) only

C. (2) and (3) only

(1), (2) and (3)

DSE12 02

A small amount of a powder can dissolve in water to form a clear solution. When this solution is mixed with K2CO3(aq), a white precipitate is obtained. What can the powder be?

A. Sodium sulphate

B. Calcium sulphate

Sodium hydroxide

D. Calcium hydroxide

DSE12 04

Which of the following statements concerning CH3COOH and HCl is correct?

- A. CH1COOH is a stronger acid than HCl.
- The pH of 0.1 M CH3COOH(aq) is lower than that of 0.1 M HCI(aq).
- Both CH3COOH(aq) and HCl(aq) react with NH3(aq), each giving a salt.
- Both CH₃COOH(an) and HCl(aq) react with Ag(s), each giving a colorless gas.

DSE12 10

A sample of 1.02 g of potassium hydrogenphthalate (C8FI5O4K) is dissolved completely in distilled water, and then diluted to 250,0 cm3. What is the concentration of the solution obtained?

(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, K = 39.1) A. 0,004 M

B. 0.010 M

C. 0.020 M

D. 4.080 M

DSE12 14

Which of the following pairs of reactants would react in water to give out the largest amount of heat?

- A. 1 mol of HCl and 2 mol of KOH
- B. 1 mol of H2SO4 and 2 mol of KOH
- C. 1 mol of (COOH)2 and 2 mol of KOH
- D. 1 mol of CH3COOH and 1 mol of KOH

DSE12 19

In which of the following processes would a colorless gas evolve?

- (1) Magnesium is added to dilute sulphuric acid.
- Ammonium chloride is heated with calcium hydroxide.
- Water is added to a solid mixture of citric acid and sodium hydrogenearbonate.

(1) and (2) only A.

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

DSE12 20

Which of the following methods can be used to distinguish between ZnCl₂(aq) and CaBr₂(aq)?

- (1) Adding NH₃(aq)
- Performing flame test
- Evaporating to dryness
- (1) and (2) only

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

DSE13 03

Solid Y is soluble in cold water. When an aqueous solution of Y is added separately to sodium hydroxide solution and to acidified silver nitrate solution, a white precipitate is formed in both cases. Which of the following compounds might Y be?

- A. Ammonium carbonate
- B. Zinc carbonate

C. Lead(II) chloride

D. Magnesium chloride

DSE13 08

Which of the following reaction routes can best be used to prepare barium sulphate from barium carbonate?

- BaCO₂(s) H₂SO₄(aq) BaSO₂(s) A.
- BaCO₃(s) conc. H₂SO₄ BaSO₄(s) R.
- BaCO4(s) HCl(aq) BaCl4(aq) H2SO4(aq) BaSO4(s) C.
- BaCO₄(s) cono. HCl BaCl₂(aq) Na₂SO₄(aq) BaSO₄(s)

DSE13 09

Which of the following statements about potassium hydroxide solution is INCORRECT?

- A. When potassium hydroxide solution is added to iron(III) sulphate solution, a dirty green precipitate is formed.
- B. When potassium hydroxide solution is heated with ammonium chloride solution, ammonia gas is liberated.
- C. Dilute potassium hydroxide solution contains K⁺(aq) ions, H⁺(aq) and OH⁻(aq) ions.
- D. Concentrated potassium hydroxide solution is corrosive.

DSE13 10

Consider the four solution W, X, Y and Z listed below:

- W: 0.01 mol dm⁻³ HNO₃(aq)
- X: 0.01 mol dm-3 H2SO4(aq)
- Y: 0.01 mol dm⁻³ KOH(aq)
- Z: 0,10 mol dm-3 KOH(aq)

Which of the following represents the four solutions arranged in increasing order of pH?

A. W, X, Y, Z

B. W, X, Z, Y

C. X, W, Y, Z

D. X, W, Z, Y

DSEI3 II

Which of the following pairs of aqueous solutions, when mixed, would give a precipitate?

- A. Lead(II) nitrate and ammonia
- B. Copper(II) sulphate and sodium nitrate
- C. Calcium chloride and sodium nitrate
- D. Iron(II) sulphate and acidified potassium dichromate

DSE14 06

50.0 cm3 of 0.6 M FeSO4(aq) is mixed with 150.0 cm3 of 0.2 M Fe2(SO4)3(aq). What is the concentration of SO₄2-(aq) ions in the resulting mixture?

A. 0.3 M

B. 0.4 M

C. 0.6 M

D. 0.8 M

DSE14 07

Which of the following pairs of aqueous solutions, upon mixing, would have the lowest electrical conductivity?

- A, 20.0 cm3 of 0.1 M HNO3
- and
- 20.0 cm3 of 0.1 M KOH
- B. 20.0 cm3 of 0.1 M H2SO4
- 20.0 cm3 of 0.1 M Ba(OH)2 and and 20.0 cm3 of 0.1 M NH3
- C. 20.0 cm³ of 0.1 M CH₂COOH D. 20.0 cm3 of 0.1 M HCl
- and
- 20.0 cm3 of 0.1 M C6H12O6 (glucose)

DSE14 13

Which of the following gases, after dissolved in 1 dm3 of water, would give a solution with the highest pH?

A. 0,002 mol of NO2

B. 0.002 mol of SO2

C. 0.002 mol of NH₃

0.002 mol of HCI D.

DSE14 15

Which of the following hazard warning labels should be displayed on both the reagent bottle storing concentrated sulphuric acid and the reagent bottle storing concentrated hydrochloric acid?

A. (1) only

(2) only

C. (1) and (3) only

(2) and (3) only

DSE14 21

Which of the following processes would show a blue color?

- (1) adding litmus to NaOH(aq)
- mixing CuSO4(s) and NH3(aq)
- K3Fc(CN)6(aq) and FcCl2(aq)
- (1) and (2) only

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

DSB15 01

Which of the following statements is correct?

- All aqueous solutions contain H*(aq) ions.
- The pH of all acid solutions is greater than zero. B.
- All acidic compounds contain hydrogen as their constituent elements.
- A 'corrosive' hazard warning label must be displayed on all reagent bottles containing acid solution.

DSE15 04

Which of the following salts CANNOT be prepared from the reaction of a metal with a dilute acid?

Zinc sulphate A.

Iron(II) chloride

Calcium chloride

Copper(II) sulphate D,

DSE15 08

In an experiment, 25.0 cm³ of HC1(aq) is measured with apparatus X and is placed in apparatus Y. The HCl(aq) in Y is then titrated with a standard NaOH(aq). Which of the following combinations is correct?

Pipette

- Measuring cylinder A.
- Y Beaker
- Measuring cylinder В.
- Conical flask

C.

- Beaker
- Pipette D.
- Conical flask

DSE15 09

In an experiment to prepare calcium sulphate, excess dilute sulphuric acid is added to 10.0 cm³ of 1.0 mol dm-3 calcium nitrate solution. Which of the following is the theoretical mass of the calcium sulphate obtained? (Relative atomic masses: 0 = 16.0, S = 32.1, Ca = 40.1)

A. 0.68 g

B. 1.36 g

C. 2.72 g

D, 4.08 g

DSE16 06

The pH of a sample of sulphuric acid is 2.6. 100 cm³ of this sample is mixed with 100 cm³ of water.

What is the pH of the resulting mixture?

A 5.8

B. 2.9

C. 2.6

D. 1.3

DSE16 07

Consider the following experimental set-up

A colorless gas is given out when water is dropped to the mixture. Which of the following statements is correct?

- A. Oxalic acid ionizes in water to give hydrogen ions.
- B. Zinc ionizes in water to give zinc ions.
- Water reacts with oxalic acid to give the colorless gas.
- Water reacts with zinc to give the colorless gas.

DSE16 08

Which of the following pairs of substances, when mixed together, can be used to prepare copper(II) sulphate crystals?

- A. CuO(s) and H₂SO₄(aq)
- B. CuO(s) and MgSO4(aq)

Cu(s) and H2SO4(aq)

Cu(s) and MgSO4(aq)

DSE16 18

Which of the following statements concerning vinegar is/are correct?

- The process of forming hydrogen ions in vinegar is reversible.
- Neutralization occurs when sugar is added to vinegar.
- The pH of vinegar used in kitchen is around 1.
- (1) only A.

(2) only В.

(1) and (3) only

D. (2) and (3) only

DSE16 19

The hazard warning label below is displayed on a bottle containing chemical Z: Which of the following chemicals may Z be?

- (1) Sodium
- (2) Trichloromethane
- Concentrated aqueous ammonia
- (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

DSE16 22

Which of the following processes are exothermic?

- (1) Placing calcium oxide in water
- (2) Placing a zine strip in a copper(II) sulphate solution
- (3) Passing hydrogen chloride gas into a sodium hydroxide solution
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

DSE17 02

Which of the following statements concerning hydrochloric acid is INCORRECT?

- A. It is a mineral acid.
- B. It completely ionizes in water.
- C. It contains aqueous hydrogen ions.
- D. It does not contain aqueous hydroxide ions.

DSE17 06

Which of the following is NOT the appropriate substance for preparing magnesium sulphate by directly mixing it with dilute sulphuric acid?

A. Magnesium metal

B. Magnesium oxide

C. Magnesium nitrate

D. Magnesium carbonate

DSE17 10

Calcium phosphate is insoluble in water. What is the theoretical number of moles of calcium phosphate obtained when 100.0 cm3 of 0.30 mol dm-3 CaCl2(aq) is mixed with 300.0 cm3 of 0.10 mol dm-3 Na₃PO₄(aq)?

A. 0.010

B. 0.015

C. 0.020 D. 0.030

DSE17 11

Which of the following statements concerning zinc is correct?

- It forms a soluble exide when placed in NH₂(aa).
- B. It acts as a reducing agent when placed in HCl(aa).
- C It undergoes oxidation when placed in MgCl₂(a₀).
- D. It forms an acidic solution when placed in hot H2O(1).

DSE17 17

Which of the following statements concerning NaOH(aq) and NH₃(aq) is/are correct?

- Both of them can react with MgCh(aq).
- (2)Both of them can form a deep blue solution with Cu(OH)(s).
- (3) NaOH(aq) can react with CH3COOH, but NH3(aq) cannot.
- A. (1) only

C. (1) and (3) only D. (2) and (3) only

DSE17 21

Which of the following can distinguish a sample of AgNO₃(ag) from a sample of NaNO₃(ag)?

- (1) Adding Cu(NO3)2(aq) to the samples.
- Adding HCl(aq) to the samples
- Adding KOH(aq) to the samples.
- A. (1) and (2) only

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

DSE18 06

Dilute sodium hydroxide solution is added to a 0.1 M solution until in excess. Which of the following combinations is correct?

Solution

Zinc sulphate A.

Observation

White precipitate formed

B. Calcium nitrate White precipitate formed

Lead(II) nitrate

Yellow precipitate formed

D. Iron(III) sulphate Dirty green precipitate formed

DSE18 10

Which of the following reagents does NOT react with copper?

A. 2 M H₂SO₄

B. 2 M HNO₃

C. 16 M H₂SO₄

D. 16 M HNO

DSE18 11

Consider the solutions W. X. Y and Z below:

MISIC	et the solutions n, M, I and 2 boton.
W	100 cm ³ of 0.20 M HNO ₃ (aq)
X	50 cm3 of 0,20 M HCl(aq)
Y	100 cm3 of 0,20 M CH3CO2H(aq)
Z	50 cm3 of 0.10 M NaOH(aq)
	22 221

Which of the following statements is correct?

- A. The pH of Y equals -log 0.2.
- B. Mixing W and Z gives a neutral solution.
- C. The pH of the mixture of W and X is lower than that of W.
- D. The pH of the mixture of W and X is lower than that of the mixture of X and Y.

DSE18 24

Consider the following statements and choose the best answer:

1st statement

2nd statement
NH₃(aq) is a weaker alkali than KOH(aq).

To completely neutralize 1 mole of HCl(aq), the number of moles of NH₃(aq) needed is more than the number of moles of KOH(aq) needed.

DSE19 04

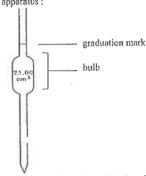
25.00 cm³ of 0.051 M C₄H₄O₄(aq) can completely neutralise 22.18 cm³ of 0.115 M KOH(aq). What is the basicity of the acid C₄H₄O₄?

- A. 1
- B. 2
- C. 3
- D. 4

DSE19 05

25.00 cm³ of 0.50 M lead(II) nitrate solution is mixed with 50.00 cm³ of 1.00 M sodium chloride solution. Insoluble lead(II) chloride is formed during mixing. What is the concentration of Cl⁻(aq) in the mixture?

- A. 0.33 M
- B. 0.50 M
- C. 0.75 M
- D. 1.50 M


DSE19 16

Which of the following chemicals can be used to distinguish concentrated hydrochloric acid from concentrated nitric acid?

- (I) Sodium carbonate solid
- (2) Silver nitrate solution
- (3) Copper metal
- A. (1) only
- B. (2) only
- C. (1) and (3) only
- D. (2) and (3) only

DSE19 21

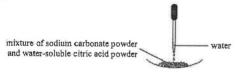
The diagram below shows a common glass apparatus:

Which of the following statements concerning the transfer of an acid using this apparatus are INCORRECT?

- (1) The bulb should be firmly held in the hand when being filled with acid.
- (2) Exactly 20.00 cm³ of acid can be transferred using this apparatus.
- (3) The apparatus should first be rinsed by distilled water, then immediately followed by the transfer of acid.
- A. (1) and (2) only
- B. (1) and (3) only
- C. (2) and (3) only
- D. (1), (2) and (3) only

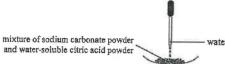
DSE19 20

Aqueous calcium hydroxide can be used to


- (1) neutralise acidic substances in soil.
- (2) distinguish carbon dioxide from carbon monoxide.
- (3) remove sulphur dioxide from a polluted air sample.
- A. (1) and (2) only
- B. (1) and (3) only
- (2) and (3) only
- D. (1), (2) and (3) only

DSE2020:

Which of the following combinations would give a brown gas when putting X in Y?


X		Y	
A.	magnesium	concentrated nitric acid	
B.	magnesium	concentrated sulphuric acid	
C.	magnesium oxide	concentrated sulphuric acid	
D.	magnesium oxide	concentrated pitric sold	

A reaction occurs when water is dropped into the mixture in the set-up below. A colourless gas is given

What is the role of water in this reaction?

- Water reacts with sodium carbonate to give the colourless gas.
- Water reacts with citric acid to give the colourless gas. B.
- C. Water is a medium for the formation of carbonate ions from sodium carbonate.
- D. Water is a medium for the formation of hydrogen ions from citric acid.
- A reaction occurs when water is dropped into the mixture in the set-up below. A colourless gas is given out.

What is the role of water in this reaction?

- Water reacts with sodium carbonate to give the colourless gas.
- B. Water reacts with citric acid to give the colourless gas.
 - Water is a medium for the formation of carbonate ions from sodium carbonate.
- Water is a medium for the formation of hydrogen ions from citric acid.

235

- Which of the following ways is / are acceptable in the storage of the chemical concerned?
 - Store concentrated H2SO4(1) in a copper container.
 - (2) Store concentrated AgNO₃(aq) in a brown glass container.
 - Store concentrated Pb(NO₃)₂(aq) in an iron container. (3)
 - (1) only
 - B. (2) only
 - C (1) and (3) only
 - n (2) and (3) only
- Which of the following steps can be involved in preparing copper(II) chloride crystals?
 - Add CuCO3(s) to HCl(aq).
 - (2) Add Cu(NO1)2(s) to NaCl(aq).
 - (3) Add Cu(s) to HCl(aa).
 - A. (I) only
 - B. (2) only

 - C (1) and (3) only
 - D. (2) and (3) only

DSE2021:

Refer to the information in the table below !

Solution	Contents	
X	50 cm ³ of 0.001M HCl(aq)	3.0
Y	25 cm3 of 0.001M H2SO4(aq)	2.7
Z	50 cm3 of 0.1M CH3COOH(aq)	2.9

- Which of the following statements is correct?

- X has a higher oH than Z because HCl is a stronger acid than CH₂COOH.
- Y has a lower pH than X because the volume of H2SO4(aq) is smaller than that of B.
- Y has a lower pH than X because H2SO4 is a strong dibasic acid but HCl is a strong
- Y has a lower pH than Z because the concentration of H2SO4(aq) is lower than that of
- 15.0 cm³ of 0.20 M Ba(NO₂)₂(aq) is added to 25.0 cm³ of 0.10 M Na₂SO₄(aq). After the reaction is completed, which of the following ions has the highest concentration in the mixture?
 - SO42-(aq)
 - B. NOT(aq)
 - Ba2+(aq) C.
 - Na*(aq) D.
- W, X, Y and Z, each represents one of the following solutions:

NaOH(ao) MgCl2(aq)

Given that:

- Mixing W and X gives a white precipitate.
- Mixing W and Y gives a white precipitate.
- Mixing W and Z gives a clear colourless solution.

What is Z?

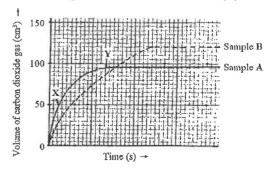
- HCl(aq)
- NaOH(aq)
- C. MgCl2(aq)
- Na₂CO₃(aq)

- 16. A sample of sulphuric acid was completely neutralised by 25.0 cm² of 0.200 M potassium hydroxide solution. The salt solution obtained was then made up to 100.0 cm³ with deionised water. What is the concentration of the resulting salt solution?
 - A. 0.0125 M
 - B. 0.0250 M
 - C. 0.0375 M
- 24. Consider the following statements and choose the best answer

1st statement

2nd statement

Iron(II) hydroxide is a base.


Iron(II) hydroxide is insoluble in water

- A. Both statements are true and the 2nd statement is a correct explanation of the 1st statement.
- B. Both statements are true but the 2nd statement is NOT a correct explanation of the 1st statement.
- C. The 1st statement is false but the 2nd statement is true.
- D. Both statements are false.

Structural Questions

CE90 02b

Two different samples of calcium carbonate (A and B), each weighing 0.8 g and containing inert impurities, were allowed to react with excess hydrochloric acid under same laboratory conditions. The volumes of carbon dioxide gas evolved with time are shown in the graph below:

- (i) Draw a diagram to show how the above experiment can be performed in the laboratory.
- (ii) Explain why the slopes of the curve for sample A is steeper at X than at Y.
- (iii) From the two curves, deduce TWO differences between sample A and sample B.

(7 marks)

CE90 03b

The formula of a weak alkanoic acid can be represented by

C_nH_{2n+1}CO₂H (where n is an integer)

A sample of the alkanoic acid weighing 0.355 g was dissolved in about 20 cm³ of water in a conical flask. The solution was then titrated against a 0.18 M sodium hydroxide solution. A total of 22.40 cm³ of the alkali was required for complete neutralization.

- (i) Explain the meaning if the term 'weak acid'
- (ii) Describe how the end-point in this titration can be determined.
- (iii) Calculate
 - (1) the number of moles of sodium hydroxide used for the titration.
 - (2) the relative molecular mass of the alkanoic acid.

(8 marks)

CE91 02a

A student wished to find out which of the two commercial brands of vinegar, A and B, was the better buy, i.e. of lower price per gram of ethanoic acid (CH1COOF)

The following table listed some of the information about these two brands:

Brand	Price	Volume of vinegar	Concentration of ethanoic acid
A	\$3.00	250 cm ³	50 g dm ⁻³
В	\$6.00	500 cm ³	UNKNOWN

The student carried out a titration experiment to determine the concentration of ethanoic acid in Brand B as follows:

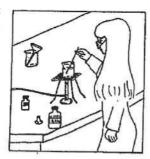
25 cm³ of the vinegar was first diluted to 250 cm³ with distilled water. 25.0 cm³ portions of the diluted solution were then titrated against 0.10 M sodium hydroxide solution. using a sultable indicator, until the end-point was reached.

The following results were obtained:

Titration / Burette reading	1	2	3	4
Final reading (cm ³)	25,50	25.70	26.20	25.90
Initial reading (cm ³)	0.00	1.00	1.30	1.10

- Describe, giving the names of the apparatus used, how 25.0 cm³ of the vinegar should be diluted to 250.0 cm3.
- Suggest a suitable indicator for this titration and state its color change at the end-point.
- Based on the titration results, calculate a reasonable average for the volume of the sodium hydroxide solution used.
- Write the equation for this reaction. (Ionic equation will not be accepted.)
- Calculate the molarity of ethanoic acid in Brand B.
- Show by calculation which brand of vinegar is the better buy. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)

(13 marks)


CE92 01a

A student tried to prepare a sample of a solid salt by reacting copper(II) oxide with sulphuric acid in the laboratory as shown in the diagram on the right,

The student wrote the following procedure of the experiment in her notebook:

- I, Excess copper(II) oxide was added to 50.0 cm3 of 2.0
- M sulphuric acid in a beaker.
- 111. The mixture was heated for 2 minutes, and was stirred
- continuously during this time.

The remaining copper(II) oxide was filtered off. The filtrate was allowed to cool for one day,

the laboratory. Name the salt the student tried to prepare.

Referring to the above diagram, write down TWO aspects that are considered UNSAFE in

- (ii)
 - Calculate the theoretical mass of the salt that can be obtained
- Explain why the student heated the reaction mixture in sten II
- The student followed exactly the procedure written her notebook, but did not obtain any SOLID salt after one day. Suggest an explanation.

(Relative atomic masses: H = 1.0, O = 16.0, S = 32.0, Cu = 63.5)

(8 marks)

CE93 016

Liquid wastes discharged from some factories are acidic and need to be neutralized before discharging into the sea, A certain factory used slaked lime (calcium hydroxide) to neutralize its liquid waste, which consisted of 0.5 M hydrochloric acid, discharging at a rate of 20 dm³ per minute.

- Why are the liquid wastes neutralized before discharging into the sea?
- Write an equation for the reaction between hydrochloric acid and slaked lime.
- Calculate the mass of slaked lime required per minute to neutralize the acid present in the liquid waste.
- Although slaked lime is cheaper, factories nowadays use sodium carbonate instead of slaked lime to neutralize their acidic wastes. Suggest a reason.

(Relative atomic masses: H = 1.0; O = 16.0; Ca = 40.0)

(6 marks)

CE93 04b

To determine the percentage by mass of calcium carbonate in egg shells, a student added 10.0 cm³ of 2 M hydrochloric acid to 0.3 g of egg shells in a container. After 30 minutes, all the egg shells dissolved and 67 cm³ of carbon dioxide were collected at room temperature and pressure.

- Write an equation for the reaction between calcium carbonate and hydrochloric acid.
- The rate of reaction between the egg shells and 2 M hydrochloric acid was slow. Suggest TWO methods to increase the rate of this reaction without using other chemicals, Explain your answer in each case,

(5 marks)

CE94 01

The table below lists some information about three metals X. Y and Z.

Metal	X	Y	Z	
Atomic number	12	20	-	
Action of cold water	No apparent change	A colourless gas slowly evolves	No apparent change	
Action of 0.1 M hydrochloric acid	A colourless gas evolves		No apparent change	

To which group in the Periodic Table does Y belong?

- (b) (i) Write an equation for the reaction between X and 0.1 M hydrochloric acid.

 (An ionic equation will NOT be accepted for this question.)
 - (ii) Draw electronic structures for the TWO products formed in (i) above, showing electrons in the outermost shell ONLY.
- (c) What would be observed when Y is added to 0.1M hydrochloric acid?
- (d) Based on the results of the reaction give in the above table, arrange the three metals in descending order of reactivity. Explain your answer.

(8 marks)

CE94 05a

A domestic drain cleaner named "RAINBOW" contains concentrated sulphuric acid as the active ingredient, A student carried out the following experiment to determine the concentration of sulphuric acid in "RAINBOW".

1.0 cm³ of "RAINBOW" was diluted to 500 cm³ with distilled water, 25.0 cm³ of the diluted solution were measured and transferred to a conical flask. The solution in the flask required 18.2 cm³ of 0.10 M sodium hydroxide solution for complete neutralization.

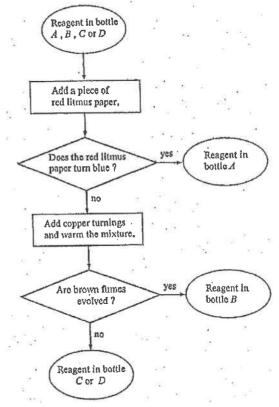
- (i) Name the apparatus used to measure 25.0 cm3 of the diluted solution.
- (ii) Calculate the molarity of sulphuric acid in "RAINBOW".
- (iii) Suggest ONE disadvantage of using "RAINBOW" for cleaning drains.
- (iv) State ONE safety precaution needed when using "RAINBOW". Explain your answer.

(6 marks)

CE95 07

Effervescent Calcium: Ench bottle contains 10 tablets. Each tablet contains: Calcium carbonate 625 mg Vitamin C 1000 mg Citric acid 1350 mg Dosage: 1 tablet daily Administration: Dissolve one tablet in a glass of water. Warning: (1) Keep out of reach of children. (2) Keep

- (i) Effervescence occurs when a tablet of 'Effervescent Calcium' is added to water. Based on the information given on the label, explain why effervescence occurs. Write the ionic equation for the reaction that occurs.
- (iii) On the label, some words are missing in the second warning statement. Complete the second warning statement, beginning with the word 'keep'. Explain your answer.

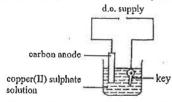

(5 marks)

CE96 06b

A. B. C and D are four unlabeled bottles, each containing one of the following reagents:

2M ammonia solution, 2M ethanoic acid, 2M hydrochloric acid, 2M nitric acid

The following scheme is used to identify the four reagents:



- (i) What is the reagent in bottle A? Explain why this reagent turned red litmus paper blue.
- (iii) (1) Suggest a test to distinguish between the reagents in bottles C and D.(Smelling the reagents is NOT an acceptable answer.)
 - (2) State the observable change in this test and explain your answer.

(5 marks)

CE96 09b

A student carried out a copper-plating experiment in the laboratory using the set-up shown below:

In a copper-plating factory, the waste water is treated with sodium hydroxide solution to remove the copper(II) ions present before discharge.

- Suggest TWO reasons why it is necessary to remove the copper(II) ions from the waste water before discharge.
- (2) 20.0 dm³ of a sample of waste water requires 3.5 dm³ of 8.0M sodium hydroxide solution for complete removal of the copper(II) ions present.

Calculate the concentration, in mol dm⁻³, of copper(II) ions in the sample.

(4 marks)

CE97 03

- (a) Suggest ONE method to determine the pH of an aqueous solution.
- (b) Arrange the following substances in the order of increasing pH and explain your answer. 1M ethanoic acid, 1M hydrochloric acid, 1M sulphuric acid

(4 marks)

CE97_07a

Malachite is a mineral containing copper(II) carbonate and copper(II) hydroxide. It is insoluble in water but reacts with dilute sulphuric acid. The procedures for preparing copper(II) sulphate crystals from malachite is as follows:

Step 1	Pour 50 cm ³ of 2M sulphuric acid in a beaker and then warm the acid.	
Step 2		
Step 3	Remove the remaining powdered malachite from the solution.	
Step 4		

- (i) Write a chemical equation for the reaction which causes the effervescence.
- (ii) Why is it necessary to add powdered malachite until some of it remains in the beaker?
- (iii) Draw a labelled diagram to show how the remaining powdered malachite can be removed from the solution.
- (iv) Calculate the theoretical mass of copper(II) sulphate crystals, CuSO₄ 5H₂O, that can be obtained.

(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, S = 32.1, Cu = 63.5)

(8 marks)

CE98 06a

- (i) A student prepared sodium nitrate solution by reacting 1 M sodium hydroxide solution with dilute nitric acid. The student carried out a titration to determine the amount of dilute nitric acid required to react with a known volume of 1 M sodium hydroxide solution.
 - Write the chemical equation for the reaction.
 (An ionic equation will NOT be accepted for this question.)
 - (2) Draw a labelled diagram for the set-up of the titration.
 - (3) Phenolphthalein can be used to determine the end point of the titration. State the colour change at the end point.
 - (4) Suggest how the student can prepare a sodium nitrate solution using the titration results.
- (ii) Sodium nitrate is a nitrogenous fertilizer.
 - (1) Calculate the percentage by mass of nitrogen in sodium nitrate.
 - (2) Explain why nitrogen is essential for the growth of plants. (Relative atomic masses; N = 14.0, O = 16.0, Na = 23.0)

(9 marks)

CE99 02

For each of the following experiments, state ONE observable change and write a chemical equation for the reaction involved.

(a) Dilute nitric acid is added to magnesium carbonate powder in a beaker.

(2 marks)

CE00 02

The table below lists some information about four elements, W. X. Y and Z:

Element	Atomic number	Relative atomic number	
W	16	32.1	
Х	18	39.9	
Y	19	39.1	
Z	20	40.1	

(a) What is the meaning of the term 'relative atomic mass'?

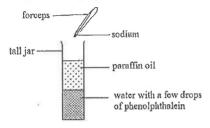
(2 marks)

- (b) State, with explanation, which of the above elements
 - (i) should be stored under paraffin oil.
 - (ii) is used to fill a light bulb.
 - (iii) forms an oxide which dissolves in water to give a solution with pH less than 7.

(6 marks)

CE01 02

For each of the following experiments, state an expected observation and write a chemical equation for the reaction involved.


- (a) Adding dilute hydrochloric acid to zinc granules.
- (b) Adding sodium hydroxide solution to iron(II) sulphate solution.

(4 marks)

CE01 04

A small piece of sodium is added to a tail jar containing two layers of liquids, paraffin oil and water with a few drops of phenolphthalein, as shown in the diagram below. Describe and explain all expected observations.

(Density of sodium = 0.97 g cm⁻³, density of paraffin oil used = 0.82 g cm⁻³)

CE01 06b

In an experiment, 0.933 g of a sample of washing soda (Na₂CO₃·xH₂O) was dissolved in some distilled water. The solution was titrated against 0.258 M hydrochloric acid with methyl orange as indicator, 25.4 cm³ of the acid was required for the completion of the following reaction:

- From the titration result, calculate the number of moles of sodium carbonate in the sample of washing soda.
- (ii) Deduce the value of x in the formula of the washing soda.
- (iii) State the colour change at the end-point of the titration.
- (iv) Briefly describe the procedure that should be followed to prepare a burette containing the hydrochloric acid for the titration.

(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, Na = 23.0)

(9 marks)

(6 marks)

CE02 01c

Both ammonium dihydrogenphosphate and ammonium sulphate are nitrogenous fertilizers.

- (i) Calculate the percentage by mass of nitrogen in ammonium sulphate.
- (ii) The use of ammonium sulphate as a fertilizer adds acidity to the soil. If the soil is too acidic, it is not suitable for plant growth. Suggest ONE substance that is commonly used by farmers to reduce soil acidity. Explain your answer.

(4 marks)

CE02 06a

Magnesium can be extracted from sea water which contains magnesium ions. The extraction of magnesium from sea water involves three stages:

- Stage 1: Add slaked lime to sea water to precipitate magnesium ions as magnesium hydroxide.
- Stage 2: Heat the magnesium hydroxide obtained in a stream of hydrogen chloride gas to give magnesium chloride.

Stage 3: Extract magnesium by electrolysis of the molten magnesium chloride.

- (i) What substance is mainly present in slaked lime?
- (ii) Write a chemical equation, with state symbols, for the reaction in Stage 2.
- ii) Explain why molten magnesium chloride can conduct electricity.

(4 marks)

CE02 07a

Calcite is a mineral which contains mainly calcium carbonate. An experiment, consisting of the following five stages, was conducted to determine the percentage by mass of calcium carbonate in a sample of calcite.

- Stage 1: Weigh the sample. Add dilute nitric acid to it until the acid is in excess.
- Stage 2: Fifter the mixture obtained in Stage 1 to remove any undissolved solid-
- Stage 3: Add excess sodium sulphate solution to the filtrate to precipitate out calcium sulphate.
- Stage 4: Collect the calcium sulphate precipitate and wash it with distilled water.
- Stage 5: Allow the calcium sulphate to dry and weigh it.
- (i) Write a chemical equation for the reaction of calcium carbonate with dilute nitric acid. Suggest how one can know that excess acid has been added in Stage 1.
- (ii) Draw a labelled diagram of the set-up used in the filtration process in Stage 2.
- (iii) Write the ionic equation for the reaction in Stage 3.
- (iv) Explain why it is necessary to wash the precipitate with distilled water in Stage 4.
- (v) The results obtained in the experiment are listed below:

Mass of the calcite sample

Mass of the calcium sulphate obtained = 10.52 g

- (1) Calculate the percentage by mass of calcium carbonate in the sample of calcite.
- State ONE assumption in the calculation.

(Relative atomic masses: C = 12.0, O = 16.0, S = 32.0, Ca = 40.0)

(10 marks)

CE02 07c

Ammonia was once used to detect the leakage of chlorine in chemical plants. If there was a leakage, white fumes would be observed. The word equation below represents the reaction of chlorine with ammonia:

chlorine + ammonia -- ammonium chloride + nitrogen

- Transcribe the word equation into a chemical equation.
- (ii) Suggest what the white fumes might have been.

(3 marks)

CE02 09a

Ammonia is a weak alkali. It is used as an active ingredient in domestic glass cleaners.

- (i) (l) Write a chemical equation to represent the ionization of ammonia in water.
 - (2) Explain why an alkaline solution can help remove oily dirt on glass.
- (ii) Suggest, with explanation, a precaution necessary when using such glass cleaners.

(4 marks)

CE02 09b

In an experiment to determine the concentration of ammonia in a sample of glass cleaner, 25.0 cm³ of the sample was diluted to 250.0 cm³ in a volumetric flask, 25.0 cm³ of the diluted sample was transferred to a conical flask and was then titrated against 0.23 M hydrochloric acid, 28.7 cm³ of the acid was required to reach the end-point.

- State the liquid that should be used to rinse the following pieces of apparatus used in this
 experiment.
 - (1) Volumetric flask.
 - (2) Conical flask.
- (ii) Name the apparatus that should be used to transfer 25.0 cm³ of the diluted sample to the conical flask.
- (iii) Calculate the concentration, in mol dm⁻³, of ammonia in the sample of glass cleaner. (You may assume that ammonia is the only substance in the sample that reacts with hydrochloric acid.)

(6 marks)

CE03 08b

An experiment was carried out to determine the concentration of a nickel(II) sulphate solution. The experiment consisted on the following three stages:

- Stage 1: 25.0 cm³ of 0.503 M sodium hydroxide solution was added to 25.0 cm³ of the nickel(II) sulphate solution to precipitate out nickel(II) hydroxide.
- Stage 2: The mixture obtained in Stage 1 was filtered and the residue was washed thoroughly with distilled water.
- Stage 3: The excess alkali in the filtrate was titrated against 0.251 M hydrochloric acid with methyl orange as indicator. 18.5 cm³ of the acid was required to reach the end-point.
- (i) Write the ionic equation for the reaction in Stage 1.
- (ii) State the colour change at the end-point of the fitration in Stage 3.
- (iii) (1) Based on the titration result in Stage 3, calculate the number of moles of hydroxide ions present in the filtrate.
 - (2) Calculate the number of moles of sodium hydroxide that was added in Stage 1.
- (iv) Why was it necessary to wash the residue thoroughly in Stage 2?

(9 marks)

CE04 02b

For each of the following pairs of substances, suggest a chemical test to distinguish one substance from the other and state the expected observations.

(b) ammonium chloride and potassium chloride,

(2 marks)

CE04 07a

An experiment, consisting of the three stages listed below, was carried out to determine the basicity of a solid acid.

- Stage 1: 1.15 g of a sample of the acid was weighed.
- Stage 2: The sample of acid was dissolved in some distilled water and then made up to 250.0 cm³ with distilled water.
- Stage 3: 25.0 cm³ of the solution obtained in Stage 2 was titrated against 0.100 M sodium hydroxide solution using phenolphthalein as indicator. 25.7 cm³ of the sodium hydroxide solution was required to reach the end point.
- (i) Briefly describe how the 250.0 cm³ solution was made up in Stage 2.
- (ii) State the colour change at the end point of the titration in Stage 3.
- (fii) (1) Calculate the number of moles of sodium hydroxide used in the titration,
 - (2) Given that the molar mass of the solid acid is 90.0 g. Calculate its basicity.

(8 marks)

CE05 03

A student proposed the following methods to accomplish three tasks, (a), (b) and (c). The proposed methods were all considered inappropriate.

- Task: To neutralize acidic soil in a flower hed.
 - Proposed method: Add solid sodium hydroxide to soil.
 - (i) State ONE reason why the method is inappropriate.
 - Suggest an appropriate method to accomplish the task

(2 marks)

- b) Task: To prepare hydrogen gas from an acid.
 - Proposed method: Add copper to dilute hydrochloric acid.
 - (i) State ONE reason why the method is inappropriate.
 - (ii) Suggest an appropriate method to accomplish the task

(2 marks)

Task: To dilute concentrated sulphuric acid with water.

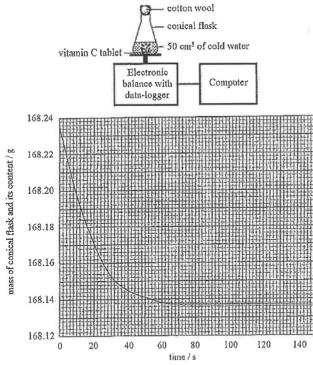
Proposed method: Add water to concentrated sulphuric acid and stir the mixture.

- (i) State ONE reason why the method is inappropriate.
- (ii) Suggest an appropriate method to accomplish the task

(2 marks)

CE05 10

The information below was found on the label of a brand of effervescent vitamin C tablets:


Each tablet contains 1000 mg of vitamin C.

Other ingredients: sodium hydrogencarbonate, citric acid, sugar and colourant

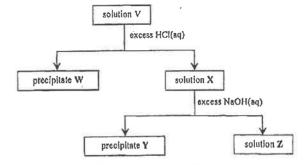
(a) With the help of a chemical equation, explain why effervescence occurs when a tablet of the effervescent vitamin C is added to water.

(2 marks)

(b) An experiment was carried out to study the action of water on a tablet of the effervescent vitamin C using the set-up as shown below. The graph shows the results obtained in the experiment.

- (i) Find, from the graph, the mass of gas liberated from the reaction of the tablet with water. (You may assume that the gas liberated is NOT soluble in water.)
- At the end of the experiment, the sodium hydrogenearbonate in the tablet had been completely used up. Calculate the mass of sodium hydrogenearbonate present in the tablet.

- (iii) Suggest ONE advantage of using a data-logger in this experiment.
- (iv) The experiment was repeated using warm water instead of cold water. Sketch, on the same graph, the results that would be obtained in the repeated experiment.


(6 marks)

CE06 04

An aqueous solution V is known to contain the following four cations:

$$NH_4^+(aq)$$
, $K^+(aq)$, $Fe^{3+}(aq)$ and $Ag^+(aq)$

The flow diagram below outlines a series of tests that can be used to detect the presence of two of the above cations in V:

(a) Write an ionic equation, with state symbols, for the formation of W from V.

(1 mark)

(b) Suggest an experimental method that can be used to separate X from W.

(1 mark)

(c) Name Y.

(1 mark)

(d) Z still contains two of the above-mentioned cations. Is it possible to show experimentally the presence of each of these cations in Z? Explain your answer.

(2 marks)

e) Based on the above information, suggest a colour for V.

(I mark)

CE06 09

'Soda ash' is crude sodium carbonate (Na₂CO₃) commonly used in treating fresh water in water treatment plants. The following experiment was carried out to determine the percentage by mass of sodium carbonate in a sample of soda ash:

2.00 g of the sample was dissolved in distilled water, and the solution was diluted and made up to 250.0 cm³. Four portions of the diluted solution of volume 25.0 cm³ each were titrated against 0.18M hydrochloric acid using methyl orange as indicator. The table below lists the titration results obtained:

Titration Burette reading	I	2	3	4
Final reading /cm ³	21.00	21.10	25.20	25.20
Initial reading /cm3	0.00	1.00	5.30	5,20

(a) A 25.0 cm³ portion of the above diluted solution was transferred to a clean conical flask. Briefly describe how the titration of this portion of the diluted solution should be carried out.
(3 marks)

- (b) Based on the titration results, calculate
 - (i) a reasonable average for the volume of the hydrochloric acid used, and
 - the percentage by mass of sodium carbonate in the sample.
 (You may assume that the sample does NOT contain any impurity that reacts with hydrochloric acid.)

(5 marks)

(c) Suggest another method for detecting the titration end point without the use of any acid-base indicator.

(1 mark)

(d) Why is soda ash used for treating fresh water? Briefly describe the chemistry involved.

(2 marks)

CE07 05

A solid sample contains zinc and copper only. The composition of the solid sample was analyzed experimentally as outlined below:

2.00 g of the solid sample was added to excess dilute hydrochloric acid in a beaker. Upon completion of reaction, the mixture inside the beaker was filtered. The residue obtained was first washed with distilled water, and then dried. The mass of the dried residue was 1.75 g.

(a) Write a chemical equation for the reaction involved.

(1 mark)

(b) How can one know that the reaction has been completed?

(1 mark)

(c) Explain why it is necessary to wash the residue obtained.

(I mark)

249

- f) Explain why it is NOT appropriate to dry the residue with a Bunsen flame after washing.
 - (1 mark)
- (e) Assuming negligible experimental errors, calculate the percentage of zinc by mass in the solid sample.

(2 marks)

CE07 10

In an experiment to determine the concentration of phosphoric acid (H₃PO₄), 10.0 cm³ of the acid was first diluted to 250.0 cm³ with distilled water. 25.0 cm³ of the diluted solution was then transferred to a conical flask and titrated with a 0.025 M sodium hydroxide solution using phenolphthalein as indicator. 17.60 cm³ of sodium hydroxide solution was needed to reach the end point

(a) Describe briefly how 10.0cm³ of phosphoric acid can be diluted to 250.0 cm³ with distilled water in the laboratory.

(2 marks)

(b) Phosphoric acid reacts with sodium hydroxide in the titration according to the following equation:

Calculate the molarity of the original phosphoric acid before dilution.

(3 marks)

(c) 'At the beginning of titration, the solution in the conical flask turned pink upon the addition of sodium hydroxide solution but became colourless immediately upon swirly. However, near the end point, the solution took longer time to become colourless upon swirline.'

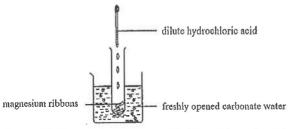
Explain why the time needed for the solution to become colourless is different at the two stages mentioned above.

(2 marks)

- (d) In the titration, the 0.025 M sodium hydroxide solution was used as a standard solution.
 - (i) What does the term 'standard solution' mean?
 - Comment whether it is appropriate to prepare a standard solution of sodium hydroxide by the following procedure;

"Weigh a sample of solid sodium hydroxide, dissolve it some distilled water and make up to a known volume of solution,"

(2 marks)


250

CE08 04

A test tube with magnesium ribbons is immersed in a beaker of freshly opened carbonated water.

Dilute hydrochloric acid is then added to the magnesium ribbon as shown in the following diagram.

a) State the expected observation inside the test tube, and give a relevant chemical equation.

(2 marks)

(b) When dilute hydrochloric acid is added to the magnesium ribbons, more gas bubbles are seen in the carbonated water outside the test tube. Explain.

(2marks)

CE08 11

Copper(II) sulphate crystals (CuSO4 • 5H2O) can be prepared in a laboratory by the following steps.

- Step 1: Add excess copper(II) oxide to dilute sulphuric acid and warm the mixture.
- Step 2: Remove the remaining copper(II) oxide from the solution obtained.
- Step 3: Evaporate the solution until it becomes saturated.
- Step 4: Allow the saturated solution to cool down to obtain copper(II) sulphate crystals.
- Step 5: Separate the crystals from the saturated solution.
- Step 6: Dry the crystals obtained.
- (a) (i) For Step 1,
 - (1) write a chemical equation for the reaction involved, and
 - (2) explain why copper(II) oxide should be added in excess.
 - (ii) For Step 2, suggest how to remove the remaining copper(II) oxide.
 - (iii) For Step 4, explain why crystals would be obtained when the saturated solution is allowed to cool down.
 - (iv) For Step 6,
 - (1) explain why the crystals obtained should not be dried by heating, and
 - (2) suggest an appropriate method to dry the crystals.

(6 marks)

- (b) A student finally obtained 16.2g dry copper(II) sulphate crystals through the above steps by reacting 150cm³ of 1.0M sulphuric acid with excess copper(II) oxide.
 - Calculate the number of moles of copper(II) sulphate in the solution obtained in Step 1.
 - (ii) Calculate the number of moles of copper(II) sulphate crystals finally obtained.

(iii) Assuming the student dried the crystals in Step 6 by an appropriate method, comment on whether there should be any difference between the answers obtained in (i) and (ii) above.

(3 marks)

CE08 13

For question 13, candidates are required to give answers in paragraph form. For this question, 6 marks will be awarded for chemical knowledge and 3 marks for effective communication.

With reference to the properties of 1M H₂SO₄ and 1M HNO₃, suggest THREE methods based on different chemical principles to distinguish these two acids.

(You can use any common chemicals available in a school laboratory, Both the processes and the observations involved are required in your answers.)

(9 marks)

CE09 01

Limestone is an important earth resource.

a) What is the major chemical constituent in limestone?

(1 mark)

(b) State the expected observation when dilute hydrochloric acid is added to limestone, and write the ionic equation for the reaction involved.

(2 marks)

- (c) Limestone can be decomposed under strong heating.
 - (i) Write a chemical equation for the reaction involved.
 - (ii) Explain why limestone can be used as fire-proofing additive.

(2 marks)

CE09 07

Describe briefly how you would accomplish the following tasks in a school laboratory.

(a) Obtain calcium sulphate from a solid mixture of calcium sulphate and calcium nitrate.

(2 marks)

b) Distinguish potassium bromide solution from potassium chloride solution.

(2 marks)

CE09 11

A drug tablet contains aluminium hydroxide, Al(OH)3, as the only active ingredient. A student performed the following experiment to determine the amount of aluminium hydroxide contained in the drug tablet.

Step	Experimental process	Remarks
I	A drug tablet was dissolved in 50.0 cm ³ of 1.0 M hydrochloric acid to form a solution.	As aluminium hydroxide is insoluble in water, the drug tablet was dissolved in hydrochloric acid instead. The amount of hydrochloric acid used was more than needed to react with aluminium hydroxide in the drug tablet.
11	The solution was then diluted to 250,0 cm ³ with distilled water.	The solution, containing excess hydrochloric acid, was diluted for the titration in Step III.
111	25.0 cm ³ of the diluted solution was titrated with 0.20M sodium hydroxide solution using a suitable indicator. 20.80 cm ³ of sodium hydroxide solution was needed to reach the end point.	The amount of excess hydrochloric acid in the diluted solution could be calculated from the data obtained in the titration.

(a) Write a chemical equation for the reaction involved in Step I.

(1 mark)

- (b) Describe how the dilution process in Step II should be performed by using suitable apparatus.
 (3) marks)
- (c) Suggest a suitable indicator for the titration in Step III, and state the expected colour change at the end point.

(2 marks)

- (d) (i) Calculate the number of moles of excess hydrochloric acid in the 25.0 cm³ of the diluted solution from the data obtained in the titration.
 - (ii) Hence, calculate the number of moles of aluminium hydroxide in the drug tablet.

(3 marks)

CE10 02

Two experiments are performed using ammonium dichromate, (NH₄)₂Cr₂O₇,

- (a) Solid ammonium dichromate is dissolved in water to form a solution.
 - State the expected colour of the solution and suggest which ion leads to this colour.
 - Suggest a chemical test to show that the solution contains ammonium ions. State the expected observation.

(3 marks)

- (b) Solid ammonium dichromate is heated in a test tube. It decomposes into solid chromium(III) oxide, nitrogen gas and water vapour.
 - (i) Write a chemical equation for the decomposition of ammonium dichromate.
 - Suggest a chemical test to show that water vapour is formed in the decomposition.
 State the expected observation.

(3 marks)

253

CE10 06

In an experiment, carbon dioxide is passed into limewater until excess.

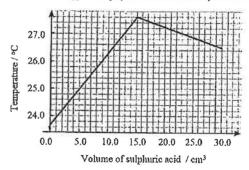
(a) State the expected observations and write the chemical equations for the reactions involved.

(3 marks)

(b) Explain whether the similar observations in (a) would be made if sodium hydroxide solution is used instead of limewater.

(I mark)

(e) Explain whether the similar observations in (a) would be made if air is used instead of carbon dioxide.


(1 mark)

(d) Carbon dioxide can be obtained from the reaction of solid sodium carbonate with dilute hydrochloric acid. Write an ionic equation for the reaction.

(1 mark)

CE10 10

In an experiment, 25.00 cm³ of sodium hydroxide solution is transferred to an expanded polystyrene cup. 0.50 M sulphuric acid is then added to the solution from a burette, and the temperature of the mixture is measured with a data-logger. The graph below shows the experimental results:

(a) Name the apparatus that should be used to transfer 25.00 cm³ of sodium hydroxide solution to the expanded polystyrene cup.

(1 mark)

Outline the procedure for cleaning the burette before experiment.

(2 marks)

(c) Write an ionic equation for the reaction involved.

(1 mark)

(d) With reference to the above graph, explain the temperature change of the mixture throughout the experiment.

(3 marks)

(e) Calculate the molarity of the sodium hydroxide solution used.

(2 marks)

254

CE10 13

For question 13, candidates are required to give answers in paragraph form. For this question, 6 marks will be awarded for chemical knowledge and 3 marks for effective communication.

Using some suitable examples, discuss the factors that affect pH of acids.

(9 marks)

CE11 01b

Sall X is known to be one of the following substance:

lead(II) nitrate, sodium sulphate, zinc sulphate, sodium nitrate X gives a golden yellow flame in flame test. When a solution of X is mixed with calcium chloride solution, a white precipitate is formed. Deduce what X is.

(3 marks)

CE11 09

An experiment was performed to determine the concentration of an ammonia solution. Firstly, 25.0 cm³ of 2.0 M hydrochloric acid was diluted with distilled water to 250.0 cm³. After that, 25.0 cm³ of the diluted hydrochloric acid was titrated with the ammonia solution using methyl orange as the indicator, 22.90 cm³ of the ammonia solution was required to reach the end point.

(a) Name one piece of the glass apparatus that must be used in the dilution process.

(1 mark)

(b) Calculate the concentration of the diluted hydrochloric acid.

(1 mark)

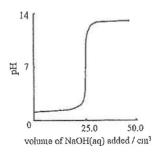
(c) Draw a labelled diagram to show the set-up used in the titration.

(3 marks)

(d) State the expected colour change at the end point.

(I mark)

(e) Write a chemical equation for the reaction involved.


(1 mark)

(f) Calculate the concentration of the ammonia solution.

(2 marks)

AL99(I) 04

The graph below shows the variation of pH when 25.0 cm³ of 0.10 M HCl (aq) is titrated against 0.10 M NaOH(aq).

(a) On the above graph, sketch a curve to represent the variation of pH when 0.10 M CH₃COOH(aq) is titrated against 0.10 M NaOH(aq).

(0.5 mark)

(b) From the table below, choose an appropriate indicator for the titration in (a). Explain your choice.

Indicator	pH range of colour change
bromocresol green	2.8 - 5.4
bromothymol blue	6.0 – 7.6
thymolphthalein	8.3 - 10.6

(1.5 mark)

AL99(I) 04

Constant boiling hydrochloric acid contains 20.2 % by mass of HCl. Calculate the mass of constant boiling hydrochloric acid required to prepare 1.00 dm³ of HCl (aq) of pH 2.0 at 298 K.

(3 marks)

AL00(I) 02

Calculate the pH at 298 K of a solution prepared by mixing equal volumes of 0.105 M NaOH(aq) and 0.095 M HCl(aq).

(2 marks)

AL00(II) 02

A sample of nitric(V) acid contains 68.0% of HNO₃ by mass and has a density of 1.42 g cm⁻³. Calculate the concentration, in mol dm⁻³, of HNO₃ in the sample.

(2 marks)

ASL00(II) 11

Suggest a chemical test to distinguish one solution from the other in each of the following pairs. Equations should be given where appropriate.

Mg(NO₃)₂(aq) and Al(NO₃)₃(aq)

(4 marks)

ASL00(II) 12

Some toothpastes contain baking soda (NaHCO3) as an active ingredient. Explain why baking soda can help prevent tooth decay.

(3 marks)

AL01(1)_07

Office paper contains calcium carbonate (up to 50%) as an additive to enhance its brightness, whiteness and opacity. Devise an experiment to estimate the percentage by mass of calcium carbonate in a sample of office paper.

(4 marks)

AL01(I)_07

Suggest how you would prepare a sample of dry hydrogen chloride gas in a school laboratory. Draw a labeled diagram of the set-up of apparatus used in the preparation.

(4 marks)

AL01(II) 04 (modified)

Comment on the statement: 'The acids HCl, HBr and Hl are of comparable strength.'

(I mark)

AL03(I) 01 (modified)

Phosphoric acid, H₃PO₄(aq), a weak acid, ionizes in three stages to give H₂PO₄⁻(aq), HPO₄²-(aq) and PO₄¹-(aq).

(a) Write an chemical equations to show the stepwise formation of H₂PO₄⁻(aq), HPO₄²-(aq) and PO₄³-(aq).

(2 marks)

(b) Explain why the ability of phosphoric acid to dissociate H⁺(aq) in each step progressively decreases.

(1 mark)

(c) Sketch the expected pH titration curve when H₃PO₄(aq) is titrated with NaOH(aq).

(3 marks)

AL04(1) 07

A student proposed a method to determine the concentration of citric acid in a sample of lemon juice by titration with standard sodium hydroxide solution. The method proposed consists of the following experimental procedures:

- Prepare a standard sodium hydroxide solution by dissolving a known mass of sodium hydroxide pellets in deionized water and then make it up to 250.0 cm³.
- 2. Transfer a known volume of the sample of lemon juice to a clean conical flask.
- Fill a burette, which has been well rinsed with deionized water beforehand, with the standard sodium hydroxide solution.
- Titrate the lemon juice in the flask with the sodium hydroxide solution using methyl orange as the indicator.
- 5. Using this titration result, calculate the concentrate of citric acid in the sample.

Point out four inappropriate practices in the method. Explain why they are inappropriate and suggest corrections for them.

(6 marks)

ASL04(II) 11

A student was asked to suggest possible ways to distinguish concentrated HCl, concentrated H_2SO_4 , and concentrated H_3PO_4 from one another,

The student suggested that concentrated HCl can be distinguished from the other acids by observing what would happen when stoppers of reagent bottles containing the acids are removed.

 State and explain the expected observation when the stopper of a reagent bottle containing concentrated HCl is removed.

(2 marks)

(b) Suggest a chemical test to confirm the identity of concentrated HCl.

(2 marks)

AL05(I)_08

The photograph below shows a person conducting a test in a laboratory to detect the presence of ammonium ions in a solid sample. He is holding a test tube containing a hot mixture of the sample and sodium hydroxide solution, and is trying to smell.

State three inappropriate laboratory practices of the person and suggest the proper actions that should be taken.

(3 marks)

258

AL05(II) 01

X is a trivalent metal. When treated with hydrochloric acid, X(s) gives hydrogen, while its oxide $X_2O_1(s)$ undergoes neutralization.

 (a) Write the chemical equation for the reaction of X(s) with HCl(aq) and that of X₂O₃(s) with HCl(aq).

(2 marks)

(b) 16.5 g of a mixture of X(s) and X₂O₃(s) is allowed to react with 6.0 M HCl(aq). 95.4 cm³ of the acid is required for both the metal and its oxide to undergo complete reaction. Deduce respectively the greatest possible value and the smallest possible value of the relative atomic mass of X.

(4 marks)

(c) With reference to the Periodic Table, deduce what X may be.

(I marks)

AL05(ID 04

Aluminium hydroxide is an active ingredient of antacid. Two paths for the production of aluminium hydroxide using Al(s), H₂SO₄(aq) and NaOH(aq) as reactants are outlined below:

Paths I: Al(s)
$$\longrightarrow$$
 Al₂(SO₄)₃(aq) \longrightarrow Al(OH)₃(s)
Paths II: Al(s) \longrightarrow Na[Al(OH)₄](aq) \longrightarrow Al(OH)₅(s)

(a) Use chemical equations to describe the reactions in Path I and in Path II.

(4 marks)

(b) Work out the number of moles of H₂SO₄ and NaOH required for producing 2 mol of Al(OH)₃ via Path I and via Path II.

(1 mark)

(c) Suggest, with explanation, whether Path I or Path II is recommended for the production of aluminium hydroxide.

(2 marks)

AL06(I) 02

Hard water contains Mg2+(aq) and Ca2+(aq) ions.

(a) Name a mineral that provides Ca2+(aq) ions in hard water.

(1 mark)

(b) An experiment as described below was carried out to determine the total hardness in a sample of hard water.

"50.0 cm³ of the sample was allowed to pass through an ion-exchange column, in which the metal ions present in the sample were totally exchanged by hydrogen ions. The eluent collected required 15.0 cm³ of 0.020 mol dm⁻³ KOH(aq) for complete neutralization."

Assuming that the metal ions present in the sample are Mg²⁺(aq) and Ca²⁺(aq) only, calculate the total hardness, in mol dm⁻³, of the sample.

(2 marks)

ASL06(I) 03

Explain whether you agree with each of the following statements.

A is a stronger acid than B, so the pH of an aqueous solution of A must be lower than that of B.

(2 marks)

ASL07(I) 03

A brand of sugar-free chewing gum contains urea, CO(NH2)2, as an additive.

(a) Urea reacts with H⁺(aq) to give ammonium ions and carbon dioxide. Write the chemical equation for this reaction.

(I mark

(b) Each piece of the chewing gum contains 1.5 mg of urea. Calculate the number of moles of H⁺(aq) that can be neutralized by chewing 2 pieces of the gum.

(2 marks)

(c) Tooth enamel consists mainly of hydroxyapatite, Cas(PO4)3OH, which undergoes continuous mineralization and demineralization according to the following equation:

$$Ca_5(PO_4)_3OH(s)$$
 demineralization $Ca_5(PO_4)_3OH(s)$ $OH^-(aq)$ $OH^-(aq)$

With reference to the above information, suggest why the manufacturer of this brand of sugarfree chewing gum claimed that chewing such gums after meals can help prevent tooth decay.

(2. marks)

ASL07(I) 07

(a) What is meant by 'primary standard' in the titrimetric analysis?

(1 mark)

(b) Give one reason why each of the following chemicals is not used as a primary standard.

(i) Liquid bromine

(1 mark)

(ii) Potassium hydroxide pellets

(1 mark)

ASL07(I) 09

Outline the experimental procedure and data treatment that you would use to determine the solubility of KCl(s) in water at 298 K.

(5 marks)

AT 07(II) OF

Outline how 1.0×10^{-2} mol dm⁻³ AgNO₃(aq) can be prepared from 1.0×10^{-1} mol dm⁻³ AgNO₃(aq). (2 marks)

ASL08(I) 08

Outline how you would prepare a sample of dry CuSO4*5H2O crystals from copper turning in a laboratory.

(3 marks)

AL09(D 07c

Explain why water should NOT be added to concentrated H2SO4 in order to dilute the acid.

(1 mark)

ASL09(II) 03

In an experiment to determine the relative atomic mass of magnesium, 0.420 g of magnesium ribbon was added to 25.0 cm3 of 0.955 mol dm-3 H2SO4(aq). When effervescence ceased, the resulting mixture was diluted to 250.0 cm³ with deionized water. 25.0 cm³ portions of the diluted solution were withdrawn and titrated against 0.0941 dm⁻³ NaOH(aq) using methyl orange as indicator. The mean titre was 16.48 cm3

State the color change at the end point of the titration.

(I mark)

Based on the titration results, calculate the relative atomic mass of magnesium.

(4 marks)

(c) Assuming that the experimental error is negligible, suggest ONE reason why the relative atomic mass of magnesium calculated in (b) is different from that found in the Periodic Table. (I mark)

ASL10(1) 09 [Similar to DSE17 011

The diagram on the right shows the set-up of a titrimetric experiment involving the following reaction:

What physical parameter of the reaction mixture is measured by this set-up?

(1 mark)

(b) H2SO4(aq) is added gradually to Ba(OH)2(aq) until in excess. Sketch a graph to show the variation of measured physical parameter with the volume of H2SO4(aq) added, Explain your answer.

(2 marks)

261

ALIO(1) 07

The hardness of a water sample is due to Ca2+(aq) ions, Outline a method for determining the hardness in mol dm⁻³ in the sample by using volumetric titrimetric method.

Hint: Ca2+(aq) in water sample can be replaced by H+(aq) using proton-exchange resin column

$$Ca^{2+}$$
 (in sample) + $2H^{+}$ (from resin) \longrightarrow Ca^{2+} (on resin) + $2H^{+}$ (in sample) (3 marks)

AL11(1) 07

- (b) For each of the following pairs of species, suggest a chemical test to distinguish between them and write the chemical equation(s) of the reaction(s) involved.
 - (i) $Ba^{2+}(aq)$ and $Pb^{2+}(aq)$

(2 marks)

(ii) Cl-(aq) and Br-(aq)

(2 marks)

ALIIII 06

State the expected observation(s) in each of the following experiments, and write the chemical equation(s) of the reaction(s) involved.

NaOH(aq) is added dropwise to Al(NO₃)₃(aq) until in excess.

(3 marks)

ASL13(I) 09a (modified)

In an experiment to prepare cyclohexanone from cyclohexanol, a household bleach, containing 5.25% of sodium chlorate(I) by mass, was used as the oxidizing agent

Density:

 0.948 g cm^{-3}

Solubility in water: 3.6 g / 100 cm³

Molting point: Boiling point: 25 °C 160°C -16 °C 156°C

 0.947 g cm^{-3}

Very slightly soluble

5.0 cm³ of cyclohexanol and 3 cm³ of ethanoic acid were placed in a 250 cm³ conical flask. A 25 cm3 portion of the household bleach was added to the conical flask with vigorous stirring. Then additional 25 cm3 portions of bleach were successively added into the reaction mixture until all cyclohexanol had reacted.

Assuming that the density of the household bleach is 1.0 g cm⁻³, calculate the molarity of NaClO in the bleach used. (Formula mass of NaClO = 74.5)

(1 mark)

Given that the mole ratio between cyclohexanol and NaClO is 1:1, calculate the minimum number of 25 cm³ portions of household bleach required for the complete reaction of cyclohexanol, (Relative molecular mass of cyclohexanol = 100,0)

(2 marks)

262

DSEIISP 01

State whether each of the following statements is true or false. Explain your answer in each case.

When concentrated sulphuric acid is diluted, water should be added slowly to the acid. (2 marks)

A is a stronger acid than B, so that pH of an aqueous solution of A must be lower than that (c) of B.

(2 marks)

DSELLSP 08

For each of the following experiments, state an expected observation and write a chemical equation for the reaction involved.

adding dilute hydrochloric acid to zinc granules

(2 marks)

adding sodium hydroxide solution to iron(II) sulphate solution

(2 marks)

DSEIISP 09

There are four unlabelled reagent bottles each containing one of the white solids listed below: ammonium chloride, ammonium nitrate, sodium hypochlorite and sodium sulphate Suggest how you would carry out tests to distinguish the four solids from one another.

(6 marks + 1 mark)

DSE12PP 01

An experiment on the preparation of hydrated zinc sulphate involves the following steps:

Step 1: Warm 30 cm3 of dilute sulphuric acid in a beaker. Add zinc oxide to the acid until in excess.

Step 2: Filter the reaction mixture and collect the filtrate.

Step 3: Heat the filtrate until it becomes saturated. Then allow it to cool to room temperature to crystallize out hydrated zinc sulphate.

Step 4: Filter off the crystals formed, and then wash them with a little amount of cold distilled water.

Step 5: Dry the crystals.

- For Step 1,
 - write the chemical equation for the reaction that occurs,

(I mark)

suggest how one can know that zinc oxide is in excess, and (ii)

(I mark)

explain why zinc oxide rather than sulphuric acid is used in excess.

(1 mark)

Suggest ONE way to show that a saturated solution has been obtained in Step 3.

(1 mark)

Explain why a little amount of cold distilled water is used to wash the crystals in Step 4. (2 marks)

Suggest ONE way of drying the crystals in Step 5.

(1 mark)

Suggest ONE chemical that can be used to replace zinc oxide in this experiment

(I mark)

DSE12PP 04

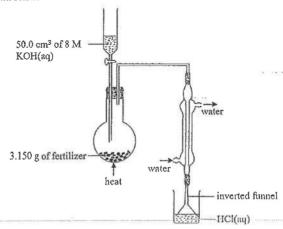
A student was given a sample of a water-soluble metal carbonate, M2CO3(s). In order to deduce what M was, the student prepared a 100.0 cm³ aqueous solution of the carbonate using 1.14 g of the sample. The student then withdrew several 10.0 cm³ portions of the solution, and titrated each portion with 0.085 mol dm⁻³ HCf(aq) using methyl orange as indicator. The mean titre was 25.30 cm3.

Describe how the 100.0 cm3 aqueous solution was prepared. (a)

(3 marks)

Based on the experimental results, determine the formula mass of M2CO3 and deduce what M is.

(3 marks)


DSE12 06

Outline the steps in preparing solid lead(II) sulphate from solid lead(II) nitrate. You have to state the additional chemical reagents that are required, but need NOT mention the apparatus involved.

(4 marks)

DSE12 07

A fertilizer only contains ammonium nitrate (NH4NO3) and potassium chloride (KCl). An experiment was performed to determine the percentage by mass of NH4NO3 in this fertilizer. The set-up is shown below:

The KOH(aq) was added slowly to the fertilizer and the mixture formed was heated gently. The ammonia liberated from the reaction between NH₄NO₃ and KOH was first cooled in a condenser, and then passed through an inverted funnel to a solution containing 0.0485 mol of HCl. The solution was finally made up to 100.00 cm³ and labelled as 'S'.

(a) Write an ionic equation for the reaction between NH4NO3 and KOH.

(1 mark)

(b) Suggest the potential hazard of one of the chemicals used.

(I mark)

(c) Given that ammonia is very soluble in water, state the advantage of using an inverted funnel.

(1 mark)

(d) 25.00 cm³ of 'S' was transferred to a conical flask, and then titrated with 0.100 M NaOH(aq) using methyl orange as an indicator. 41.00 cm³ of the NaOH(aq) was required to reach the end point.

Name the apparatus that should be used to transfer 25.00 cm³ of 'S'.

(1 mark)

(ii) State the color change at the end point of the titration.

(1 mark)

(iii) Calculate the percentage by mass of NH4NO3 in this fertilizer.

(3 marks)

(e) Suggest a test to show the presence of a potassium-containing compound in the fertilizer.

(I mark)

DSE13 04

The structure of a dibasic acid with chemical formula H2C2O4 is shown below:

(b) A student expected a 0.0500 mol dm⁻³ standard H₂C₂O₄(aq) to have a pH of 1.0, however, the pH of the solution, when measured with a calibrated pH meter, was found to be greater than 1. Explain this observation with the aid of a chemical equation.

(2 marks)

(c) Solid sodium hydroxide is available in school laboratories. However, a standard NaOH(aq) CANNOT be directly prepared by weighing NaOH(s) and then dissolving it in water. Explain why.

(1 mark)

- (d) In a titration experiment, 25.00 cm³ of a 0.0500 mol dm⁻³ standard H₂C₂O₄(aq) and a few drops of phenolphthalein indicator were placed in a conical flask. NaOH(aq) of unknown concentration was then added from a burette into the flask. 17.20 cm³ of the NaOH(aq) was required to reach the titration end point.
 - (i) State the color change at the titration end point.

(1 mark)

(ii) From the titration results, calculate the concentration of the NaOH(aq), in mol dm⁻³.

(2 marks)

- (e) The following were considered as INAPPROPRIATE practices when carrying out the experiment in (d). For each of them, explain why it would lead to inaccurate titration results:
 - Rinsing the conical flask with the standard H₂C₂O₄(aq) before transferring 25.00 cm³ of the acid solution to it.

(I mark)

(ii) Carrying out the titration with the filter funnel remained on top of the burette after using it to fill the burette with the NaOH(aq).

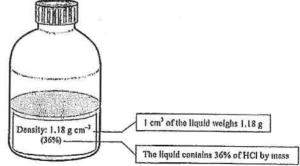
(I mark)

DSE14 05

Concentrated acids are common reagents found in laboratories.

(a) State a safety measure in handing concentrated acids in laboratories.

(1 mark)


(b) Comment on the following statement:

'All concentrated acids are strong acids.'

(I mark)

DSE14 07

A bottle of concentrated hydrochloric acid HCl(aq) is shown below:

 (a) According to the information on the label, calculate the concentration of the concentrated hydrochloric acid in mol dm⁻³.

(2 marks)

- To find out the concentration of the concentrated acid, a laboratory technician first drew from the bottle a sample of 10.00 cm³ of the concentrated acid and diluted it to 100.0 cm³ in a volumetric flask. The diluted acid sample was then used to titrate a standard sodium carbonate solution placed in a conical flask using methyl orange as an indicator. 10.00 cm³ of 1.06 mol dm⁻³ sodium carbonate solution required 20.30 cm³ of the diluted acid sample to reach the end point.
 - (i) Briefly describe the procedure in preparing a standard sodium carbonate solution.

(2 marks)

266

(ii) Using the titration result, calculate the concentration, in mol dm⁻³, of the concentrated hydrochloric acid in the bottle.

(3 marks)

(c) Suggest a possible reason why the concentration of the concentrated hydrochloric acid in the bottle obtained from (b)(ii) would be smaller than that obtained from (a) above.

(1 mark)

DSE14 09

Consider each of the experiments below and answer the questions that follow.

- (a) Dilute sodium hydroxide solution is added to copper(II) sulphate solution.
 - (i) State the expected observation.

(1 mark)

(ii) Write the chemical equation for the reaction that occurs.

(1 mark)

DSE15 02

For each of the following experiments, state the expected observation, and write the chemical equation(s) for the reaction(s) involved.

(a) Passing carbon dioxide gas into limewater until in excess.

(3 marks)

DSE15 04

Lead-acid accumulator is a secondary cell containing sulphuric acid. It is commonly used in starting up motor vehicle engines.

(c) State one environmental impact that would be imposed from the disposal of lead-acid accumulators.

(1 mark)

- (d) A student diluted a sample of concentrated sulphuric acid for making a lead-acid
 - Describe how concentrated sulphuric acid can be diluted in a laboratory. State a safety precaution needed during the dilution process.

(3 marks)

(ii) 5.00 cm³ of solution in the lead-acid accumulator made contains 2.48 g of sulphuric acid. Calculate the molarity of the sulphuric acid in the solution.

(Molar mass of sulphuric acid = 98.1 g)

(2 marks)

DSE15 05

Explain, with the aid of a chemical equation, why NH₃(aq) is regarded as a weak alkali. Suggest how you would show that NH₃(g) is a weaker alkali than NaOH(aq) through an experiment.

(5 mark + 1 mark)

DSE16 06

Citric acid is a tribasic acid found in lemon. It is a white solid and soluble in water.

 In the structure of citric acid shown below, circle ALL ionizable hydrogen atom(s) making it a tribasic acid.

(1 mark)

(b) A solid sample contained citric acid and other soluble inert substances. 1.65 g of the sample was dissolved in deionized water and diluted to 250.0 cm³ in apparatus X. After that, 25.00 cm³ of the diluted solution was withdrawn and titrated with 0.123 M NaOH(aq) using phenolphthalein as an indicator. 18.45 cm³ of the NaOH(aq) was required to reach the end point.

(Molar mass of citric acid = 192.0 g)

(i) What is apparatus X?

(1 mark)

ii) Calculate the percentage by mass of citric acid in the solid sample.

(3 marks)

(c) A few drops of lemon juice are added to sodium hydrogenearboante powder.

(i) State the expected observation.

(I mark)

Write the ionic equation for the reaction involved.

(1 mark)

DSE16 09

Three unlabeled reagent bottles each contains one of the white solids listed below:

ZnSO₄

MgSO₄

MgSO4 · 7H2O

Outline how you would carry out tests to distinguish these three solids.

(5 mark + 1 mark)

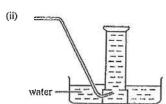
DSE16 11

Under certain conditions, a pink compound X react with NaOH(aq) to give a colorless product. Three trials of an experiment were conducted to study the kinetics of the reaction. Firstly, three NaOH(aq) solutions were prepared by mixing different volume of 2.0 M NaOH(aq) and H₂O(l) at 25 °C. after that, one drop of X was added top each of the them and the time needed for the pink color to disappear was recorded. The relevant data is shown below:

	Volume of	Volume of	Time needed for the
	2.0 M NaOH(aq) used / cm3	H ₂ O(1) used / cm ³	pink color to disappear / :
Trial 1	5.0	0	61
Trial 2	4.0	1.0	76
Trial 3	3.0	2.0	101

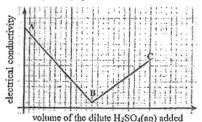
- (a) Why is it necessary to make the total volume of the reaction mixtures the same for the trials?
- (b) Given that at 25 °C, [H⁺(aq)][OH⁻(aq)] = 1.9×10⁻¹⁴ mol² dm⁻⁶, calculate the pH of the NaOH(aq) solution prepared in Trial 2.

(2 marks)


DSE17_01 [Similar to ASL10(I) 09]

Barium (Ba) is an element in Group II of the Periodic Table. Its chemical properties are similar to those of calcium.

(b) A gas with a pungent smell is formed when Ba(OH)2(s) is heated with NH4Cl(s). State the reason why the gas CANNOT be collected by each of the following methods,


(1 mark)

Reason:

(1 mark)

(c) An experiment was carried out to study the change in electrical conductivity of the mixture formed when a dilute H₂SO₄(aq) was added gradually to a fixed volume of a dilute Bπ(OH)₂(aq). The graph below shows the results of the experiment.

- State the expected observation when dilute H₂SO₄(aq) is added to dilute Ba(OH)₂(aq).
 (1 mark)
- (ii) Explain the change of electrical conductivity in the following stages:

(1) From A to B

(1 mark)

(2) From B to C

(1 mark)

DSE17 02

Water pipes used to carry drinking water are commonly made of copper instead of iron. Although lead-containing solder can be used to join these water pipes, such use is prohibited.

(c) A city stipulates that the concentration of lead ions in drinking water should not exceed 1.0×10⁻⁸ g cm⁻³. Express this concentration in mol dm⁻³. (Relative atomic mass: Pb = 207.2)

(2 marks)

DSE17 06

Concentrated sulphuric acid is a reagent commonly found in laboratories,

 (a) Circle TWO hazard warning labels that should be displayed on a bottle of concentrated sulphuric acid;

(1 mark)

- (b) In order to determine the concentration of a sample of concentrated sulphuric acid, 5.00 cm³ of the sample was diluted to 1000.0 cm³ with deionized water. Portions of 25.00 cm³ of the diluted sample were titrated with 0.189 mol dm⁻³ NaOH(aq) using methyl orange as an indicator. An average of 22.20 cm³ of NaOH(aq) was used to reach the end point.
 - Explain why concentrated sulphuric acid should NOT be titrated directly with NaOH(ac).

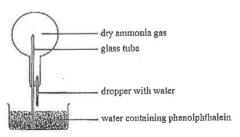
(1 mark)

(ii) State the color change at the end point of the titration.

(1 mark)

(iii) Calculate the concentration of the sample of concentrated sulphuric acid, in mol dm⁻³.

(3 marks)


DSE18 02

This question involves the preparation of ammonia gas and the investigation of the properties of ammonia gas in a laboratory.

(a) Solid calcium hydroxide reacts with solid ammonium chloride to form ammonia gas. Draw a labelled diagram to show the set-up involved and how ammonia gas is collected.

(2 marks)

(b) An experiment was performed to investigate the properties of ammonia gas with the set-up shown below:

The round-bottomed flask was initially full of dry ammonia gas. Several drops of water were injected into the flask from the dropper. The water containing phenolphthalein was then automatically sucked into the flask through the glass tube.

(i) Briefly explain why the water containing phenolphthalein was sucked into the flask.

(2 marks)

(ii) State, with explanation, an observation related to phenolphthalein in the flask.

(2 marks)

DSE18 07

An experiment was performed to determine the number of water of crystallization, n, in a sample of hydrated sodium tetraborate (Na₂B₄O₇*n H₂O). 0.452 g of the sample was dissolved completely in about 50 cm² of deionized water in an apparatus X. The solution obtained was alkaline and was immediately titrated in X with 0.125 M HCl(aq) using methyl orange as an indicator. It is required 18.98 cm² of the acid to reach the end point.

(a) Name X.

(1 mark)

b) State the color change at the end point of the titration.

(I mark)

(c) It is known that in the reaction during the titration, the mole ratio of B₄O₇²⁻(aq) to H³(aq) is
 i : 2. Calculate the number of water of crystallization, n.
 (Relative atomic masses: H = 1.0, B = 10.8, O = 16.0, Na = 23.0)

63 marks

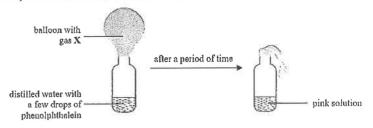
d) It is known that hydrated sodium tetraborate can be used to prepare standard solutions.

What is meant by the term 'standard solutions'?

(1 mark)

i) Suggest one use of standard solutions.

(1 mark)


DSE18 08

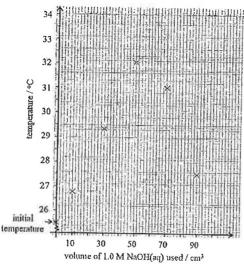
(a) HCl is a strong acid. What is meant by the term 'strong acid'?

(1 mark)

DSE19 03

An experiment was carried out as shown below:

With the help of a chemical equation, suggest and explain what gas X may be.


(3 marks)

DSE19 08

Several trials of an experiment were performed for determining the enthalpy change of neutralisation for a reaction. For each trial, a total volume of 100.0 cm³ of a solution was obtained from mixing specified volumes of a HCl(aq) and I.0 M NaOH(aq) as shown below in an expanded polystyrene cup. The HCl(aq) and NaOH(aq) were kept at the same initial temperature before mixing.

Trial	1	2	3	4	5
Volume of the HCl(aq) used / cm3	90	70	50	30	10
Volume of 1.0 M NaOH(aq) used / cm3	10	30	50	70	90

For each trial, the mixture was stirred and its maximum temperature reached was recorded. A graph of the maximum temperature reached for each trial is shown below:

(a) It is estimated from the graph that 58.0 cm³ of NaOH(aq) (and 42.0 cm³ of HCl(aq)) is required for obtaining the possible maximum temperature reached in this experiment. Show how this estimation can be done in the above graph.

(I mark)

(b) Calculate the number of moles of NaOH(aq) reacted with HCl(aq) in (a). Hence, find the concentration of the HCl(aq).

(2 marks)

DSE19 04

Solid potassium hydrogenphthalate can be used to prepare standard solutions. Its structure is shown below:

- (a) You are provided with 1.12 g of solid potassium hydrogenphthalate.
 - Describe briefly how a 250.0 cm³ of standard solution containing 1.12 g of potassium hydrogenphthalate can be prepared in a laboratory.

(2 marks)

(ii) Calculate the molarity of the standard solution obtained in (i).(Formula mass: potassium hydrogenphthalate = 204.1)

(2 marks)

(b) At room conditions, the pH of a 0.060 M of potassium hydrogenphthalate solution is 3.30. Based on this information and appropriate calculation, comment whether the -COOH group in potassium hydrogenphthalate is completely ionised.

(2 marks)

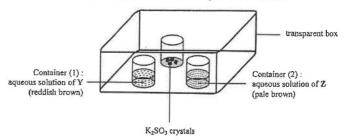
DSE19 10

You are provided with common laboratory apparatus and the following chemicals:

iron powder

zine powder

aqueous animonia


distilled water

Describe how zinc sulphate crystals can be obtained from a solid sample of zinc sulphate containing copper(II) sulphate as impurity. (Not all chemicals must be used.)

DSE20_01ci

(4+1 marks)

(c) An experiment for Y and Z is performed as shown in the set-up below. Dilute hydrochloric acid is added to the K₂SO₃ crystals, then the whole set-up is covered with a lid.

 State the expected observation in Container (I) and write an ionic equation for the reaction involved.

DSE20_04

 Eggshells mainly contain calcium carbonate and a small amount of organic substances. The percentage by mass of calcium carbonate in a sample of eggshell was determined by the following steps:

Step (1): The sample was ground into powder.

Step (2): 0.204 g of the powder was put into a conical flask. After that, 25.00 cm3 of 0.200 M HCl(aq)

and 5 cm3 of ethanol were added.

Step (3): The mixture was heated for 15 minutes.

Step (4): After cooling down, the mixture was titrated with 0.102 M NaOH(aq) using an indicator X.

(a) Explain why the sample was ground into powder in Step (1).

(I mark)

(b) Suggest why ethanol was added in Step (2).

(1 mark)

(c) Suggest why the mixture was heated for 15 minutes in Step (3).

(1 mark)

(d) The mixture turned from colourless to pale pink at the end point of titration in Step (4). Name indicator X.

(1 mark)

(e) 16.85 cm³ of NaOH(aq) was needed to reach the end point of titration in Step (4). Calculate the percentage by mass of calcium carbonate in the sample. (Relative atomic masses: C = 12.0, O = 16.0, Ca = 40.1)

DSE20 05a

- 5. The molecular formula of an organic compound W is C₄H₆O₄. It is soluble in water.
 - (a) When a piece of magnesium ribbon is placed into an aqueous solution of W, hydrogen gas evolves. According to this observation, suggest a functional group that W may contain.

DSE20 07ab

7. An experiment is performed to study the following reaction:

$$Ba(OH)_2 * 8H_2O(s) + 2NH_4Cl(s) \rightarrow BaCl_2(s) + 10H_2O(l) + 2NH_3(g)$$

- (a) When the two solid reactants are mixed and stirred in a conical flask, ammonia gas with a characteristic pungent smell is formed. Explain how ammonia gas can be tested.
- (b) Ba(OH)₂ 8H₂O(s) is an alkali. What is meant by the term 'alkali'?

DSE21 07(a) (b).(c).(d)

The steps for determining the concentration of a sample of hydrochloric acid are listed below:

Step (1): A 0.1038 M standard sodium carbonate solution was prepared by dissolving 2.750 g of

anhydrous sodium carbonate solid in deionised water and made up to 250.0 cm³.

Step (2): 25.0 cm³ of the standard solution obtained in Step (1) was transferred to a clean conical flask

step (2): 25,0 cm² of the standard solution obtained in Step (1) was transferred to a clean conical flas and then a few drops of methyl orange were added.

Step (3): The sample of hydrochloric acid was put into a burette. The standard solution in the conical flask was titrated with the hydrochloric acid.

Step (2) and Step (3) were repeated for several times. The table below shows the results of the titrations :

	Trial	1	2	3	4
Final burette reading / cm ³	30.85	28.75	28.30	31.35	27.25
Initial burette reading / cm3	2.00	1.50	1.00	3.00	0.00

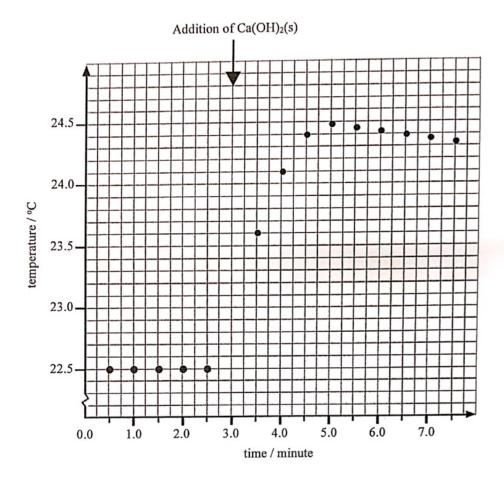
- (a) Describe the procedure in preparing the standard sodium carbonate solution in Step (1).
- (b) State the colour change at the end point of the titration.
- (c) Calculate a reasonable average for the volume of the hydrochloric acid used in the titrations.
- (d) Calculate the concentration of hydrochloric acid (in g dm⁻³) in the sample. (Relative atomic masses: H = 1.0, Cl = 35.5)

Provided by dse.life

4.	4. Which of the following is an INCORRECT procedure in titration?						
		A. B. C. D.	Rinse the conical flask with t Take the burette readings wit	ation to be delivered before titration. The solution to be held before titration. The eyes on the same level as the meniscus. The bubbles in the burette filled with the titrant.			
20.	20. A small piece of sodium is added to water containing a few drops of universal indicator. Which of the following statements is / are correct?						
	(1) (2) (3)	The re	n moves quickly on the water surface sulting solution shows a red colour. eaction is exothermic.				
		A. B. C. D.	(1) only (2) only (1) and (3) only (2) and (3) only				
22.	22. Both A and B are monobasic acids. The pH of 0.10 M A(aq) is 1.0 and the pH of 0.10 M B(aq) is 3.0. Which of the following statements are correct?						
	(1) (2) (3)	Some B to Complete	onger acid than B . molecules are present in B (aq). e neutralisation of 25.0 cm ³ of 0.10 M B (aq) require the same number of mole	A(aq) and complete neutralisation of 25.0 cm ³ of s of NaOH(aq).			
		B. C.	(1) and (2) only (1) and (3) only (2) and (3) only (1), (2) and (3)				

- 3. Antacid is a drug for neutralising stomach acid. A sample of an antacid contains NaHCO₃(s) and other soluble inert substances. 1.52 g of the antacid sample was completely dissolved in deionised water to give a weakly alkaline solution. The solution was then titrated with 0.644 M HCl(aq) using a suitable indicator. 25.20 cm³ of the HCl(aq) was required to reach the end point.
 - (a) Write the chemical equation for the reaction between NaHCO₃(s) and HCl(aq).

(1 mark)


- (b) Calculate the percentage by mass of NaHCO₃(s) in the antacid sample. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, Na = 23.0)
- 3(c) The pH of the solution at the end point of the titration was found to be between 3 and 4.
 - (i) Suggest a suitable indicator for this titration and state the colour change at the end point.

(ii) Suggest an instrument to measure the pH of the solution accurately.

(3 marks)

(d) State one advantage of taking antacids containing Mg(OH)₂(s) over those containing NaHCO₃(s).

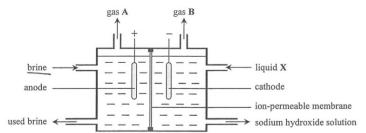
7. An experiment was performed to determine the enthalpy change of neutralisation between Ca(OH)₂(s) and HCl(aq). 100.0 cm³ of 1.0 M HCl(aq) was placed in an expanded polystyrene cup. The temperature of the contents in the cup was measured at half-minute intervals. Right at the third minute, 0.502 g of Ca(OH)₂(s) was added to the cup with thorough stirring. The recordings of temperature are shown in the graph below:

(a) Write a chemical equation for the reaction between Ca(OH)₂(s) and HCl(aq).

Section A Industrial Chemistry

Answer ALL parts of the question.

- (a) Answer the following short questions:
 - (i) Under certain conditions, ethanoic acid can be manufactured by the following reaction:


- (1) Suggest one reason why this reaction is considered to be green.
- (2) Suggest one reason why this reaction is NOT considered to be green.

(2 marks)

- (ii) A factory manufactures catalytic converters with a catalyst coating on a porous structure.
 - Suggest one advantage of using a porous structure in the catalytic converters.
 - (2) Explain why the effectiveness of the catalyst may decrease after prolonged use.
- (iii) Which one of the following items is NOT manufactured from petrochemicals?

(1 mark)

(b) The diagram below shows a <u>membrane electrolytic cell</u> used in the chloroalkali industry. Brine and liquid X are continuously added into the membrane electrolytic cell to produce gas A, gas B and sodium hydroxide solution.

(i) What is X?

(1 mark)

- (ii) Gas A is formed at the anode of the membrane electrolytic cell.
 - (1) What is A?
 - Explain why A is formed.

(2 marks)

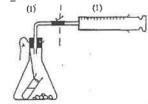
- (iii) Gas B and sodium hydroxide solution are formed at the cathode of the membrane electrolytic cell.
 - (1) Write a half equation for the formation of B.
 - Explain why sodium hydroxide solution is formed and why it does not contain sodium chloride.

(3 marks)

 Suggest a chemical that can be manufactured from the reaction between A and sodium hydroxide solution.

(1 mark)

2022-DSE-CHEM 2-2


2

Marking Sch	eme						
MCQ							
CE90_07	D	CE90_12	В	CE90_14	В	CE90_22	C
CE90_26	С	CE90_35	C	CE90_44	В	CE90_46	D
CE91_[3	С	CE91_16	C	CE91_18	D	CE91_20	В
CE91_21	D	CE91_23	A	CE91_39	В	CE91_45	A
CE91_28	A	CE91_47	В	CE91_50	A	CB92_11	В
CE92_17	В	CE92_18	D	CE92_19	В	CE92_26	Α
CE92_27	Α	CE92_28	C	CE92_29	A	CE92_36	D
CE92_48	A	CE92_49	D	CE93_07	D	CE93_11	A
CE93_21	В	CE93_23	D	CE93_27	В	CE93_37	C
CE93_38	A	CE93_39	В	CE93_40	C	CE93_49	D
CE94_05	C	CE94_09	C	CE94_11	D	CE94_16	D
CE94_26	C	CE94_27	D	CE94_28	В	CE94_30	В
CE94_31	A	CE94_33	В	CE94_43	В	CE95_08	D
CE95_09	В	CE95_12	В	CE95_16	В	CE95_18	В
CE95_24	D	CE95_27	C	CE95_35	A	CE95_39	A
CE95_46	C	CE95_49	C	CE96_04	C	CE96_06	В
CE96_10	С	CE96_12	В	CE96_49	D	CE97_06	В
CE97_12	Α	CE97_13	Α	CE97_14	C	CE97_31	D
CE97_37	D	CE97_49	C	CE98_09	Α	CE98_13	Α
CE98_16	C	CE98_18	В	CE98_23	D	CE98_25	D
CE98_31	A	CE98_43	A	CE99_06	C	CE99_20	A
CE99_25	C	CE99_45	В	CE00_11	C	CE00_29	C
CE00_33	C	CE01_06	В	CE01_07	Α	CE01_15	C
CE01_23	A	CE01_34	Λ	CE02_02	В	CE02_05	В
CE02_17	В	CE02_32	C	CE02_42	A	CE03_04	D (69%)
CE03_26	B (47%)	CE03_30	C (63%)	CE03_43	C (54%)	CE05SP_17	٨
CE05SP_18	D	CE05SP_36	Α	CE05SP_45	A	CE04_08	A (56%)
CE04_11	C (60%)	CE04_14	B (66%)	CE04_20	A (37%)	CE04_44	C (58%)
CE05_14	C (69%)	CE05_22	B (65%)	CE05_29	B (26%)	GE05_34	D (57%)
CE05_38	A (72%)	CE05_39	A (65%)	CE05_40	A (64%)	CE05_41	C (51%)
CE05_50	C (82%)	CE06_07	A (59%)	CE06_10	C (42%)	CE06_28	C (56%)
CE06_31	A (43%)	CE06_39	C (33%)	CE06_47	A (45%)	CE06_48	C (25%)
CE07_15	C (54%)	CE07_17	C (46%)	CE07_35	D (62%)	CE07_47	C (20%)
CE08_01	C (73%)	CE08_07	A (52%)	CE08_17	D (71%)	CE08_20	A (74%)
CE08_30	C (66%)	CE08_33	B (54%)	CE08_37	D (36%)	CE08_43	D (62%)
CE08_45	A (35%)	CE09_10	C (77%)	CE09_14	D (37%)	CE09_17	A (35%)
CE09_23	B (64%)	CE09_29	D (60%)	CE09_32	D (75%)	CE09_35	B (69%)
CE09_36	A (52%)	CE09_37	C (60%)	CE09_48	D (67%)	CE10_19	C (70%)
CE10_20	D (62%)	CE10_23	A (72%)	CE10_28	D	CE10_35	C (72%)
CE10_39	C (49%)	CE10_40	C (50%)	CE10_42	A (74%)	CE10_43	C (48%)
CB10_44	B (55%)	CE10_45	B (68%)	CE11_12	A (86%)	CE11_19	A (71%)

CE11_20	D (48%)	CE11_24	D (86%)	CB11_28	A (34%)	CE11_29	A
CE11_43	A (31%)	ASL05(I)_01	C	ASL12(I)_03	В	DSEHSP_08	D
DSEIISP_14	В	DSEIISP_16	A	DSEHSP_17	A	DSEHSP_18	С
DSEIISP_20	C	DSE12PP_08	C	DSE12PP_09	В	DSEI2PP_I3	A
DSE12PP_19	C	DSE12PP_20	C	DSE12PP_24	D	DSE12_02	D (54%)
DSE12_04	C (71%)	DSE12_10	C (88%)	DSE12_14	B (83%)	DSE12_19	D (59%)
DSE12_20	A (71%)	DSE13_03	D (64%)	DSE13_08	C (41%)	DSE13_09	A (64%)
DSE13_10	C (75%)	DSE13_11	A (62%)	DSB14_06	C (64%)	DSE14_07	B (32%)
DSE14_13	C (76%)	DSE14_15	B (70%)	DSE14_21	D (32%)	DSB15_01	A (46%)
DSE15_04	D (74%)	DSB15_08	D (88%)	DSE15_09	B (87%)	DSE16_06	B (59%)
DSE16_07	A (58%)	DSB16_08	A (66%)	DSE16_18	A (85%)	DSE16_19	C (27%)
DSE16_22	D (49%)	DSE17_02	D (64%)	DSE17_06	C (55%)	DSE17_10	A (57%)
DSE17_11	B (64%)	DSE17_17	A (59%)	DSE17_21	C (68%)	DSE18_06	B (65%)
DSE18_10	A (63%)	DSE18_11	D (50%)	DSE18_24	C (48%)	DSE19_04	В
DSE19_05	٨	DSE19_16	D	DSE19_21	A	DSE19_20	D
DSE2020: 4_A 11_D 16_C 17 B 18 A							

Structural Questions

CE90 02b

- (ii) At X, the rate is faster. Concentration of acid for the reaction is higher and the mass of calcium carbonate is larger.
- (iii) More carbon dioxide gas is collected from B (120 cm³) than from A (96 cm³). [1]

 Thus, sample B has a higher purity (or less impurities) than sample A. [1]

 The initial rate of sample A is greater than that of sample B (steeper slope for A than B). [1]

 Thus, more surface area/smaller particle size in A than in B. [1]

CE90 03b

- (i) A weak acid is partially (slightly) ionized [1]
 to produce hydrogen ions. [1]

 OR, C_nH_{2n+1}COOH ≠ C_nH_{2n+1}COO⁻ + H⁺
- (ii) A few drops of phenolphthalein [1] changes from colourless to pink. [1]
- (iii) (1) moles of NaOH used = $0.18 \times \frac{22.4}{1000} = 0.004032$ [1]
 - (2) $C_nH_{2n+1}COOH + NaOH \longrightarrow C_nH_{2n+1}COONa + H_2O$ mole ratio $C_nH_{2n+1}COOH$: NaOH = 1:1So, number of mole of $C_nH_{2n+1}COOH$ used = 0.004032 mole

 molar mass of $C_nH_{2n+1}COOH = \frac{0.355}{0.004032} = 88.05$ [1]

 So, relative molecular mass of $C_nH_{2n+1}COOH = 88.05$ [1]

 (no unit)

CE91 02a

- (i) First, use a pipette to draw 25.0 cm³ of vinegar to a 250.0 cm³ volumetric flask. [2]
 Then fill up to the mark with distilled water. [1]
- (ii) Use phenolphthalein as indicator. [1]

 At end point, the colour changes from colourless to red. [1]

(iii)	Titration /Burette reading	1	. 2	3	4
	Final reading (cm ³)	25.50	25.70	26.20	25.90
	Initial reading (cm ³)	0.00	1.00	1.30	1.10
	Volume of NaOH used	25.50 - 0.00	25.70 - 1.00	26.20 - 1.30	25.90 - 1.10
		= 25.50	= 24.70	= 24.90	= 24.80

¹st trial would not be counted since the value is largely different from others.

Reasonable average volume of NaOH used $= (24.70 \pm 24.90 \pm 24.80) / 3$ $= 24.80 \text{ cm}^3$ [1] (iv) NaOH + CH3COOH -- CH3COONa + H2O Π mole of NaOH = $0.10 \times \frac{24.80}{1000} = 0.00248$ [1] NaOH + CH1COOH -- CH1COONa + H2O Mole ratio NaOH: CH3COOH = 1:1 For diluted vinegar, so, number of mole of CH₂COOH = 0.00248 mole [CH₃COOH(aq)] (diluted) = $\frac{0.00248}{25}$ = 0.0992 mol dm⁻³ [1] FIT [CH₃COOH(aq)] (undiluted) in B = 0.0992 $\times \frac{250}{25}$ = 0.992 mol dm⁻³ (vi) Given: better buy = lower price per gram of CH1COOH mass of CH₃COOH in 250 cm³ of vinegar $A = 50 \times \frac{250}{1000} = 12.5 \text{ g}$ mole of CH₃COOH in B = $0.992 \times \frac{500}{1000} = 0.496$ mass of CH₂COOH in B = $0.496 \times (12 + 1 \times 3 + 12 + 16 \times 2 + 1) = 29.76$ g For Brand A, \$ per g of $CH_3COOH = \frac{3.00}{12.25} = 0.24$ [1] For Brand B, \$ per g of CH₃COOH = $\frac{6.00}{20.76}$ = 0.20 [1] [1] Brand B is better buy. CE92 01a

- (i) Any two:

 The hair of the girl is not tied up. [1]
 - The H₂SO₄ bottle is too close to the edge of the bench. [1]
 The H₂SO₄ bottle is not stoppered.
- (ii) (1) Copper(II) sulphate [1]
 - (2) CuO+H₂SO₄ → CuSO₄+H₂O (excess)
 - 1 mole of H₂SO₄ gives 1 mole of CuSO₄ [1]
 - mole of $H_2SO_4 = \text{mole of } CuSO_4 = 2.0 \times \frac{50.0}{1000} = 0.10$
 - mass of $CuSO_4 = 0.1 \times (63.5 + 32.1 + 16 \times 4) = 15.59 \text{ g}$ [1]
- (iii) Heating can increase the rate of reaction. [1]

 OR, Heating can make the reaction faster.
- (iv) It is because the CuSO₄(aq) solution obtained is unsaturated. [1]

[2]

CE93 01b

- (i) Acids in liquid waste will cause serious water pollution which is harmful to aquatic [1] species.
- (ii) $Ca(OH)_2 + 2HCI \longrightarrow CaCl_2 + 2H_2O$ [1] OR. $Ca(OH)_2 + 2H^* \longrightarrow Ca^{2*} + 2H_2O$
- (iii) moles of HCl discharged per minute = $0.5 \times 20 = 10$ mole $Ca(OH)_2 + 2HCl \longrightarrow Ca(Cl) + 2HoO$
 - Ca(OH)₂+2HCl \longrightarrow CaCl₂+2H₂O [1] mole of Ca(OH)₂ required to react all HCl = $\frac{10}{2}$ = 5 mole
 - mass of Ca(OH)₂ required per minute = $5 \times (40.1 + 16 \times 2 + 1 \times 2) = 370$ g [1]
- (iv) It is because Na₂CO₃ reacts much faster with acids than that of slaked lime.

 OR, Na₂CO₃ has a much higher solubility in water than that of slaked lime.

CE93 04b

- (i) $CaCO_3 + 2HCI \longrightarrow CaCI_2 + H_2O + CO_2$
- (iii) Method 1:
 - Crush the egg shell into small piece [1] to increase the reacting surface area.

Method 2:

- Also, heating [1]
- can increase the energy of the particles of reactants.

CE94 01

- (a) Group II
- (b) (i) $X + 2HCI \longrightarrow XCI_2 + H_2$ [1]
 - (ii) $\int X \int_{-2}^{2s} \left(CI \right) \right]$ and (H3H)
- (c) A colourless gas rapidly evolves.
- (d) Y, X, Z
 - Y is the most reactive because only Y can react with cold water but X and Z cannot.

 X is more reactive than Z because X can react with HCl but Z cannot.

 [1]

CE94 05a

- (i) pipette [1]
- (ii) mole of NaOH = $0.10 \times \frac{18.2}{1000} = 0.00182$

H2SO4+2NaOH -- Na2SO4+2H2O

mole of
$$H_2SO_4$$
 in 25 cm³ = $\frac{0.00182}{2}$ = 9.1 × 10⁻⁴

mole of H_2SO_4 in 500 cm³ = $9.1 \times 10^{-4} \times \frac{500}{25} = 0.0182$

$$[H_2SO_4]$$
 in Rainbow = $\frac{0.0182}{1000}$ = 18.2 M

- (iii) It will dissolve metal drains.
- (iv) The worker should wear safety glasses

 because conc. H₂SO₄ is highly corrosive.

 [1]

CE95 07

- (i) Citric acid / vitamin C (ascorbic acid) when dissolves in water gives H⁺(aq) [1] which reacts with calcium carbonate to give gas (CO₂) bubbles. [1]
- $CaCO_3 + 2H^* \longrightarrow Ca^{2+} + H_2O + CO_2$ [1]
- (iii) Out of moisture (water) / in a dry place. [1]
 - Reason: The amount of active ingredients will decrease/
 the tablet will lose function/
 - the active ingredients of the tablet will react in the presence of water.
 - OR, Out of heat in a cool place.
 - Reason: at high temperature, vitamin C deteriorate /
 - CaCO₃ undergoes decomposition /
 the amount of active ingredients will decrease /
 - the tablet will lose function.
 - OR, Away from sunlight
 - Reason: vitamin C may decompose /
 - CaCO3 can be decomposed by sunlight.

CE96 06b

- (i) A is 2 M ammonia / 2M NH₃ [1]
 Ammonia solution is alkaline. When ammonia ionizes in water to give OH⁻ which turns [1]
- red litmus paper blue. NH₃ + H₂O ≠ NH₄⁺ + OH⁻

 (iii) (1) Add a piece of pH paper / a few drops of universal indicator to the reagent.
- iii) (1) Add a piece of pH paper / a few drops of universal indicator to the reagent. [1]
 (2) HCl will give a lower pH / a deeper red colour [1]
 - Because HCl ionize to a greater extent than CH₃COOH, HCl is a stronger acid and [1] HCl has a higher concentration of H⁺
- OR (1) Add a piece of Mg ribbon / Zn granules/ CaCO3(s) to the reagent
 - (2) HCl will give gas bubbles at a faster rate Because HCl ionize to a greater extent than CH₃COOH. HCl is a stronger acid and HCl has a higher concentration of H*
- OR (1) Add AgNO3(aq) / Pb(CH3COO)2(aq) to the reagent
 - "(2) "HCl will give a white precipitate while CH3COOH will not Because AgCl/PbCl2 is insoluble in water

- OR (1) Allow the vapour of the reagent to react with NH₃(g)
 - (2) HCl will give dense white fume while CH₃COOH will not Because NH₄Cl(s) is formed when HCl(g) reacts with NH₃(g)
- OR (1) Measure the electrical conductivity of the solutions.
 - (2) HCl has a higher conductivity

 Because HCl ionize to a greater extent than CH₃COOH. HCl is a stronger acid /

 HCl has a higher concentration of H²
- OR (1) Measure the pH of the solutions with a pH meter.
 - (2) HCl has a lower pH Because HCl ionize to a greater extent than CH₃COOH. HCl is a stronger acid and HCl has a higher concentration of H⁺
- OR (1) Warm the reagent with ethanol in the presence of a few drops of conc. H2SO4
 - (2) CH₃COOH gives a pleasant smell while HCl is not Because an ester is formed when CH₃COOH reacts with CH₃CH₂OH

CE96 09b(iv)

- (i) To recover copper metal / To produce the loss of copper metal [1]

 Cu²⁺ ions can cause water pollution / death of (harmful to) marine lives [1]
- (2) 1 mole of Cu²⁺ ions react with 2 mole of NaOH [1]

$$OR$$
, $Cu^{2+} + 2OH^- \longrightarrow Cu(OH)_2$

mole of NaOH = $8.0 \times 3.5 = 28$

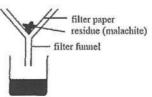
mole of
$$Cu^{2+} = \frac{28}{2} = 14$$

$$[Cu^{2+}] = \frac{14}{20} = 0.7 \text{ M}$$

CE97 03

- (a) Using pH paper / universal indicator / pH meter [1]

 (b) pH: 1M sulphuric acid < 1M hydrochloric acid < 1M ethanoic acid [1]


 Ethanoic acid is a weak acid, it undergoes incomplete ionization. It has the highest pH. [1]

 Both hydrochloric acid and sulphuric acid are strong acids. It undergoes complete [1]
 - ionization, It has lower pH than ethanoic acid.

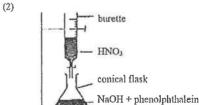
 Sulphuric acid is dibasic while hydrochloric acid is monobasic. 1M H₂SO₄ contains a [1] higher concentration of H⁴(aq) ions than 1M HCl.
 - So, pH of H₂SO₄ is lower than HCl at same concentration.

CE97 07a

- (i) $CuCO_3 + H_2SO_4 \longrightarrow CuSO_4 + H_2O + CO_2$ [1]
- (ii) To ensure that all the sulphuric acid has been used up / malachite is in excess

(iv) mole of
$$H_2SO_4$$
 used = $2 \times \frac{50}{1000} = 0.1$ [1]

Since CuCO₁ is in excess.


mole of
$$CuSO_4 \cdot 5H_2O = mole$$
 of H_2SO_4 used = 0.1 [1]

Theoretical mass of $CuSO_4 \cdot 5H_2O = 0.1 \times 249.6 = 24.96$ g

Formula mass of
$$CuSO_4 * 5H_2O = 63.5 + 32.1 + 16 \times 4 + 5(1.0 \times 2 + 16.0) = 249.6$$
 [1] (Also accept 25.0 g and 25 g; deduct 1 mark for wrong/no unit)

CE98 06a

(i) (i) NaOH+HNO₃
$$\longrightarrow$$
 NaNO₃+H₂O [1]

(1 mark for a diagram showing the set-up for the titration experiment;

2 marks for labelling the apparatus and reagents)

- (3) from red to colourless [1]
- (4) Add dilute nitrie acid to 1 M sodium hydroxide solution in the same volume ratio [1] as that in the titration result, without adding the indicator.

OR, repeat the titration procedure without adding the indicator.

(ii) (1) Formula mass of NaNO₃ = $23 + 14 + 16 \times 3 = 85$

% by mass of N =
$$\frac{14}{85} \times 100\% = 16.5\%$$
 (or 16.47%)

(2) Nitrogen is used in plants to produce amino acids / proteins / chlorophyll. [1]

[3]

[3]

CE99 02

(a)	Efferve	scence / colourle	ess gas bubbles / magnesium carbonate dissolves / heat evolves	[1]
	MgCO ₃	+2HNO ₃	- $Mg(NO_3)_2 + H_2O + CO_2$	[1]
	OR	MgCO ₃ + 2H	+ Mg ²⁺ + H ₂ O + CO ₂	

CE00 02

- (a) The relative atomic mass is the average mass of an atom of the element on the ¹²C [2] (=12,000) scale.
- (b) (i) Y/potassium (K) [1] Y is a reactive metal and reacts readily with oxygen / water in air. [1]
 - (ii) X / argon (Ar) [1] X is chemically inert / is a noble gas / will not react with the hot tungsten filament.
 - m (iii) W/sulphur (S) 111 Sulphur can form SO₂ or SO₃, which, when dissolved in water, give H₂SO₃ or [1]

CE01 02

(a) Zinc granules dissolve / a colourless gas is evolved / solution gets warm. [1] Zn + 2HC1 --- ZnCl2 + H2 [1]

H2SO4 which are acidic solution.

- $Z_{11} + 2H^{+} Z_{12}^{2+} + H_{22}$
- (b) The green colour of the solution becomes paler (colourless) and green precipitate is [1] formed.
 - FeSO₄ + 2NaOH --- Fe(OH)₂ + Na₂SO₄ [1] Fe²⁺ + 2OH⁻ → Fe(OH)₂ OR.

CE01 04

Chemical knowledge

Any SIX of the following:

- The piece of sodium metal sinks until it reaches the surface of water [1] because sodium is denser than paraffin oil but less dense than water. [11]
- Sodium reacts with water to give a colourless gas (hydrogen) / The size of sodium [1] decreases.
- The colourless gas carries the sodium metal to the surface of paraffin oil. [1]
- When hydrogen gas is discharged, the piece of sodium metal sinks again. [1]
- The colour of the aqueous layer turns pink [1]
- Or, due to the formation of OH ions to give an alkaline solution.

Effective communication	
-------------------------	--

CE01 06b

- [1] mole of HCl used = $0.258 \times \frac{25.4}{1000} = 0.00655$ Na₂CO₂ + HCl → 2NaCl + H₂O + CO₂ Mole ratio Na₂CO₁: HCI = 1:2 m
- moles of Na₂CO₃ = $\frac{0.00655}{2}$ = 0.003275 mole (ii) Formula mass of Na₂CO₂ • $xH_2O = 23 \times 2 + 12 + 16 \times 3 + 18x = 106 + 18x$ [1]

number of moles of
$$Na_2CO_3 \cdot xH_2O = \frac{mass}{molar mass}$$

$$0.003275 = \frac{0.933}{106 + 18x}$$
 [1]

$$x = 10$$
 [I]

- (iii) From yellow to orange Π
- (iv) Sten: 1. rinse the burette with distilled water / deionized water
 - [1]2, then with hydrochloric acid ш
 - 3. fill the burette with the hydrochloric acid, making sure that there is no air bubble [1] in the burette and the meniscus is not above the zero mark.

CE02 01c

- (i) Formula mass of $(NH_4)_2SO_4 = (14+4) \times 2 + 32 + 16 \times 4 = 132$ [11]
 - % by mass of $N = \frac{14 \times 2}{132} = 21.2$ [1] (Accept 21, 21,2 and 21,21)
- (ii) Calcium hydroxide / calcium oxide / calcium carbonate / ammonia solution [1] (Accept formula and common name.)
 - Calcium hydroxide / calcium oxide / calcium carbonate / ammonia solution reacts with [1] H+ in soil to neutralize acid in soil.

CE02 06a

- (i) Calcium hydroxide / Ca(OH)2 [1]
- (ii) $Mg(OH)_2(s) + 2HCf(g) \longrightarrow MgCl_2(s) + 2H_2O(l)$ [2]
- (iii) Molten magnesium chloride contains mobile ions. [1]

CE02 07a

- $CaCO_3 + 2HNO_3 \longrightarrow Ca(NO_3)_2 + H_2O + CO_2$ [1] $CaCO_3 + 2H^+ \longrightarrow Ca^{2+} + H_2O + CO_2$
 - Evolution of CO2 stops after reaction. [1]
 - Test the pH of the solution using pH paper; the pH should be less than 7.

[3]

(ii) Diagram: (I mark for the diagram: I mark for labelling the funnel and filter paper) (iii) Ca2+ + SO42- -- CaSO4 (iv) To remove any soluble impurities (or appropriate example) mole of of $CaSO_4 = \frac{10.52}{40 + 32 + 16 \times 4} = 0.0774$ mole

- m Since all Ca2+ from CaSO₄ are from CaCO₃ so number of mole of $CaCO_3 = 0.0774$ mole mass of CaCO₃ in the sample of calcite = $0.0774 \times (40 + 12 + 16 \times 3) = 7.74$ g [1]
- % by mass of $CaCO_3 = \frac{7.74}{7.00} \times 100 = 97.0$ [1](Accept answers from 96.5 to 97.0)
- The sample does not contain ions which form insoluble sulphate, e.g. Ba2+, Pb2+ [1] There is no loss of Ca2+ ions during the experiment CaCO₃ is the only calcium-containing compound present in the sample

CE02 07c

- (i) 3Cl₂ + 8NH₃ → 6NH₄Cl + N₂ [2] [1]
- (ii) ammonium chloride / NH4Cl

CE02 09a

- (1) $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ [1] Oils react with alkalis to give water soluble substances. [1]
- (ii) Wear safety glasses [1] because ammonia solutions attack eves. [1]
 - The glass cleaner should be used in a well-ventilated environment because ammonia has a pungent smell / is toxic.
 - OR. Wear gloves because alkaline solutions can attack skin.

CE02 09

- distilled water / deionized water [1] distilled water / deionized water [1]
- (ii) pipette Π

mole of NH₃ = moles of HCl used =
$$0.23 \times \frac{28.7}{1000} = 6.60 \times 10^{-3}$$
 mole

mole of NH₃ in 250 cm³ diluted sample =
$$6.60 \times 10^{-3} \times \frac{250}{25} = 0.066$$

[NH₃] in 25 cm³ glass cleaner =
$$\frac{0.066}{\frac{25}{1000}}$$
 = 2.64 mol dm⁻³

CE03 08b

(i)
$$Ni^{2+} + 2OH^- \longrightarrow Ni(OH)_2$$

(iii) (1)
$$HCl + NaOH \longrightarrow NaCl + H_2O$$
 [1]

mole of OH⁻ = mole of HCl used =
$$0.251 \times \frac{18.5}{1000} = 4.64 \times 10^{-3}$$
 [2]

(2) mole of NaOH used =
$$0.503 \times \frac{25}{1000} = 0.0126$$
 [1]

(3) mole of NaOH that has reacted with Ni²⁺

$$= 0.0126 - 4.64 \times 10^{-3} = 7.96 \times 10^{-3}$$

$$Ni^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Ni(OH)_{2}(s)$$
[1]

mole of Ni²⁺ =
$$\frac{7.96 \times 10^{-3}}{2}$$
 = 3.98×10^{-3}

$$[Ni^{2+}] = \frac{3.98 \times 10^{-3}}{\frac{25}{1000}} = 0.159 \text{ mol dm}^{-3}$$
 [1]

CE04 02b

OR. Heat substances in a test tube.

NH4Cl(s) sublimes upon heating while KCl(s) does not.

CE04 07a

- (i) Transfer the solution to a 250 cm³ volumetric flask. (All washings should also be [1] transferred to the volumetric flask.)
 - Add distilled (deionized) water to the flask until the bottom of the menisous reaches the [1] mark of the flask.

(iii) (1) mole of NaOH used =
$$0.100 \times \frac{25.7}{1000} = 2.57 \times 10^{-3}$$
 [1]

[2]

[1]

 Π

		100	
	(2)	mole of ionizable hydrogen = $2.57 \times 10^{-3} \times 10$	[1]
		mole of solid acid used = $\frac{1.15}{90}$ = 0.0127	[1]
			£x7
		Basicity of solid acid = $\frac{2.57 \times 10^{-2}}{0.0127} = 2.01 = 2 \text{ (an integer)}$	[1]
CE0	5_03		
(a)	(i)	Sodium hydroxide is very corrosive.	[1]
	(ii)	Use calcium hydroxide instead.	[1]
(b)	(i)	Copper cannot displace H ⁺ (aq) from HCl(aq).	[1]
.,	(ii)	Add Zn/Mg/Fe to HCl(aq).	[1]
(c)	(i)	When water is added to concentrated H ₂ SO ₄ , a lot of heat is produced. This heat	[1]
(0)	(i)	can cause splashing out of the corrosive acid solution.	[.]
	(III)		£13
	(ii)	Add concentrated H2SO4 to water slowly and stir the mixture.	[1]
CE0:	5 10		
	4000	the first time to the control of the	rtn.
(a)		n dissolved in water, citric acid gives H ⁴ (aq) which reacts with HCO ₃ ⁻ (aq) to give	[1]
	CO ₂ (611
		$H_2O(I) + H_2O(I) + CO_2(g)$	[1]
(b)	(i)	0.098 g	[1]
	(ii)	No. of moles of NaHCO ₃ = No. of moles of CO ₂	
		$= \frac{0.098}{12 + 16 \times 2} = 2.23 \times 10^{-3}$	[1]
		Mass of NaHCO ₃ = $2.23 \times 10^{-3} \times (23+1+12+16\times3) = 0.187$ g	[1]
	(iii)	Any ONE of the following:	[1]
	(Jill)	during the experiment, the change of mass is very small	[1]
		 experiment results in the form of graph can be obtained immediately, time can be saved for the interpretation of experimental results 	
	(iv)	Graph	[2]
		(During the reaction, the slope of the graph should be greater than the original one	
		indicating increase in rate. The reaction time needed is shorter. When the reaction	
		stops, the mass should be the same as that indicated by the original one.)	
		biops, the made broad of the dame as that made and of the original original	
CE06	5 04		
(a)	Ag+(a	aq) + Cl ⁻ (aq)	[1]
(b)		tion / decantation	[1]
(c)		II) hydroxide	[1]
(d)	,	presence of NH4 ⁺ (aq) ions can be shown by warming solution Z. An alkaline gas	[1]
. ,	-	volve.	
		presence of K ⁺ (aq) ions cannot be shown. As in flame test, the lilac flame of	(1)
		sium will be masked by the brilliant yellow flame of sodium.	-3
(e)	Yello		[1]
(")	10110		(-1

CE0

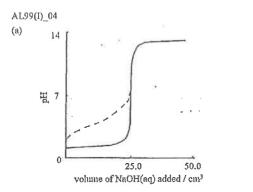
CE0	6_09	
(a)	Use a burette to contain HCl(aq).	[1]
	Rinse the burette with distilled water (deionized water) and then with the 0.18M	[1]
	hydrochloric acid.	
	Add the indicator to the flask, and titrate the acid from the burette until the indicator	[1]
	changes from yellow to orange.	
(b)	(i) $\frac{20.10 + 19.90 + 20.00}{3} = 20.00 \text{ cm}^3$	[1]
	(ii) $CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2$	
	mole of H ⁺ (aq) used = $0.18 \times \frac{20}{1000} = 3.6 \times 10^{-3}$	[1]
	mole of Na ₂ CO ₃ in diluted solution = $\frac{3.6 \times 10^{-3}}{2}$	
	mole of Na ₂ CO ₃ in 2.0 g of the sample = $\frac{3.6 \times 10^{-3} \times 10}{2} = 0.018$	[1]
	mass of $Na_2CO_3 = 0.018 \times 106 = 1.908 \text{ g}$	
	% by mass of $Na_2CO_3 = \frac{1.908}{2} \times 100\% = 95.4\%$	[1]
(c)	Use a pH meter / pH senser	[1]
(d)	Na ₂ CO ₃ is used to remove hardness in fresh water. Mg ²⁺ and Ca ²⁺ ions in hard water	[1]
	react with CO32 to form insoluble metal carbonates.	[1]
or.	7.00	
	77_05 Zn + 2H ⁺ Zn ²⁺ + H ₂	647
(a)	$OR, \qquad Zn + 2HCl \longrightarrow ZnCl_2 + H_2$	[1]
(b)	No further gas evolved.	[1]
(c)	To wash away Zn ²⁺ / Cl ⁻ / H ⁺ / ZnCl ₂ / HCl / acid left behind.	[1]
(d)	Copper will be oxidized / become copper(II) oxide / copper reacts with oxygen (or air).	[1]
(e)		[*]
(0)	% by mass of $Zn = \frac{2.00 - 1.75}{2.00} \times 100\% = 12.5\%$	[2]
CE0	7 10	
(a)	10.0cm ³ of the acid is transferred into a 250.0cm ³ volumetric flask using a pipette.	[1]
•	Distilled water is added up to the graduation mark.	[1]
(b)	mole of NaOH = $0.0176 \times 0.025 = 4.40 \times 10^{-4}$	
	mole of H_3PO_4 in dilute solution = $\frac{4.40 \times 10^{-4}}{2} = 2.20 \times 10^{-4}$	
	$[H_3PO_4] = \frac{2.20 \times 10^{-4} \times 10}{10} = 0.22 \text{ M}$	[3]
	1000	
(c)	Neutralization is a quick process.	[1]
	"As titration proceeds, concentration of acid decreases, less chance of NaOH to contact	[1]
	with the acid / rate of reaction decreases.	

(d)	(i)	A sol	ution of known concentration.	[1]
	(ii)	Not a	ppropriate. Solid sodium hydroxide absorbs water / CO2 readily in air.	[1]
CE08	8_04			
(a)	Colo	urless	bubbles / gas evolve / magnesium dissolves.	[1]
	Mg +		MgCl ₂ + H ₂	[1]
	OR,	M	$1g + 2H^+ \longrightarrow Mg^{2+} + H_2$	
(b)	The	reactio	n between magnesium and hydrochloric acid is exothermic / increase the	[1]
	temp	erature	4	
		_	of carbon dioxide in the carbonated water decreases so that more carbon	[1]
	dioxi	de gas	evolves.	
CE08	-	445	W. a.o	
(a)	(i)	(1)	$H_2SO_4 + CuO \longrightarrow CuSO_4 + H_2O$	[1]
			OR , $2H^+ + CuO \longrightarrow Cu^{2+} + H_2O$	
		(2)	To make sure that all the sulphuric acid has been reacted.	[1]
			OR, To make sure that the product is not contaminated with sulphuric	
			acid.	
	(ii)		tion / filtering	
	(iii)		olubility of CuSO ₄ decreases when the temperature of the solution drops.	[1]
	(iv)	(1)	Anhydrous CuSO ₄ / CuO will be obtained.	[1]
			OR, CuSO ₄ will be decomposed.	
			OR, The water of crystallization will be removed.	
		(2)	Absorb the water by filter paper / place it in a desiceator.	[1]
(b)	(i)		f moles of copper(II) sulphate = No. of moles of sulphuric acid	
		= 1 ×		E (3
			5 (mole)	[1]
	(ii)		r mass of CuSO ₄ • 5H ₂ O = 249.6 g	
			f moles of CuSO ₄ • 5H ₂ O = 16.2 / 249.6 = 0.065 (mole)	[1]
	(iii)		d be different. / Answer in (ii) < (i)	
		Some	CuSO ₄ dissolved in the solution and did not crystallize out.	[1]

CE08_13

Chemical knowledge

Dalu afada	Dename	Observation		
Principle	Process	IM H₂SO ₄	IM HNO ₃	
Redox	Add Zn	No brown gas evolved	Brown gas evolved	
Precipitation	Add BaCl ₂ (aq) / CaCl ₂ (aq) / etc.	White precipitate	No white precipitate	
Basicity	Titrate with NaOH(aq)	More NaOH(aq) needed for H ₂ SO ₄ than HNO ₃	to reach the end point	


(a)	Calcium carbonate / CaCO ₃	[1]
(b)	Limestone dissolves. / Gas (bubbles) given out.	[1]
	$CaCO_3 + 2H^+ \longrightarrow Ca^{2+} + H_2O + CO_2$	[1]
(c)	(i) CaCO ₃ → CaO + CO ₂	[1]
	(ii) Decomposition of calcium carbonate is an endothermic process.	[1]
	OR, Carbon dioxide evolved can extinguish fire.	
CE0	9_07	
(a)	Pour the mixture in water with stirring until no more solid can be dissolved.	[1]
	Filter the mixture and the residue is calcium sulphate.	[1]
(b)	Add acidified silver nitrate solution to both solution.	[1]
	The one with white precipitate formed is potassium chloride solution.	[1]
	OR, Add chlorine water / gas to both solutions,	
	The one with brown / yellow colour formed is potassium bromide solution.	
CE0	9_11	
(a)	Al(OH) ₃ + 3HCl → AlCl ₃ + 3H ₂ O	[1]
	OR, $AI(OH)_3 + 3H^+ \longrightarrow AI^{3+} + 3H_2O$	
(b)	Pour all the solution obtained from Step I to a (250 cm³) volumetric flask.	[1]
	Rinse all the solution left in the beaker by distilled water and transfer the washing to the volumetric flask,	[1]
	Add distilled water to the mark of the volumetric flask and shake the volumetric flask	[1]
	thoroughly.	
(c)	Methyl orange: from red to orange / yellow	[2]
	OR, phenolphthalein: colourless to pink	
(d)	mole of excess HCl = mole of NaOH = $0.20 \times \frac{20.8}{1000} = 4.16 \times 10^{-3}$	[1]
	(ii) mole of HCl used to react with Al(OH) ₃	
	$= 0.05 \times 1.0 - 4.16 \times 10^{-3} \times \frac{250}{25} = 0.0084$	[1]
	mole of Al(OH) ₃ in the tablet = $\frac{0.0084}{3} = 2.8 \times 10^{-3}$	[1]

CE09_01

[6] [3]

CE	0 02		
	_	O (1-1	F17
(a)	(i)	Orange, dichromate / Cr ₂ O ₇ ² - ion	[1]
	(ii)	Heat with sodium hydroxide / potassium hydroxide / calcium hydroxide / calcium	[1]
		oxide / soda lime,	
		A colourless gas is evolved which has a characteristic / pungent smell / which turns	[1]
4.5	d)	moist red litmus paper blue.	
(b)	(1)	$(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + N_2 + 4H_2O$	[1]
	(ii)	Test with anhydrous / dry cobalt(II) chloride paper.	[1]
		Water vapour changes it from blue to pink.	[1]
		OR, Test with anhydrous / dry copper(II) sulphate.	
		Water vapour changes it from white to blue.	
CEI	0 06		
(a)		water turns milky and then turns clear again.	[1]
	Ca(O	$H_{12}+CO_2 \longrightarrow CaCO_3+H_2O$	[1]
		$O_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$	[1]
(b)		odium carbonate is soluble in water.	[1]
(c)	No. T	he percentage of carbon dioxide in air is very low and similar observations would	[1]
		e made in a short period of time.	F-1
	OR,	Yes. Air contains a low percentage of carbon dioxide and similar observations	
	,	would be made in a sufficiently long period of time.	
(d)	Na ₂ C	$O_3 + 2H^+ \longrightarrow 2Na^+ + H_2O + CO_2$	Ш
. ,			(-)
CEI	01_0		
(a)	Pipett	e	[1]
(b)	Wash	with deionized / distilled water.	[1]
	Then	rinse with 0.50M sulphuric acid.	[1]
(c)	$H^{\dagger} + 0$	OH- → H ₂ O	[1]
(d)	As no	utralization is exothermic, temperature of the solution rose when sulphuric acid	[1]
		dded into sodium hydroxide solution.	
	When	the sodium hydroxide was just completely reacted, the temperature reached a	[1]
		num value.	• •
	After	that, the addition of excess cold sulphuric acid lowered the temperature of the	[1]
		on mixture.	
(e)		6 N. GV. G. G. G. 15	[1]
	mole	of NaOH = $2 \times 0.5 \times \frac{15}{1000} = 1.5 \times 10^{-2}$	
	Diagram	1.5×10^{-2}	
	[HaUl	$H(aq) = \frac{1.5 \times 10^{-2}}{25} = 0.60 \text{ M}$	[1]
		1000	

	0_13	
Che	nical knowledge	[6]
(a)	The higher the concentration of hydrogen ions, the lower is the pH.	
(b)	Concentration: The more concentrated an acid is, normally the more concentrated is the	
	hydrogen ions.	
(c)	Strength: A strong acid has a higher degree of ionization / dissociation in water to give hydrogen ions.	
Cor	rect examples of strong acid and weak acid (e.g. IM HCl and IM CH3COOH)	
(d)	Basicity: An acid with a higher basicity normally gives a higher concentration of	
~	hydrogen ions,	
	rect examples of acids with different basicity (e.g. 1M H ₂ SO ₄ and 1M HCl)	
Elle	ctive communication	[3]
	1_01	
(b)	Golden yellow flame implies the salt contains sodium ions.	[1]
	The white precipitate formed is calcium sulphate (CaSO4), this implies the salt contains	[1]
	sulphate ions.	
	The salt should be sodium sulphate.	[1]
	*	
CEI	1_09	
(a)	pipette / volumetric flask	[1]
(b)	25	[1]
	$[HCl(aq)] = 2 \times \frac{25}{250} = 0.2 \text{ M}$	
(c)	T II	[3]
	anmonia solution	
	diluted hydrochloric acid	
	+ methyl orange	
	(TOTAL)	
(d)	from red to orange	[1]
(c)	HCl + NH ₃ → NH ₄ Cl	[1]
(0)	$OR.$ $H^+ + NH_1 \longrightarrow NH_1^+$	[1]
(f)		
(1)	mole of NH ₃ = $0.2 \times \frac{25}{1000} = 5.0 \times 10^{-3}$	£13
	1000	[1]
	$[NH_{-}(aa)] = \frac{5.0 \times 10^{-3}}{0.0000000000000000000000000000000000$	
	$[NH_3(aq)] = \frac{5.0 \times 10^{-3}}{\frac{22.9}{1000}} = 0.22 \text{ M}$	[1]
	1000	

[½]

(b) Thymolphthalein [½]
The pH range of the color change of thymolphthalein falls into the steepest / vertical part [1]

AL99(I)_04

For the pH 2 HCl(aq),
$$[H^+] = 10^{-2} M$$
 [½]

No. of mole of HCl required for the preparation =
$$10^{-2} \times 1.0 = 10^{-2}$$
 [1]

Mass of constant boiling
$$HCl(aq) = \frac{10^{-2}(1+35.5)}{0.202}$$
 [1]

AL00(1) 04

$$NaOH(aq) + HCl(aq) \longrightarrow NaCl(aq) + H2O(l)$$

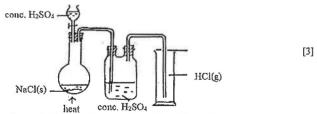
[OH⁻] remained =
$$\frac{0.105 - 0.095}{2} = 5 \times 10^{-3} \text{ M}$$
 [1]

$$pOH = -log (5 \times 10^{-3}) = 2.30$$

 $pH = 14 - pOH = 14 - 2.30 = 11.70$ [1]

AL00(II)_02

Mass of HNO₃ in 1 dm³ =
$$1420 \times 0.68 = 965.6$$
 [1]


Concentration of the acid =
$$\frac{965.6}{(1+14+16\times3)}$$
=15.3 M

(accept answer from 15.0 to 15.6 M)

ASL00(II)_II Dropwise addition of NaOH(aq) into two samples solution until in excess respectively.	[1]
Mg(NO ₃) ₂ (aq) give white precipitate in the excess NaOH(aq).	[½]
$Mg^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Mg(OH)_2(s)$	[1/2]
Al(NO ₃) ₃ (aq) give white precipitate, and those precipitate redissolves in excess NaOH(aq).	[1]
Al ³⁺ (aq) + 3OH ⁻ (aq) -> Al(OH) ₃ (s)	[½]
$AI(OH)_3(s) + OH^-(aq) \longrightarrow AI(OH)_4^-(aq)$	[1/2]
mony (m)	[]
ASL00(II) 12	
Digestion of food in mouth gives acids.	[1]
NaHCO3 dissolves in water and dissocates to Na ⁺ (aq) and HCO3 ⁻ (aq), which HCO3 ⁻ (aq)	[1]
consumes H ⁺ (aq) and increase the pH of silva.	[1]
$HCO_3^-(aq) + H^+(aq) \longrightarrow H_2O(1) + CO_2(g)$	
AL01(I)_07	
Weigh a piece of office paper	[1/2]
Immerse paper in excess HCl(aq)	[1/2]
When no CO2 evolves from the mixture, decant acid and wash paper with distilled water.	[1]
Dry the paper in an oven (110 °C)	[1/2]
Weigh the paper again	[1/2]
% by mass of CaCO ₃ = change in mass of paper original mass of paper ×100	
	[1]
Alternative answers	
Weigh a piece of office paper	[1/2]
Immerse in a known volume of standard HCl (excess)	[1]
Titrate excess HCl using standard KOH (aq) / NaOH (aq)	[1]
Calculate mass of CaCO ₃ from the titration result	[1/2]
% by mass of $CaCO_3 = \frac{mass \text{ of } CaCO_3}{mass \text{ of paper}} \times 100$	***
mass of paper	[1]
Alternative answers	
Weigh a piece of office paper	[½]
Burn the paper completely (in a crucible)	[1]
Weigh the CaO (s) produced, (m)	[½]
	[/ 2]
mass of $CaCO_3 = \frac{m}{40 + 16} \times 100$	[1]
	[.]
% by mass of $CaCO_3 = \frac{mass \text{ of } CaCO_3}{mass \text{ of paper}} \times 100$	
(For other appropriate methods, award 1 mark for the principle, 2 marks for procedure, 1	[1]
mark for calculation.)	

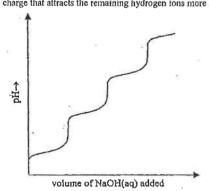
AL01(I)_07

Heat NaCl(s) with concentrated H₂SO₄; use conc. H₂SO₄ to dry HCl; connect dried HCl by downward delivery / in a gas syringe.

Deduct 1 mark for diagram indicating a closed system and 1 mark for using water to remove water vapor in HCl.

AL01(II) 04 (modified)

In aqueous solutions, HCl, HBr and Hl are of comparable strength because both compounds [1] ionize completely.


OR, HI is a stronger acid than HBr and HCl when dissolved in ethanoic acid (or other weak acid)

AL03(I) 01 (modified)

(c)

(a)
$$H_3PO_4(aq) = H_2PO_4^-(aq) + H^*(aq)$$
 [1]
 $H_2PO_4^-(aq) = HPO_4^2^-(aq) + H^*(aq)$ [½]
 $HPO_4^2^-(aq) = PO_4^1^-(aq) + H^*(aq)$ [½]

(b) After the removal off a hydrogen ion, the remaining species has an additional negative [1] charge that attracts the remaining hydrogen ions more strongly.

2 marks for a curve showing the neutralization of $\rm H_3PO_4(aq)$, $\rm H_2PO_4^-(aq)$ and $\rm HPO_4^{2-}(aq)$, 1 mark for labeling the axes.

Remarks: 3 vertical parts for tribasic acid.

ALV4(1)_0/	
Step 1: A standard NaOH(aq) should not be prepared using the method as described.	[1/2]
Explanation: NaOH(s) is not a primary standard / is hygroscopic / NaOH(s) reacts with	[1/2]
CO ₂ (g) in air.	[1/2]
Correction: it is necessary to standardize the NaOH(aq) before use.	
Step 3: The burette should not be rinsed with water only.	[1/2]
Explanation: Water that remains in the burette will cause a dilution of the NaOH(aq).	[1/2]
Correction: The burette needs to be rinsed with deionized water and then with the NaOH(aq) prepared.	[1/2]
Step 4: Methyl orange is not a suitable indicator.	[1/2]
Explanation: The experiment involves a titration of a weak acid with a strong alkali. pH at	[%]
the end point is about 8 to 9.	. ,
Correction; Phenolphthalein should be used.	[1/2]
Step 5: Calculation should not be based on the result of one titration only.	[1/2]
Explanation: There may be errors in the titration	[1/2]
Correction: Repeat the titration at least 3 times. Use the mean titre for the calculation, (Ignore	[1/2]
the result of the trial titration, if necessary).	
ASL04(II)_11	
(a) Observation: misty funes	[1]
HCl(g) dissolves in water vapor in air to form HCl(aq). The highly polarized HCl(aq) cause water to condense to water droplets.	[1]
(b) Place a glass rod wetted with aqueous ammonia near the mouth of the reagent bottle.	[1]
Dense white fumes are formed.	[1]
	- 3
AL05(I)_08	
The person did not wear laboratory coat. Should wear a laboratory coat.	[1]
The person did not have eye protection. Should weak safety spectacles / goggles.	[1]
Should not detect NH3(g) by smelling while heating the reaction mixture. The mixture may	[1]
shoot his face. Should detect NH3(g) by the use of a piece of wet red litmus paper that can	
change it from red to blue	
OR, by HCl(aq) that can form a white fumes with HCl(aq).	
OR, should smell NH ₂ (g) after turning off the Bunsen burner,	

AL04(I) 07

[3]

AL05(II) 01

- (a) $2X(s) + 6HCl(aq) \longrightarrow 2XCl_3(aq) + 3H_2(g)$ [1] $X_1O_3(s) + 6HCl(aq) \longrightarrow 2XCl_3(aq) + 3H_2(g)$ [1]
- (b) According to the countions, $2X \equiv X_2O_3$

For complete reaction with 6 mole of HCl, the mass of X(s) required is less than that of X_2O_3 .

Greatest possible value of RAM of X can be calculated by assuming that the sample contains X only.

No. of mole of HCl(aq) used = (0.0954)(6) = 0.5724 mol

Since the sample consists of pure X & 1 mole of X reacts with 3 moles of HCl

No. of moles of $X = 0.5724 \div 3 = 0.1908$ mol

Greatest possible RAM of $X = 16.5 \div 0.1908 = 86.5$

Smallest possible value off RAM of X can be calculated by assuming that the sample contains X₂O₃ only.

Since 1 mole of X2O3 reacts with 6 moles of HCl

No. of mole of $X_2O_3 = 0.5724 \div 6 = 0.0954$ mol [1]

Let the RAM of X be A

$$\frac{16.5}{2A + 16 \times 3} = 0.0954$$

- Smallest possible RAM of X = 62.5
- (c) The only trivalent metal with RAM in the range of 62.5 to 86.5 is gallium, Ga [1]

AL05(II) 04

- (a) Paths I: $2Al(s) + 3H_2SO_4(aq) \longrightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$ [1] $Al_2(SO_4)_3(aq) + 6NaOH(aq) \longrightarrow 2Al(OH)_3(s) + 3Na_2SO_4(aq)$ [1]
 - Path II: $2AI(s) + 2NaOH(aq) + 6H_2O(i) \longrightarrow 2Na[AI(OH)_4](aq) + 3H_2(g)$ [1]
 - $2Nn[Al(OH)_4](aq) + H_2SO_4(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(l) + 2Al(OH)_3(s)$ [1]
- (b) Path I:
 Production of 2 mole of Al(OH)₃ requires 3 mol of H₂SO₄(aq) and 6 mol of NaOH

 [½]
 Path II:
 - Production of 2 mole of Al(OH); requires 1 mol of H2SO4(aq) and 2 mol of NaOH [1/2]
- (c) Path II is better because less reactants are used [1] and less heat is produced. [1]

AL06(I) 02

- (a) Limestone / marble / chalk / anhydrite / gypsum / fluorite [1]
- (b) Amount of H⁺(aq) exchanged = $0.020 \times 15 \times 10^{-3} = 3.0 \times 10^{-4}$ mol [1]
 - Total no. of mole of $Ca^{2+}(aq) / Mg^{2+}(aq) = 3.0 \times 10^{-4} \div 2 = 1.5 \times 10^{-4} \text{ mol}$
 - Total hardness of the water sample = $\frac{1.5 \times 10^{-4}}{50 \times 10^{-3}} = 3.0 \times 10^{-3} \text{ mol dm}^{-3}$ [1]

ASL06(I) 03

Not agree

- 'A is stronger acid than B' only means the degree of ionization of A is larger than that of B. [1] However, pH of an acid solution depends on both the degree of ionization and concentration of it.
- As such, the stronger acid A may have a higher pH than the weaker acid B if the concentration [1] of acid B is higher than that of A by an adequate amount.

ASL07(I) 03

- (a) $CO(NH_2)_2(aq) + 2H^+(aq) + H_2O(1) \longrightarrow CO_2(g) + 2NH_4^+(aq)$ [1]
- (b) No. of moles of urea in 2 pieces of chewing gum

$$= \frac{1.5 \times 10^{-3}}{(12 + 16 + 14 \times 2 + 1 \times 4)} = 5 \times 10^{-5}$$

- no, of moles of H⁴ that can be neutralized = 1×10^{-4}
- (c) Digestion of food in mouth gives acids.

 (1/2)
 Chewing urea-containing chewing gum increases the pH of saliva.

 [1/2]
- The equilibrium position shifts to the left and the demineralization of hydroxyapatite is [1] not favored.

ASL07(1) 07

[1]

297

- (a) Primary standard: a standard solution of the substance can be prepared by dissolving a known mass of the substance in a solvent and making up the solution to a known volume.
- (b) (i) Br₂(l) is volatile. It is difficult to weigh a sample of Br₂(l) accurately. [1]
- (ii) KOH(s) absorbs water moisture / absorbs CO2.

ASL07(I) 09

- Prepare a saturated solution of KCl(s) by dissolving the salt in water until in excess. [1]
- Place the flask containing the saturated solution in water bath/thermostat kept at 298 K.
- Filter the solution at 298 K to remove the undissolved KCl(s).

 Weigh a clean and dry evaporating dish (wt).
- Transfer a portion of the saturated solution to the evaporating dish and weigh the dish together [1/2]
- with the solution (w2).

 Evaporate the solution to dryness in an oven (by the use of an appropriate method).

 [1/2]
- Weigh the dish and the solid residue.

 Repeat the evaporating and weighing process until the dish and the solid residue reach a [½] constant mass (w₃).
- Solubility of KCl(s)at 298 K = $\frac{w_3 w_1}{w_2 w_3} \times 100$ g per 100 g of water [1]

[1]

[1]

[1/2]

AL07(II) 01

Use a pipette to transfer 10.0 cm³ of 0.10 M AgNO₃(aq) to a 100.0 cm³ volumetric flask. (OR 25.0 cm³ of 0.10 M AgNO₃(ag) to a 250.0 cm³ volumetric flask)

Add deionized water to the flask until the bottom of the meniscus reaches the graduation

Swirl the solution thoroughly.

ASL08(I) 08

Preparation of CuSO4*5H2O(s):

Heat excess Cu metal with concentrated H₂SO₄ in a firme cumboard. [1]

Cu + 2H5SO4 -- CuSO4 + 2H5O + SO5

Add water to the resulting mixture and filter off any excess Cu metal. Evaporate the solution [1] to give saturated CuSO4(aq).

Allow the solution to cool to obtained CuSO4.5H2O(s). Dry the crystals in a desiceator. [1]

AL09(I) 07c

Dilution of conc. H2SO4 is highly exothermic process. The heat evolved can vaporize the water and cause splashing out of the acid.

111

[1]

[1]

ГП

ASL09(II) 03

(a) Red to orange [1]

(b) In the titration, no. of moles of NaOH used = $0.0941 \times 16.48 \times 10^{-3} = 1.55 \times 10^{-3}$ [1]

No. of moles of H+ originally present = $0.955 \times 25 \times 10^{-3} \times 2 = 0.0478$ No. of moles of H+ that react with Mg

 $= 0.0478 - 1.55 \times 10^{-3} \times 10 = 0.0322$

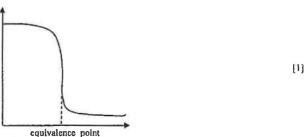
 $Mg + 2H^{+} \longrightarrow Mg^{2+} + H_{2}$

No. of mole of Mg in the ribbon = 0.0161

Relative atomic mass = 0.420 + 0.0161 = 26.05[1]

Some of the Mg has been oxidized to MgO [1]

ASL10(1) 09


Electrical conductivity / pH [1]

(b) electrical conductivity equivalence point

volume of HSO (ag) added

Electrical conductivity decreases before the equivalence point because the concentration [1/3] of the highly conducting OH-(ag) decreases as it reacts with H+(ag) to give H+O(1).

After the equivalent point, the increase in conductivity is due to the increase in [H⁺(aq)]. [1/2] OR.

volume of H-SO (aq) added

pH drops before the equivalent point because OH-(aq) ions are removed by [1/2] H+(aq) ions.

$$OH^-(aq) + H^+(aq) \longrightarrow H_2O(l)$$

When it is close to the equivalence point, both [H+(aq)] and [OH-(aq)] are small. Addition of a drop of H2SO4(aq) can lead to a significant decrease in pH.

[1/2]

AL10(I) 07

Allow a known volume (v) of the water sample to pass through a proton-exchange resin [1] column. The Ca2+(aq) in the sample will be quantitatively exchanged by H+(aq) ions.

Ca²⁺(in sample) + 2H⁺(from resin) -- Ca²⁺(on resin) + 2H⁺(in sample)

Titrate the eluent with standard NaOH(aq) using phenolphthalein as indicator, to determine [1/2] the no. of moles of H⁺(aq). The mixture changes from colorless to pale pink when the end-[1/2] point is reached.

Hardness due to $Cu^{2+}(aq) = \frac{1}{2} \times \frac{\text{molarity of NaOH}(aq) \times \text{volume of titrant}}{v}$ [1]

ALI1(I) 07

(b) (i) Add HCl(aq) / KCl(aq) / aqueous solution of a water-soluble chloride. Only [1] Pb2+(aq) gives a white precipitate.

$$Pb^{2+}(aq) + 2Cl^{-}(aq) \longrightarrow PbCl_{2}(s)$$

Add NaOH(aq), Only Pb2+(aq) gives a white precipitate (which is

soluble in the excess alkali) $Pb^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Pb(OH)_2(s)$

 $Pb(OH)_2(s) + 2OH^-(aq) \longrightarrow [Pb(OH)_4]^2-(aq)$

[NOT accept a test with SO42-, both Ba2+ and Pb2+ forms white precipitate,]

[1]

Add acidified AgNO3(aq), Cl7(aq) gives a white precipitate, while Br7(aq) gives [1] a pale vellow precipitate.

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$$
 [1]

OR. Treat solution wit acidified KMnO4(an), Cl-(an) causes decolorization slowly; Br (aq) gives a orange solution.

$$10X^{-}(aq) + 2MnO_4^{-}(aq) + 16H^{+}(aq) \longrightarrow 5X_2(g/1) + 2Mn^{2+}(aq) + 8H_2O(1)$$

AL11(II) 06

(c) Observation; white precipitate is formed and the precipitate dissolves in excess alkali to [1] give a cholorless solution.

$$Al^{3+}(aq) + 3OH^{-}(aq) \longrightarrow Al(OH)_3(s)$$
 [1]

$$Al(OH)(s) + OH^{-}(aq) \longrightarrow Al(OH)(-(aq))$$

ASL13(I) 09a (modified)

(i)
$$[\text{NaCIO}] = \frac{1 \times 5.25\%}{\frac{74.5}{1 \times 10^{-3}}} = 0.705 \text{ M}$$
 [1]

(ii) Moles of cyclohexanol used =
$$\frac{5.0 \times 0.948}{100} = 0.0474$$

moles of NaClO in 25 cm³ of bleach =
$$0.705 \times 25 \times 10^{-3} = 0.0177$$
 [1]

Minimum no. of portions of bleach used >
$$\frac{0.0474}{0.0177} = 3$$

DSEIISP 01

- (b) False, Dilution of concentrated H₂SO₄ is a highly exothermic process. [1]
 - The heat evolved may cause the acid to splash out, [1]
- (c) False. 'A is a stronger acid than B' only means the degree of ionization of A is larger [1] than that of B. However, the pH of an acid solution depends on both the degree of ionization and its concentration.
 - As such, the stronger acid A may have a higher pH than the weaker acid B if the [1] concentration of acid B is higher than that of A by an adequate amount.

DSEIISP 08

(a) zinc granules dissolve / a colorless gas is produced / solution gets warm [1]

$$Z_{\rm n}$$
 + 2HCl \longrightarrow ZnCl₂ + H₂ [1]
 QR $Z_{\rm n}$ + 2H⁺ \longrightarrow Zn²⁺ + H₂

(b) Green precipitate is formed / The green color of the solution becomes paler (colorless). [1]

FeSO₄ + 2NaOH
$$\longrightarrow$$
 Fe(OH)₂ + Na₂SO₄ [1]
OR, Fe²⁺ + 2OH⁻ \longrightarrow Fe(OH)₂

DSEIISP 09

3 sets of tests needed each of which carries 2 marks:

- Suitable test matches the intention to distinguish certain compounds
- Correct observation / result [3]
- Effective communication [1]
- Conduct flame test using the samples. Only two sodium compounds (NaOCl and Na2SO4) give a golden vellow flame.
- Heat samples with NaOH(ao). Only the two ammonium compounds (NH4Cl and NH4NO3) give an alkaline gas / ammonia.
- Add HCl(aq) Only NaOCl(aq) gives greenish vellow gas / chlorine.
- Touch with moist litmus paper / color flower petal. Only NaOCl gives bleaching effect.
- Added acidified BaCh(aq) to aqueous solution of the two sodium compounds. Only Na2SO4(aq) gives a white precipitate.
- Add acidified AgNO₃(aq) to aqueous solutions of the two ammonium compounds. Only NH4Cl(aq) gives a white precipitate.

DSE12PP 01

- ZnO + H2SO4 -- ZnSO4 + H2O [1] QR, $ZnO + 2H^+ \longrightarrow Zn^{2+} + H_2O$
 - Unreacted ZnO(s) can be seen. [1]
 - (iii) To ensure that the product is not contaminated with sulphuric acid. [1] The unreacted ZnO(s) can be removed by filtration, but it is difficult to remove the excess H2SO4(aq).
- (b) Remove a drop of the solution with a glass rod, and see whether any solid forms when [1] the drop cools.
- Washing with distilled water can remove the water-soluble impurities. [1] Using a small amount of water / cold water helps to reduce loos of the salt.
- [I](d) Any ONE of the following: [1]
 - Drying the crystals between filter papers - Putting the crystals in a desiccator.
 - (DO NOT accept methods which involve strong heating.)
- (e) Zn/Zn(OH)₂/ZnCO₃ [1]

F31

DSE12PP 04

- (a) Dissolve 1.14 g of M₂CO₃(s) in some distilled water / deionized water in a beaker. [1]
 Transfer the solution to a 100.0 cm³ of volumetric flask.

 Wash the beaker with distilled water / deionized water and transfer the washings into the volumetric flask.
 Add distilled water / deionized water up to the graduation mark of the volumetric flask.
 Shake the volumetric flask to ensure its content is well mixed.
- (b) mole of H⁺(aq) used = $0.085 \times \frac{25.30}{1000} = 2.15 \times 10^{-3}$ [1] M₂CO₃ + 2H⁺ \longrightarrow 2M⁺ + CO₂ + H₂O moles of M₂CO₃ in the solid sample = $2.15 \times 10^{-5} \times \frac{100}{10} \times \frac{1}{2} = 0.01075$

$$\frac{1.14}{2M + 12 + 16 \times 3} = 0.01075$$

$$M = 23$$
[1]

M is likely to be Na

DSE12_06 Dissolve solid lead(i1) nitrate in water. [1] Then mix with (excess) sulphuric acid / K2SO4 / Na2SO4 solution. [1] Filter the mixture to obtain the residue (PbSO4), wash it with deionized water and then dry in oven. [1]

Effective communication

DSE12 07

- (a) $NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$ [1]
- (b) The KOH is (very) corrosive. / NH4NO3 is explosive / NH4NO3 is flammable / HCl is [1] corrosive.
- (c) Prevent sucking back as NH₃(g) is very soluble / Increase the surface area for dissolving [1]
 NH₃(g)
 (Accept prevent HCl sucking upwards or similar descriptions)
- (d) (i) Pipette [1]
 - (ii) Changes from red to orange [1]
 - (iii) mole of HCl in the beaker = $0.100 \times \frac{41}{1000} \times \frac{100}{25} = 0.0164$ mole of NH₃(g) produced = 0.0485 0.0164 = 0.0321 [i]
 - % by mass of NH₄NO₃ = $\frac{0.0321 \times 80}{3.150} \times 100\% = 81.5\%$ [1]
 (Accept 81.52% / 82.54%)
- (e) Flame test gives a lilac flame [1]

DSE13 04

- OR, H₂C₂O₄ is a weak acid. It undergoes incomplete ionization in water.

 As pH = -log[H⁺(aq)] and [H⁺(aq)] in 0.05 M H₂C₂O₄(aq) is less than 0.1 M, it pH is thus greater than 1.

 (c) NaOH(aq) is deliquescent / hygroscopic / absorbs water from the atmosphere.

 OR, NaOH(s) reacts with CO₂(g) in the atmosphere.

 The mass of NaOH(s) cannot be accurately determined by weighing.

 (d) (i) From colorless to pink
 - (ii) $M_A V_A B_A = M_B V_B B_B$ $(0.05)(25)(2) = M_B(17.20)(1)$ [1] $M_B = 0.145 \text{ mol dm}^{-3}$ [1]
- e) (i) Rinsing the conical flask with H₂C₂O₄(aq): Some H⁴(aq) ions / acid / [1]

 H₂C₂O₄(aq) remain in the flask, and more alkali (as revealed from the burette reading) than actually required is used to reach the titration end-point.

 (Do not accept the concentration of H^{*}(aq) increase.)
 - (ii) NaOH(aq) clinging onto the stem of funnel may fall into the burette. The [I] volume of alkali used (as revealed from the burette reading) is smaller than what is expected.

DSE14 05

- (a) Wearing protective gloves or plastic gloves or gown or safety googles or any suitable [1] PPE
 - OR, Adding concentrated acids into water when diluting the concentrated acids
 - OR, Use a fume cupboard,

Not accepted: maintain a good ventilation.

(b) $H_2C_2O_4(aq) \longrightarrow C_2O_4^2(aq) + 2H^+(aq)$

 $H_2C_2O_4(aq) = HC_2O_4(aq) + H^*(aq)$

(b) No, the strength of an acid is not related to its concentration. Not all concentrated acids, [1] e.g. ethanoic acid, are strong acids / use a concrete example to illustrate.

DSE14 07

(a) Mass of HCl present in 1000 cm³ of the concentrated acid = 1180×36% = 425 g

Formula mass of HCl = 36.5

Concentration =
$$\frac{425}{36.5}$$
 = 11.6 mol dm⁻³ [1]

(Accept 11.5 - 11.644, maximum 3 decimal places)

- (b) (i) Weigh accurately the amount of sodium carbonate needed and dissolve it using deionized water / distilled water.

 (accept using "a known amount of sodium carbonate", not accept if state "water"
 - Transfer all the solution made to a volumetric flask, add delonized water to [1] the tlask until the bottom of the meniscus reaches the graduate mark of the flask, and mix the content thoroughly.

[1]

	(ii)	Mole of H* present in the diluted acid= $1.06 \times 10 \times 10^{-3} \times 2 = 0.0212$	[1
		Concentration of the acid = $\frac{0.0212}{20.30 \times 10^{-3}} \times 10 = 10.4 \text{ mol dm}^{-3}$	[2]
(c)		HCl escaped / vaporized from the concentrated acid as HCl(g) / Concentrated chloric acid is volatile.	[1]
DSE	14_09		

DS

(a) A blue precipitate is obtained. [I] $Cu^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Cu(OH)_2(s)$ [1] OR, CuSO₄ + 2NaOH -- Cu(OH)₂ + Na₂SO₄ (State symbols are not required)

DSE15 02

(a) A white precipitate / solid is firstly formed / It turns milky; the precipitate dissolves in the presence of excess CO₂(g) $Ca(OH)_2(aq) + CO_2(g) \longrightarrow CaCO_3(s) + H_2O(l)$ [1] CaCO₃(s) + CO₂(g) + H₂O(l) -- Ca(HCO₃)₂(an) [1]

DSE15 04

- (c) Lead / lead compounds are toxic / harmful. Sulphuric acid is corrosive / irritant. NOT accept answers like "lead compounds are pollutants / heavy metal" NOT accept answers like 'acid cause harm the environment'.
- Pour a small amount of the concentrated sulphuric acid to a large amount of [2] Accept answers like "add concentrated sulphuric acid to a large amount of water." Constant stirring is required (if the amounts of water and acid are not mentioned) [1] Wear goggle / face shield / safety spectacles / safety glasses
 - Mole of sulphuric acid= $\frac{2.48}{98.1}$ = 0.0253 [1]
 - [1] Molarity of sulphuric acid= $\frac{0.0253}{5 \times 10^{-3}}$ = 5.06 M

DSE15 05

- Equation: NH₁ + H₂O - NH₄+ + OH [1] - Explanation; ammonia ionizes slightly in water / The ionization of ammonia in water is [1] [1] Method: measure the pH / electrical conductivity / enthalpy change of neutralization / temperature change in neutralization of both NH3(aq) and NaOH(aq). [1] Observation: pH / electrical conductivity / enthalpy change of neutralization / temperature rise in neutralization of NH₃(aq) is lower than that of NaOH(aq). [1] Fair comparison between NH1(aq) and NaOH(aq) pH measurement - same concentration of NH₂(aq) and NaOH(aq)

electrical conductivity measurement - same concentration of NH₃(ag) and NaOH(ag) enthalpy change of neutralization - same amount / known amount of NH₂(aq) and Π determine the temperature rise in neutralization - same volume and concentration of NH₃(ag) and NaOH(ag)

DSE16 06

Effective communication

(a) [1]

Volumetric flask (b) (i) [1] mole of NaOH(ag) = $0.123 \times 0.01845 = 2.27 \times 10^{-3}$

[1] mole of citric acid = $\frac{2.27 \times 10^{-3}}{3}$ = 7.56 × 10⁻⁴ [1]

Moles of citric acid in the sample = $7.56 \times 10^{-4} \times 10 = 7.56 \times 10^{-3}$

% by mass of citric acid = $\frac{7.56 \times 10^{-3} \times 192}{1.65} \times 100\% = 88.0\%$ [1]

(Colorless) gas bubbles form. / Effervescence occurs. / Carbon dioxide gas is [1] given out. Do not accept "the powder dissolves".

 $H^+ + HCO_3^- \longrightarrow H_2O + CO_2$ [1]

DSE16 09

- Dissolve the solids separately in water. [1] - Add aqueous ammonia / NaOH(aq) to each of the solutions obtained until excess, [1] White precipitate formed initially for all of them. But only the precipitate of ZnSO4 [[] dissolves in excess aqueous ammonia / NaOH(aq). - Heat respectively the two remaining solids in a test tube and place a piece of dry CoCl₂ [1] paper in the mouth of the tube. Only MgSO4 • 7H2O can turns dry CoCl2 paper from blue to pink / anhydrous CuSO4(s) from white to blue. - Effective communication [1]

DSE	16_11		
(a)	To ens	sure fair comparisons between the trials.	[1]
	OR,	To ensure the concentration of NaOH(aq) / reactant is the only variable.	
	OR,	The volume of NaOH(aq) used can represent the concentration of NaOH(aq)	
		/ reactant in the reaction mixtures.	
	(Not a	eccept if the answer is expressed in terms of "amount of NaOH(aq)")	
(b)	[OH-(aq] = 2.0 × (4.0/5.0) = 1.6 mol dm ⁻³	[1]
	pH =	$14 - (-\log[OH^{-}(aq)]) = 14 - (-\log(1.6)) = 14.20$	[1]
DSE	17_01		
(b)	(i)	The gas (ammonia) is less dense than air.	[1]
` ′	``	(Should be answered in terms of density. Not accept: The gas is lighter than air.)	
	(ii)	The gas (ammonia) is soluble (in water).	[1]
	` '	Accept: the gas will be absorbed by water / The gas will react with water.	
		(Not accept: The gas is slightly soluble in water.)	
(c)	(i)	White solid forms / white precipitate forms / heat evolves / temperature rises	[1]
		(Accept: milky mixture forms / cloudy mixture forms / white suspension forms.)	
	(ii)	(i) When H2SO4(aq) is added to it, BaSO4(s) (and H2O(l)) are formed, the	[1]
		concentration / number of mobile ions in the mixture decreases / [Ba2+]	
		and [OH-] decrease.	
		(2) Excess H ⁴ (aq) and SO ₄ ² -(aq) ions are introduced into the solution,	[1]
		The concentrations / amount / number of H+(aq) and SO42-(aq) ions in the	
		solution increase.	
		The concentrations / amount / number of (mobile) ions increases when	
		H2SO4 is in excess.	
		(Accept only H ⁺ or SO4 ² -is mentioned in the answer.)	
			20
DSE	17_02		
(c)		$(10^{-8} \times 1000) \div 207.2$	[1]
	= 4.8	3×10^{-8} mol dm ⁻³	[1]
DSE	17_06		
(a)	Oxidia	zing and corrosive	[1]
(b)	(i)	The reaction between concentrated sulphuric acid and NaOH(aq) is highly	[1]
		exothermic.	
		OR, Concentrated NaOH / H2SO4 is corrosive.	
		OR, Avoid to fill the burette more than once.	
		OR, Use less chemicals.	
		(Do not accept answer like "splashed out" without mentioning of "highly	
		exothermic,")	
133	(ii)	Red to orange	[1]
		Do not accept "red to yellow".	11-111-1-10-

	(iii)		of NaOH used = $0.189 \times 22.20 \times 10^{-3} = 4.20 \times 10^{-3}$	[1]
			of the concentrated H2SO4	
			$^{3} \div (2 \times 25 \times 10^{-3}) \times (1000 \div 5)$	[1]
		= 16.8 mol		[1]
		•	16.78, 16.783, 16.784, 16.80	
		Do not accept	16.7832 mol dm ⁻³	
		Alternative	Molarity of dilute sulphuric acid	
			$(M_{\text{difute}})(25)(2) = (0.189)(22.2)(1)$	
			$M_{dilute} = 0.0839 \text{ mol dm}^{-3}$	
			Molarity of concentrated sulphuric acid	
			$M_{\text{conc}}(5) = (0.0839)(1000)$	
			$M_{\text{conc.}} = 16.8 \text{ mol dm}^{-3}$	
-	10.00			
(a)	18_02	n for preparation	n – boiling tube with reagents and HEAT (with stopper)	[1]
(a)			cagents in a flask)	[1]
			munonia gas (without stopper)	[1]
	•		e gas with a gas syringe.)	(-1
	(3 1000	pr vonvering in		
	6	† Heat		
(b)	(i)	Ammonia is	soluble in water / Ammonia reacts with water to form aqueous	[1]
			nia dissolves, the atmospheric pressure forces the water in the	[1]
			ct into the flask through the glass tubing / the pressure inside the	
		flask is reduc	ced,	
	(ii)	The water in	the flask turns from colorless to pink.	[1]
		It is because a	iqueous ammonia is alkaline.	[1]
	18_07	10.1		E13
(a)		al flask		[1]
(b)	Yello	w to orange (Do	o not accept red)	[1]
(c)			$(q) = \frac{0.125 \times 0.01898}{2} = 1.187 \times 10^{-3}$	[1]
	0.	452 = 1.18	7×10 ⁻³	F 100
				[1]
	n = 1	LU		[1]
				308

(d) (i) Solutions with accurately known concentrations,

- [1]
- (ii) It can be used to determine the concentration of another reagent / number of water [1] of crystallization / molar mass, etc. via titration / to prepare a calibration curve.

DSE18 08

- (a) An acid which can (almost) completely ionize / dissociate to H+ ions in water.
- [1]

DSE19 03

Gas X may be ammonia / NHs.

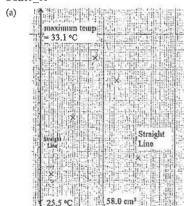
[1]

 $NH_3(aq) + H_2O(1) = NH_4^+(aq) + OH^-(aq)$

[1]

(State symbols not required) (Ignore incorrect state symbols) (Accept single arrow)

w)


OH-(aq) turns phenolphthalein pink.

[1]

[1]

OR, Ammonia/the gas/the solution is alkaline, and it turns phenolphthalein pink.

DSE19 08

Maximum temperature = 33.1 °C

Drawing 2 best-fit slant straight lines to show how to obtain the possible maximum temperature using the volume of NaOH(aq) (58.0 cm³).

(b) (i) moles of NaOH(aq) used = $1.0 \times \frac{58}{1000} = 0.0058$

[1]

- '.' At equivalent point, moles of NaOH(aq) used = moles of HCl(aq) reacted
- .. moles of HCl(aq) reacted = 0.058

concentration of HCl(aq) =
$$\frac{0.058}{42.0}$$
 = 1.38 M

DSE19 04

(a) (i) To dissolve the solid by adding delonised / distilled water to the solid in a [1] beaker.

Transfer the solution with rinsing (with deionised / distilled water) into a 250,0 [1] cm³ volumetric flask and add deionised / distilled water to the graduation mark of the flask. Shake thoroughly.

ii) molarlty of the standard solution = $\frac{1.12}{204.1} \div 0.2500 = 0.022$ M (Also accept 0.02195, 0.02196, 0.0220; Not accept 0.02192, 0.0210) (Accept max. 4 significant figures, i.e. 0.02195)

(Accept answer without an unit, but NOT accept answer with an incorrect unit.)

(b) If it ionises completely in water, [H*(aq)] = 0.06 (mol dm-3) then the pH will be 1.22. [1]
 However the actual pH (3.3) is higher than 1.22, therefore the -COOH in potassium hydrogenphthalate only ionises partly in water.
 Also accept:

The [H³(aq)] in pH 3.30 solution is 0.0005 (mol dm⁻³). However the actual [H⁴(aq)] (0.0005 mol dm⁻³) is lower than 0.06 mol dm⁻³, therefore the -COOH in potassium hydrogenphthalate only lonises partly in water.)

DSE19 10

Dissolve the sample in (distilled) water / Add water to the sample.

[1]

Add excess Zn(s) to the sample solution.

[1]

Filter to collect $ZnSO_4(aq)$ / filtrate / solution / Filter off the solid / Cu(s) and excess Zn(s) / [1]

Evaporate the filtrate, allow ZnSO₄ solid crystallises out / collect crystals and then dry (with [1]

filter paper / in a desiccator)

OR Heat (to concentrate/saturate) the filtrate, cool down to allow crystallisation / collect crystals and then dry

OR Set the filtrate aside to allow crystallisation / collect crystals and then dry

(Do not accept "heat to dryness", "put the filtrate into an oven", "dry the crystals in an oven")

Communication mark

[1]

(Chemical knowledge = 0 to 2, communication mark = 0

Chemical knowledge = 3 to 4, communication mark = 0 or 1

Incomplete answer or difficult to understand, communication mark = 0)

Need to indicate excess Zn(s) has been used at least once in the answer to give a complete answer.

DSE20_01

1.	(a)	2, 8,	18, 7	1
	(b)	Z	Z	1
		(Acci	ept answer with correct inner shell electrons) accept answer with incorrect inner shell electrons, if inner shell electrons are drawn)	
	(c)		$\begin{array}{l} K_2SO_3(s) + 2HCl(aq) \rightarrow 2KCl(aq) + H_2O(l) + SO_2(g) / \\ K_2SO_3(s) + 2H^*(aq) \rightarrow 2K^*(aq) + H_2O(l) + SO_2(g) \\ Correct states (1 mark) \\ Balanced equation (1 mark) \\ (No mark if the chemical species shown in the equation are incorrect) \end{array}$	2
		(ii)	(Reddish brown / brown) changes to colourless. / The solution changes to colourless.	1
			(Not accept incorrect initial colour. Not accept pale brown) $B_{12} + SO_2 + 2H_2O \rightarrow 2Br^- + SO_4^{2-} + 4H^+$ (State symbols not required) (Ignore incorrect state symbols)	1
		OR	$Y_2 + SO_2 + 2H_2O \rightarrow 2Y^- + SO_4^{2-} + 4H^+$	
			Y and Z have the same number of electrons / seven electrons in the outermost shells, hence similar chemical properties (leading to similar observation). (Not accept "Same chemical properties")	1
D	SE	E20_	_04	
4.	(a)	To i	ncrease the surface area of eggshell for increasing the reaction rate.	1
	(b)	To d	issolve organic substances in eggshell.	1
	(c)	Spee	of up the reaction between the calcium carbonate in the sample with $HCI(aq)$. / Shorten the needed for the reaction. / To make sure that the reaction is complete.	1
	(d)	† ph	tenolphthalein	1
	(e)	=(0.	ther of moles of CaCO ₃ in the sample 200 × 25.00 – 0.102 × 16.85) × 10 ⁻³ × ½ 64 × 10 ⁻³	1*
		Perce = 1.6	entage by mass of CaCO ₃ in the sample $4 \times 10^{-3} \times 100.1 \div 0.204 \times 100\%$ 5% (Accept 80.4 – 80.5%). Accept answer with max. 3 decimal places.)	1*
DS	SE	20_		
5.	. (a	(No	rboxyl (group) / -CO ₂ H (group) / -COOH (group) / -CO ₂ H / -COOH / CO ₂ H / COOH ot accept: acid / alkanoic acid / organic acid / COOH- / CHO ₂ / HO ₂ CCH ₂ CO ₂ H / boxylic acid group)	1
	(b	(i)	HO ₂ CCH ₂ CH ₂ CO ₂ H / HOOCCH ₂ CH ₂ COOH / (CH ₂ COOH) ₂ (Not accept: HOOCC ₂ H ₂ COOH)	1
			HO ₂ CCH ₂ (CH ₂)CO ₂ H ² HO ₂ CCOCCH ₂ CH ₃ HO ₂ CCH ₂ COOCH ₃ ² HO ₂ CCOCCH ₂ CH ₃	1 (1)
		(ii)	 The enthalpy change when solutions of an acid and an alkali / a base react together / neutralise under standard conditions to produce 1 mole of water. (Accept: 25°C (298K) and one atmospheric pressure (760 mmHg, 103 kPa) 	1
			As indicated in the equation, the reaction produces 2 moles of water, hence y / 2 represents the standard enthalpy change of neutralisation. (Accept. No unit)	1
		(iii)		1
			 W is a weak acid when compared with HCl(aq), energy/heat energy/heat is needed to ionise the hydrogen in the carboxyl/-CO₂H group. W is a weak(er) acid, energy/heat energy/heat is needed to ionise the hydrogen in the carboxyl/-CO₂H group. (Accept: absorb energy to break the O-H bond in carboxyl group.) 	1
			(Not accept: dissociate)	

DSE20_07

7.	(a)	•	Put a moist red litmus paper/moist pH paper near the mouth of the conical flask. Ammonia/NH3 gas dissolves in water to give OH ions is alkaline which turn red litmus	1
			paper to blue 7 ph paper to blue	-4
			Put a glass rod with cone. HCl / HCl(g) near the mouth of the conical flask.	(1
		•	After reaction, (dense) white fumes containing NH4Cl(s) is formed	(1
		٠	Deliver the gas produced into water, then use a pH meter to measure the pH of the solution formed.	(1
		.*1	Ammonia / NH ₁ gas dissolves in water to give OH ⁻ ions / an alkaline solution with $pH \ge 7$.	(1
	(b)	Alka	ali is a water soluble substance reacts with an acid to give salt and water only.	1
		/ All	kali is a substance when dissolved in water to give hydroxide ions as the only onion.	
		Alk	cali is a soluble base that reacts with an acid to give salt and water only.	
		(Not	t accept: alkali reacts with acid to give salt and water only.)	
			t accept: alkalis are water soluble base.) t accept: alkali is a solution with [OH-] higher than [H-].)	
		(ino	accepte, accast is a solution with [On] ingrest than [n].)	
	(c)	(i)	$Ba(s) + 9H_2(g) + 5O_2(g) \rightarrow Ba(OH)_2 \cdot 8H_2O(s)$ $\Delta H_i^p = -3345 \text{ kJ mol}^{-1}$	1
			$/ \text{Ba}(s) + 9\text{H}_2(g) + 5\text{O}_2(g) \rightarrow \text{Ba}(O\text{H})_2 * 8\text{H}_2O(s)$ $\Delta H = -3345 \text{ ki mol}^{-1}$	
			(Not accept: Ba(s) + 9H ₂ (g) + 5O ₂ (g) \rightarrow Ba(OH) ₂ * SH ₂ O(s) $\Delta H < 0$)	
			Correct state symbols and uniti	
		(ii)	$\Delta H^{0} = (-859) + 10 \times (-286) + 2 \times (-46) - (-3345) - 2 \times (-314)$	1 *
			=+162 kJ mol ⁻¹ (Show correct unit)	î
			(Accept, +162.0 kJ mol ⁻¹)	•
			(Not accept: 'wrong unit', 'missing unit', 'no plus sign', etc.)	
		(iii)	(As the reaction has AH > 0,) the reaction is endothermic f absorbs heat, thus the	1
			temperature would decrease	

SECTION 5 Fossil Fuels and Carbon Compounds

Multiple-Choice Questions

Part 1: (a) hydrocarbons. (b) homologous series and (c) alkanes and alkenes

CE90 06

The boiling points of some hydrocarbons are given in the table below:

Hydrocarbon	Ethane	Ethene	Propene	
Boiling point /C	89	104	-48	

If a mixture of these three hydrocarbons at -110°C is allowed to warm up gradually to -80°C, which of the following will happen?

- A. Ethene will remain in the liquid state.
- B. Propone will remain in the liquid state.
- C. Ethane and ethene will remain in the liquid state.
- D. Ethane, ethene and propene will exist in the gaseous state.

CE90 18

Which of the following statements concerning acid rain is NOT correct?

- A. Acid rain can be caused by the burning of fossil fuel.
- B. Acid rain can corrode buildings.
- C. Acid rain can make the soil infertile by removing the minerals from the soil.
- D. Acid rain can attack the human respiratory system.

CE90 21

Which of the following pairs of substances would react to produce hydrogen?

- (1) iron and steam
- (2) sodium and ethanol
- (3) magnesium and concentrated sulphuric acid
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE91 05

Tetrachloromethane is a common solvent in the chemistry laboratory. Which of the following hazard warning labels should be displayed on a bottle of tetrachloromethane?

- A. (i) only
- C. (1) and (3) only

- B. (2) only
- D. (2) and (3) only

CE91 22

Propene reacts with acidified potassium permanganate solution to form

A. CH1CH2CH2OH

B. CH₁CH(OH)CH₃

CH₂CH(OH)CH₂OH

D. CH1OHCH(OH)CH2OH

CE91 24

A. 3-dibromobut-1-ene

- B. 2-dibromobut-4-ene
- C. 3.3-dibromobut-1-ene
- D. 2.2-dibromobut-4-ene

CE91 34

The rain-water samples collected in Tsuen Wan District are found to be more acidic than those collected in Central District. Which of the following air pollutants would be responsible for this phenomenon?

- (1) carbon monoxide
- (2) sulphur dioxide
- (3) nitrogen dioxide
- A. (2) only

B. (3) only

(1) and (2) only

D. (1) and (3) only

CE91 36

Equal moles of chlorine and methane are allowed to react in diffused sunlight. Which of the following statements concerning the reaction is/are correct?

- (1) The reaction is violent.
- (2) The final product contains CH₃Cl and HCl only.
- The final product contains CH₃Cl, CH₂Cl₂, CHCl₃, CCl₄ and HCl.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE92 21

When 2-methylpropene reacts with bromine in tetrachloromethane, the product is

CE92 24

Which of the following statements concerning CH₃CH₃, CH₃CH₂CH₃ and CH₃CH_(CH₃)CH₃ is correct?

- A. They have different boiling points.
- B. They belong to different homologous series,
- C. They burn in excess oxygen to form carbon monoxide and water.
- D. They readily decolourize bromine in tetrachloromethane.

CE92 49

1st statement

2nd statement

A solution of hydrogen chloride in methylbenzene can turn blue litmus paper

Hydrogen chloride dissolves in methylbenzene to form hydrogen ions.

red.

CE93 29

$$C_{10}H_{22} \xrightarrow{\text{catalyst, heat}} C_{6}H_{14} + 2X$$

In the above process, which of the following combinations is correct?

	-	a constitutions is	
	Process	X	
A.	fractional distillation	an alkane	
B.	fractional distillation	an alkene	
C,	cracking	an alkane	
Đ.	cracking	an aikone	

CE93 32

Which of the following substances can react with propene?

- (1) concentrated sodium hydroxide solution
- (2) acidified potassium permanganate solution
- (3) ethanol
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE93_33

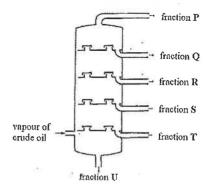
Which of the following statements about fossil fuels is correct?

- A. They are liquid or gases.
- B. They are all formed from plants which died millions of years ago,
- They can be recycled to help conserve energy resources.
- D. They cause air pollution when burnt.

CE94 21

A solution of chlorine in tetrachloromethane is shaken with an aqueous solution of a compound X in a test tube. On standing, two layers are formed in test tube and the lower layer is violet in colour. X may be

A. sodium fluoride


B. sodium bromide

C. sodium iodide

D. sodium sulphite

CE94 22

Direction: Q.22 and Q.23 refer to the following diagram which shows a fractionating column of an oil refinery.

Which of the following fractions is NOT cracked to produce more useful products?

A. P

В.

C. S

D. T

CE94 23

Which if the following statements is correct?

- A. Fraction P has the highest boiling point.
- B. Fraction T is used for surface roads.
- C. Fraction U is the least viscous.
- D. Fraction S burns with a more sooty flame than fraction Q.

CE94 32

Which of the following label(s) should be placed on a bottle containing tetrachloromethane?

- A. (1) only
- C. (1) and (3) only

- B. (2) only
- D. (2) and (3) only

CE94 41

A compound has the following structure:

Which of the following statements about this compound are correct?

- (1) It can decolourize bromine water.
- (2) It can be polymerized.
- (3) It can burn in air.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE95 15

The structural formula of a certain compound is shown below:

The name of this compound is

A butan-1-ol

B. butan-2-of

C. 2-methylpropan-1-ol

D. 2-methylpropan-2-ol

CE95 20

Which of the following statements concerning alkenes is INCORRECT?

- A. They can decolourize a solution of bromine in 1,1,1-trichloroethane.
- B. They can decolourize red litmus solution.
- C. They can decolourize acidified potassium permanganate solution.
- D. They can be polymerized to form addition polymers.

CE95 23

Which of the following substances can cause acid rain?

- A. lead compounds from the burning of leaded petrol in motor cars.
- B. carbon dioxide from the complete combustion of town gas.
- C. carbon soots from the incomplete combustion of coal.
- nitrogen dioxide from the burning of fuels in power stations.

CE95 39

Which of the following substances can conduct electricity?

- (1) molten zinc chloride
- (2) an aqueous solution of magnesium sulphate
- (3) a mixture of ethanol and water
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE96 13

Which of the following substances is NOT derived from petroleum?

A. bleach

B. ethanol

C. polystyrene

D. soapless detergent

CE96_14

One mote of each of the following compounds is burnt completely in oxygen. Which compound requires the greatest volume of oxygen, measured at the same temperature and pressure, for complete combustion?

A. carbon monoxide

B. ethane

C. ethene

D. ethanol

CE96_20

Which of the following methods can be used to minimize the air pollutant mentioned?

- A. increase the air supply to remove nitrogen dioxide produced by burning heavy oil
- B. using catalytic converters to remove lead compounds produced by burning leaded petrol
- C. using scrubbers remove carbon monoxide produced by the incomplete combustion of
- D. using electrostatic precipitators to remove particulates produced by burning coal

CE97 10

Which of the following combinations is INCORRECT?

Chemical

Method of storage

A. calcium

under water

B, potassium

under paraffin oil

C, ethanol

in a cool place

D. potassium permanganate solution

in a brown bottle

CE97_16

Which of the following compounds represents the first member of a homologous series?

A. ethane

B. ethene

C. ethanol

D. ethanoic acid

CE97_18

The model shown below represents a compound containing 6 hydrogen atoms (white spheres) and 3 carbon atoms (black spheres).

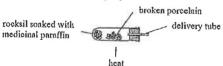
Which of the following statements concerning the compound is INCORRECT?

- A. Its structural formula is C3H6.
- B. It can be prepared by cracking petroleum fractions.
- C. It can decolourize bromine in 1,1,1-trichloroethane.
- D. It can undergo polymerization.

CE97_19

Which of the following compounds CANNOT be produced directly from ethene?

A. carbon dioxide


B. ethanol

C. ethyl ethanoate

D. 1.2-dibromoethane

CE97_23

Direction: Q.23 and Q.24 refer to the following experiment:

Which of the following set-ups should be connected to the delivery tube to collect the gaseous products formed?

C.

B.

D.

CE97 24

Which of the following reactions is involved in this experiment?

A. cracking

B. redo

C. catalytic hydration

D. destructive distillation

CE97 33

Which of the following statements concerning the reaction of methane with bromine is/are correct?

- (1) It is an addition reaction.
- (2) It is a substitution reaction.
- (3) A similar reaction will occur if propane is used instead of methane.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE97 38

Which of the following statements about using ethanol as a car fuel is correct?

- (1) Ethanol is a cleaner fuel than petrol.
- (2) Using ethanol as a car fuel is economical in agricultural countries with sugar cane as the main crop.
- (3) A car engine has to be suitably modified when using ethanol as a fuel.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE97_42

Which of the following measures can reduce the formation of acid rain?

- (I) installing catalytic oxidizers in cars
- (2) using leaded petrol in cars
- (3) using fuels of low sulphur content in cars
- A. (1) and (2) only

B. (1) and (3) only

. (2) and (3) only

D. (1), (2) and (3)

CE98 03

Which of the following substances is the main constituent of town gas?

A. hydrogen

B. methane

C. carbon monoxide

D. gaseous naphtha

CE98 07

Which of the following environmental problems is NOT caused by excessive burning of fossil fuels?

- A. the corrosion of marble statues
- B. the formation of smog
- a higher incidence of liver disease
- D. global warming

CE98 14

Which of the following statements concerning propene is correct?

- A. It can be converted by catalytic hydration to an alkanol with molecular formula C3H6O.
- B. It can undergo condensation polymerization,
- C. It can be manufactured by fractional distillation of crude oil.
- D. It can undergo substitution reaction with a solution of bromine in 1,1,1-trichloroethane.

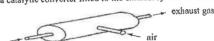
CE98 29

X is a compound containing four carbon atoms. It gives negative results with the following tests.

Test	
(1) Treating X with sodium hydrogencarbonate solution.	
(2) Treating X with a solution of bromine in 1,1,1-trichloroethane	
(2) Heating X with acidified potassium dichromate solution.	

The structural formula of X may be

A. CH3CH2CH=CH2


B. CH3CH2CH2CH2OH

C. CH3CH2CH2CO2H

D. CH3CO2CH2CH3

CE98 39

The diagram below shows a catalytic convertor fitted to the exhaust system of a car.

gas from car engine

Which of the following pollutants from the car engine undergo reactions in the catalytic converter to produce less harmful products?

- (1) carbon monoxide
- (2) hydrocarbons
- (3) nitrogen monoxide
- A. (1) and (2) only

B. (1) and (3) only

c. (2) and (3) only

D. (1), (2) and (3)

CE98 47

1st statement

2nd statement

The use of leaded petrol has been banned in

Lead compounds in car exhaust can cause

damage to human brains.

CE99 03

Which of the following has the lowest boiling point?

A. ethanol

Hong Kong.

B. propan-1-ol

C. propane

D. butane

CE99 30

Which of the following combinations is INCORRECT?

	Pollutant	Harmful effect
Α.	hydrocarbons	causing liver diseases
В.	carbon monoxide	causing unconsciousness
C.	lead compounds	causing brain damage
D	carbon particles	causing respiratory disease.

CE99 32

Which of the following substances can react with acidified potassium permanganate solution?

- (I) ethene
- (2) copper(II) sulphate solution
- (3) iron(II) sulphate solution

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE99 35

The label below is displayed on a container for chemical X:

Which of the following chemicals may X be?

- (1) bromochlorodifluoromethane
- (2) ethanol
- (3) potassium

4. (1) only

B. (2) only

(1) and (3) only

D. (2) and (3) only

CE99 44

Which of the following statements concerning the reaction of an alkane with bromine are correct?

- (1) The reaction occurs faster under sunlight than in darkness.
- (2) The reaction is a substitution.
- The colour of the reaction mixture fades.

A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE00_06

Which of the following pairs of compounds can be distinguished by treating with an acidified potassium dichromate solution?

- A. ethane and ethene
- B. ethanol and propan-1-ol
- C. sodium carbonate and sodium hydrogenearbonate
- D. sodium sulphite and sodium sulphate

CE00 08

Which of the following statements concerning members of a homologous series is INCORRECT?

- A. They contain earbon and hydrogen only.
- B. They can be represented by the same general formula.
- C. They have similar chemical properties.
- Their boiling points increase with their relative molecular masses.

CE00 14

Which of the following solutions can react with bromine water to give a colourless solution?

- A. sodium chloride solution
- B. sodium sulphite solution
- C. sodium iodide solution

D. sodium hypochlorite solution

CE00 21

Which of the following processes requires a catalyst?

- A. preparation of ethyl ethanoate from ethanoic acid and ethanol
- B. conversion of sulphur trioxide to concentrated sulphuric acid
- C. manufacture of chlorine bleach from brine
- D. reduction of iron(III) oxide to iron

CE00 25

Which of the following processes is endothermic?

- A. cracking of petroleum fractions
- B. fermentation of glucose solution
- C. manufacture of ammonia by Haber process
- D. oxidation of sulphur dioxide to sulphur trioxide in the contact process

CE00 27

Which of the following changes occurs in a catalytic converter installation in a motor car?

- A. Nitrogen monoxide changes to nitrogen dioxide.
- B. Carbon monoxide changes to carbon dioxide.
- C. Unburnt hydrocarbons change to carbon particles.
- D. Sulphur changes to sulphur dioxide.

CE00 40

Which of the following measures can reduce the emission of pollutants from a coal-fired power station?

- (1) installation of scrubbers
- (2) installation of electrostatic precipitators
- (3) increasing the height of the chimney
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE01 03

Which of the following processes is exothermic?

- A. melting of ice
- B. evaporation of ethanol
- C. sublimation of iodine
- D. dissolving of sodium hydroxide pellets in water

CE01 07

Which of the following statements concerning water is correct?

- A. It reacts with calcium to give a colourless gas.
- B. It is a strong electrolyte.
- C. It turns anhydrous cobalt(II) chloride from pink to blue.
- D. It is immiscible with ethanol.

CE01 12

Which of the following processes is NOT involved in the production of ethanol from crude oil?

A. crackin

B. fermentation

C. catalytic hydration

D. fractional distillation

CE01 14

Which of the following pairs is correctly matched?

Pollutant

Effect

A. carbon monoxide

global warming

B. sulphur dioxide

darkening of building walls

C. lead compounds

liver disease

D. unburnt hydrocarbons

lung cancer

CE01_31

Which of the following measures can reduce the emission of sulphur dioxide from a factory using diesel fuel?

- (1) the installation of catalytic converters
- (2) the installation of scrubbers
- (3) the installation of electrostatic precipitators
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE01_32

The formulae of three straight-chain hydrocarbons are listed below:

- (1) C₂H₆
- (2) C₃H₆
- (3) C₄H₈

Which of these hydrocarbons is/are unsaturated?

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE01 41

Which of the following statements concerning oil spillage on the sea are correct?

- (1) Petroleum is toxic to marine lives.
- (2) Petroleum can block the oxygen supply to marine lives.
- (3) Petroleum can cause the outbreak of fire on the sea.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE02 05

Consider the aqueous solution listed below:

- (1) | M ethanoic acid
- (2) i M hydrochloric acid
- (3) 1 M ammonia solution

Which of the following represents the increasing order of pH of the solutions?

A. (1), (2), (3)

B. (2), (1), (3)

C. (3), (1), (2)

D. (3), (2), (1)

CE02_09

Which of the following equations represents a cracking reaction?

- A. C4H8+H2 -- C4H10
- B. C₄H₁₀ → C₃H₆+CH₄
- C. C₆H₁₂O₆ -- 2C₂H₅OH + 2CO₂
- D, C4H9OH --- C4H8+H2O

CE02_12

Which of the following reactions does NOT require the use of a catalyst?

- A. conversion of ammonia to nitrogen monoxide
- B. hydration of ethene to give ethanol
- C. oxidation of ethanol to ethanoic acid
- D. fermentation of glucose to give ethanol

CE02 33

Which of the following reactions is/are endothermic?

- (1) the fermentation of glucose
- (2) the cracking of naphtha
- (3) the reaction of lime with dilute hydrochloric acid
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE02 34

Upon complete combustion, gaseous hydrocarbon X gives an equal number of moles of carbon dioxide and water. Which of the following hydrocarbons may X be?

- (1) ethane
- (2) ethene
- (3) propene
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE02 43

In which of the following processes will carbon dioxide be produced?

- (1) the fermentation of glucose solution
- (2) the biodegradation of animal faeces
- the treatment of car exhaust in a catalytic converter
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE02_44

Both ethene and ethyne are gaseous hydrocarbons. Their structures are shown below:

$$H-C\equiv C-H$$

ethene

ethyne

Which if the following statements concerning ethene and ethyne are correct?

- (1) Both are unsaturated hydrocarbons.
- (2) Both are insoluble in water.
- (3) Ethyne burns with a more sooty flame than ethene.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE02 48

1st statement

2nd statement

The basicity of methanoic acid is different from that of ethanoic acid.

The number of hydrogen atoms in a molecule of methanoic acid is different from that in a molecule of ethanoic acid.

CE03 08

Which of the following combinations is correct?

 Homologous series
 General formula

 A. alkanes
 C_nH_{2π}

 B. alkenes
 C_nH_{2π+2}

C. alkanois $C_nH_{2n}OH$ D. alkanoic acids $C_nH_{2n+1}CO_2H$

CE03_10

Which of the following combinations is correct?

 Chemical
 Hazardous nature

 A.
 sodium
 oxidizing

 B.
 mercury
 toxic

 C.
 ethyl ethanoate
 irritant

 D.
 potassium dichromate
 explosive

CE03 17

An organic compound has the following structure:

The systematic name of this compound is

A. 1,2-dimethylethanol

B. 1-methylpropan-1-of

C. 1-methylpropan-2-ol

D. butan-2-ol

CE03 31

Propene is an unsaturated hydrocarbon. Which of the following reactions is/are characteristic of the unsaturated nature of propene?

- (1) It undergoes incomplete combustion to give carbon monoxide.
- (2) It decolourizes acidified potassium permanganate solution.
- (3) It undergoes polymerization to give polypropene.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE03 33

Ethane reacts with bromine under suitable conditions. Which of the following statements concerning this reaction is/are correct?

- (1) The reaction occurs readily in the dark,
- (2) The reaction is a substitution.
- (3) The reaction gives a mixture of organic products.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE03 37

Which of the following statements concerning the manufacture of town gas in Hong Kong is/are correct?

- (1) Town gas is produced from coal,
- (2) Town gas contains hydrogen as the major component.
- (3) Oxygen is added to enhance the flammability of town gas prior to its delivery to customers.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE03 38

The structure of two organic compounds are shown below:

$$CH_3-C \bigvee_{OCH_3}^O \qquad \qquad CH_3CH_2-C \bigvee_{OH_3}^O$$

Which of the following statements concerning these two compounds is/are correct?

- (1) They have the same relative molecular mass.
- (2) They have the same chemical properties.
- (3) They are both soluble in water,
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE05SP 16

Which of the following natural substances is essentially a single compound?

A. air

B. coal

C. petroleum

D. quartz

CE05SP 19

Which of the following compounds is the least soluble in water?

A. ethanol

B. ethanoic acid

C. ethyl ethanoate

D. sodium ethanoate

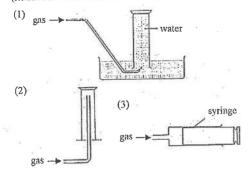
CE04 21

A gaseous mixture consists of methane and ethane in a mole ratio of 1:1. It has a volume of 200 cm³ at room temperature and pressure. What is the volume of oxygen required, measured at room temperature and pressure, for the complete combustion of the mixture?

A. 400 cm3

B. 550 cm³

C. 700 cm³


D. 1100 cm³

CE04 28

Ethene can be prepared by heating ethanol with excess concentrated sulphuric acid. The reaction involved can be represented by the equation:

$$CH_3CH_2OH \xrightarrow{COHC. H_2SO_4} CH_2=CH_2+H_2O$$

Which of the set-ups shown below can be used to collect the ethene produced? (Relative atomic masses: H = 1.0, C = 12.0, N = 14.0, O = 16.0)

(1) and (2) only

(1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

CE04 37

After heavy rain, the Air Pollution Index becomes lower. Which of the following air pollutants are likely to have been removed by the rain water?

- (1) particulates
- carbon monoxide
- nitrogen dioxide
- (1) and (2) only

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

CE04 42

The structure of two organic compounds are shown below:

Which of the following statements concerning the two compounds are correct?

- (1) Both compounds are members of the same homologous series.
- Both compounds have the same molar volume at room temperature and pressure
- Both compounds undergo sublimation when treated with bromine.
- (1) and (2) only

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

CE04 45

1st statement

2nd statement

Both but-1-ene and but-2-ene can decolourize a solution of bromine in 1,1,1trichloroethane.

Both but-1-ene and but-2-ene have the same

molecular formula.

CE04 46

1st statement

2nd statement

Methanoic acid is a non-electrolyte.

Methanole acid is a covalent compound.

CE05_01

What is the systematic name of the following hydrocarbon?

- 1.1.2-trimethylpropaue
- B. 2,3,3-trimethylpropane

1,2-dimethylbutane

D. 2,3-dimethylbutane

CE05 02

Upon cracking, one molecule of decane (C10H22) gives two molecules of propene and one molecule of an alkane (X). What is X?

A. C4H6

B. C4H10

C. C7H14

D. C7H16

CE05 04

What is the type of reaction involved when hydrogen bromide reacts with ethene to form bromoethane?

A. addition

cracking

polymerization

D. substitution

CE05 12

Which of the following reactions is endothermic?

- A. $Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$
- B. $CaCO_3(s) + 2H^+(aq) \longrightarrow Ca^{2+}(aq) + H_2O(1) + CO_2(g)$
- $2C_4H_{10}(g) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(l)$
- $C_9H_{20}(1) \longrightarrow C_2H_6(g) + C_3H_6(g) + C_4H_8(g)$

CE05 21

Which of the following molecule formulae represents an alkanoic acid?

A. CH₂O

B. CH₂O₂

C. C2H2O2

D. TC2H6O2

CE05 28

Which of the following processes affect the amount of carbon dioxide in the atmosphere?

- (1) burning of fossil fuels
- (2) photosynthesis in plants
- (3) absorption by sea water
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE05_37

Methane burns completely in oxygen according to the following equation:

What is the mass of oxygen required for the complete combustion of 48 g of methane? (Relative atomic masses: H = 1.0, C = 12.0, C = 16.0)

A. 48 g

B. 96g

C. 192 g

D. 384 g

CE05 43

Consider the reaction represented by the equation below:

$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$$

Which of the following statements concerning this reaction are correct?

- (1) It is a reversible reaction.
- (2) The raw materials for the reactants are readily available in nature.
- (3) The product mixture formed can be used as a gaseous fuel.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE05 46

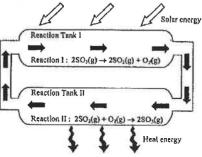
Which of the following energy conversions is involved in the system?

- A. chemical energy -- heat energy
- B. light energy → heat energy
- C. chemical energy -- light energy -- heat energy
- D. light energy --- chemical energy --- heat energy

CE05 47

Which of the following statements concerning the system are correct?

- (1) Reaction I is endothermic.
- (2) SO₂(g) and O₂(g) should be pumped into Reaction Tank II from time to time.
- (3) A catalyst is required in Reaction Tank II.
- A, (1) and (2) only


B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE05 45

Obtaining energy from the sun provides many advantages over that from combustions of fossil fuels. The diagram below shows a closed system which can be used to convert solar energy to heat energy by means of two chemical reactions.

(Key: represents direction of gas flow)

The gases in the diagram are circulated around the system. Energy is stored by means of Reaction I and later released by means of Reaction II.

What are the advantages of obtaining energy from the sun over that from combustion of fossil fuels?

- (1) Supply of solar energy is unlimited.
- (2) Solar energy is always available.
- (3) Using solar energy produces no waste products.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE06 11

Which of the following statements about acids is correct?

- A. Nitric acid is used in car batteries.
- B. Hydrochloric acid is produced in human stomach.
- C. Ethanoic acid is a strong oxidizing agent.
- The following hazard warning label should be displayed on a bottle of concentrated sulphuric acid.

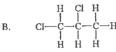
CE06 12

Consider the following information:

Compound	Relative molecular mass 46	
CH₁CH₂OH		
CH ₃ CH ₂ OCH ₃	60	
CH3CH2CO2CH3	88	
C ₆ H ₁₂ O ₆	180	

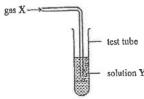
When 1 g of each of these compounds undergoes complete combustion, which one will produce the greatest number of moles of carbon dioxide?

A. CH₃CH₂OH


B. CH₃CH₂OCH₃

C. CH₁CH₂CO₂CH₃

D. C₆H₁₂O₆


CE06 16

Which of the following compounds is formed from the reaction of propene with chlorine?

CE06 17

Gas X is bubbled into solution Y as shown below:

Which of the following combinations would give no visible change in the test tube?

X

A. sulphur dioxide

sodium iodide solution

B. ethane

acidified potassium permanganate solution

C. chlorine

litmus solution

D. carbon dioxide

calcium hydroxide solution

CE06 22

Which of the following processes is/are application(s) of neutralization?

- (1) using scrubbers to remove sulphur dioxide from fuel gas in a power station
- (2) using catalytic converters to remove nitrogen oxides in car exhaust
- (3) using sodium hydroxide solution to remove copper(II) ions in industrial waste water
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE06 23

Rain water samples collected in industrial areas have pH lower than those collected in the countryside. Which of the following air pollutants is/are responsible for this phenomenon?

- (1) carbon dioxide
- nitrogen dioxide
- (3) particulates

B. (2) only

A, (1) only
C. (1) and (3) only

D. (2) and (3) only

CE06 30

1st statement

2nd statement

In Hong Kong, taxis have switched from using diesel to using natural gas as fuel.

Burning natural gas poses less harm to the environment than burning diesel.

CE06 44

Which of the following statements concerning a catalyst are correct?

- (1) A catalyst can alter the rate of reaction.
- 2) The mass of a catalyst remains unchanged at the end of the reaction.
- A catalyst should be in the same physical state as the reaction.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE06 45

In an experiment to prepare a polymer, equal volumes of styrene and kerosene are mixed and then heated under reflux for about an hour. After cooling, the resulting mixture is poured into a large volume of methanol. A white waxy solid is formed. Which of the following statements concerning the experiment are correct?

- (1) The experiment should be conducted in a fume cupboard.
- (2) The mixture of styrene and kerosene is heated under reflux because kerosene is volatile.
- (3) Methanol reacts with styrene to form the waxy solid.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE06 46

There are two unlabeled bottles in the laboratory. One of the bottles contains an aqueous solution of common salt and the other contains antiseptic alcohol. Which of the following methods can be used to distinguish the substances in the bottles?

- (1) adding a small amount of water
- (2) detecting their odour
- (3) measuring their electrical conductivity
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE07 02

Which of the following substances has a sharp boiling point?

A. petrol

B. red wine

C. molten wax

D. liquid ammonia

CE07 04

Which of the following statements concerning members of a homologous series is correct?

- A. The members of the same molecular formula.
- B. The relative molecular mass of each successive member differs by 14,
- C. The volatility of the members increases with relative molecular mass.
- D. The members with more carbon atoms in their molecules burn more readily.

CE07 08

What is the systematic name of the following compound?

- A. 2-chloro-2-ethylpropane
- B. 2-chloro-2-methylbutane
- C. 1-chloro-1,1-dimethylpropane
- D. 2-chloro-2,2-dimethylpropane

CE07 10

Which of the following suggestions for storing chemicals is acceptable?

- storing sodium in a brown glass bottle,
- B. storing silver nitrate solution in an iron can.
- C. storing ethyl ethanoate in an expanded polystyrene container.
- D. storing concentrated sulphuric acid in a polyvinyl chloride bottle.

CE07 14

How many moles of ethane contain y hydrogen atoms?

(L represents the Avogadro's constant.)

A. y/L

B. L/y

C. y/6L

D. 6y/L

CE07 26

Which of the following statements concerning the measures to reduce air pollutants is / are correct?

- (1) Scrubber can be used to reduce carbon monoxide.
- (2) Catalytic converter can be used to reduce nitrogen monoxide.
- (3) Electrostatic precipitator can be used to reduce unburnt hydrocarbons.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE07 30

1⁵¹ statement

2nd statement

Carbon can form a large number of compounds with long earlier chains.

Carbon atoms can share electrons with one

another.

CE07 33

50 cm³ of carbon monoxide burns completely in 50 cm³ of oxygen, Assuming that all volumes are measured at room temperature and pressure, what is the final gaseous volume at the end of the combustion?

(Molar volume of gas at room temperature and pressure = 24 dm³)

A. $50 \, \text{cm}^3$

B. 75 cm³

C. 100 cm³

D. 150 cm³

CE07 49

1st statement

2nd statement

Cracking is an endothermic reaction.

Cracking results in an increase of number of

molecules.

CE08 06

An organic compound has the following structure:

The systematic name of this compound is

A. 2-ethylpropan-2-ol.

B. 2-methylbutan-1-ol,

C. 2-methylbutan-2-ol.

D. 1,1-dimethylpropan-1-ol.

CE08 14

Which of the following petroleum fractions has the highest carbon content?

A. diesel

B. petrol

C. kerosene

D. naphtha

CE08 27

Which of the following substances are sources of organic chemicals?

- (1) wood
- (2) rock
- (3) crude oil
- A. (1) and (2) only

B. (i) and (3) only D. (1), (2) and (3)

- C. (2) and (3) only
 - (2) and (3) only

CE08 29

1st statement

The boiling point of butane is higher than that of methane.

2nd statement

The van der Waals' forces between butane molecules are stronger than the forces between methane molecules.

CE08 49

1st statement

Fractional distillation can convert large alkane molecules to smaller alkane molecules and alkane molecules.

2nd statement

Fractional distillation involves breaking and forming of covalent bonds.

CE09 03

Which of the following properties is NOT possessed by both carbon and nitrogen?

- A. They can form multiple bonds.
- B. They can exit in giant covalent structures.
- C. They are chemically stable at room temperature.
- D. They react with oxygen under suitable conditions to form acidic oxides.

CE09 11

What is the systematic name of the following compound?

A. 2-bromobut-3-ene

- B. 3-bromobut-1-ene
- C. 1-bromo-1-methylpropene
- D. 3-bromo-3-methylpropene

CE09 16

Which of the following is/are renewable energy source(s)?

- (1) natural gas
- (2) wind power
- (3) nuclear energy
- A. (1) only

B. (2) only

c. (1) and (3) only

D. (2) and (3) only

CE09 21

Which of the following methods are used to treat solid wastes in Hong Kong?

- (1) recycling of metal wastes
- (2) using plastic wastes as fuel
- (3) burying domestic solid wastes in landfill sites
- A. (1) and (2) only

B. (1) and (3) only

c. (2) and (3) only

D. (1), (2) and (3)

CE09 25

Which of the following hazard warning labels should be displayed on the reagent bottle of methanol?

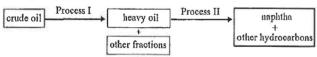
- A. (1) and (2) only
- C. (2) and (3) only

- B. (1) and (3) only
- D. (1), (2) and (3)

CE09 26

Which of the following measures can help reduce the level of carbon monoxide at the road side?

- (1) using liquefied petroleum gas as fuel for motor vehicles
- (2) installing catalytic converter for motor vehicles
- installing electrostatic precipitators for motor vehicles
- A. (1) and (2) only


B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE10 02

Consider the industrial processes as shown below:

Which of the following combinations is correct?

Process I

Process II

A. is a chemical change, is a physical change. is a chemical change. is a chemical change. C. is a physical change. is a physical change. D. is a physical change. is a chemical change.

CE10 12

The structure of compound R is shown below:

The systematic name of R is

A. 2-methylbutan-3-ol.

- B, 3-methylbutan-2-ol.
- C. 1,1-dimethylpropan-2-ol.
- D. 3,3-dimethylpropan-2-ol.

CE10 25

Which of the following measures can help improve the air quality in Hong Kong?

- (1) Use natural gas to replace coal in generating electricity.
- Use electricity to replace petrol in drive cars
- Use fuel with lower sulphur content to drive ferries,
- (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE10 27

Which of the following environmental problems may be reduced by installing catalytic converters in petrol-driven cars?

- (1) acid rain
- greenhouse effect
- photochemical smog
- (1) and (2) only

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

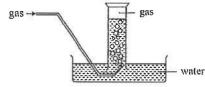
CE10 29

1st statement

2nd statement

When using a Bunsen burner with the air hole closed, the burner gives a non-luminous flame.

When using a Bunsen burner with the air hole closed, the fuel undergoes incomplete combustion.


CE10 50

1st statement

The reaction of charcoal with oxygen is endothermic.

Charcoal that is placed in fire can be ignited.

CE11 10

The set-up shown in the above diagram can be used to collect

Á. ethene. ammonia.

C. sulphur dioxide. D. hydrogen chloride.

CE11 18

The equation below represents the complete combustion of organic compound X:

What is X?

C₃H₆ A.

B. C1H8

C. C₃H₆O

D. C₃H₈O

CE11 22

Which of the following statements concerning cracking and fractional distillation in petrochemical industry is / are correct?

- (1) Both processes involve heating.
- Both processes are chemical changes.
- Both processes produce extra alkenes.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE11 38

Hydrocarbon X contains 80% of carbon by mass. What is the empirical formula of X?

(Relative atomic masses: H = 1.0, C = 12.0)

A. CH

B. CH₂

C. CH₁

D. CH₄

CE11 42

The exhaust pipe of a petrol-driven car will corrode easily because

- there are nitrogen oxides passing through the exhaust pipe.
- there are unburnt hydrocarbons passing through the exhaust pipe.
- the exhaust pipe usually becomes hot when the car engine is running.
- (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

Part 2: (d) addition polymers

CE91 26

Teflon, a polymer used for coating and non-stick cooking utensils, has the structure given below:

Which of the following is the monomer for Teflon?

A. 1,2-difluoroethane

1,2-diffuoroethene

1,1,2,2-tetrafluoroethane

1,1,2,2-tetrafluoroethene D.

CE91 27

A sample of polymer gives acid fumes on strong heating. The polymer is probably

B. polypropene

C. polystyrene

D. polyvinyl chloride

CE92 25

The polymer formed by
$$H_2N$$
– $(CH_2)_6$ – NH_2 and HO
OH

- has a formula of
- is a thermosetting plastic.
- has cross-linkages.
- burns with a floral smell.

CE92, 43

Which of the following polymers is/are NOT suitable for making a container for boiling water?

- (1) perspex
- urea-methanal (2)
- polyvinyl chloride
- (1) only

B, (2) only

(1) and (3) only

D. (2) and (3) only

CE93 35

A polymer has the following structure:

Its monomer is

chlomethene.

B. 1.1-dichloroethane.

1.2-dichloroethene.

1,2-dichloroethane.

CE94 20

X is a synthetic polymer. On gentle heating, it softens and chars. On strong heating, it burns with an acidic smell. X is probably

A. polypropene.

polystyrene.

polyvinyl chloride.

perspex.

CE94 41

A compound has the following structure:

Which of the following statements about this compound are correct?

- It can decolourize bromine water.
- It can be polymerized.
- It can burn in air.
- (1) and (2) only

(1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

CE95 22

The formula below can be used to represent the structure of some polymers.

(X represents an atom or a group of atoms.)

Which of the following combination is INCORRECT?

		-
	X	Name of polymer
A.	H	polyethene
B.	Cl	polyvinyl chloride
C.	CH ₃	perspex
D.	C ₆ H ₅	polystyrene

CE95 35

(1) iron nails

Which of the following substances, when mixed with lemon juice, would give off gas bubbles?

(2)	milk of magnesia	
(3)	polyethene wrap	
Á,	(1) only	
C.	(1) and (3) only	

B. (2) only D. (2) and (3) only

CE96 05

Which of the following materials are suitable for making the base and handle of a frying pan?

	Base	<u>Handle</u>
A.	Aluminium	Polyvinyl chloride
В.	Copper	Urea-methanol
C.	Titanium	Polyvinyl chloride
D.	Zinc	Urea-methanol

CE97 18

The model shown on the right represents a compound containing 6 hydrogen atoms (white spheres) and 3 carbon atoms (black spheres).

compound is INCORRECT?

A. Its structural formula is C3H6.

It can be prepared by cracking petroleum fractions.

It can decolourize bromine in 1,1,1-trichloroethane.

D. It can undergo polymerization.

CE97 40

Which of the following methods can be used to solve the pollution problems associated with the disposal of plastic waste?

(1) recycling of plastics

making biodegradable plastics

burning plastic waste in incinerators with tall chimneys

A. (1) and (2) only (2) and (3) only B. (1) and (3) only

D. (1), (2) and (3)

CE98 14

Which of the following statements concerning propene is correct?

A. It can be converted by catalytic hydration to an alkanol with molecular formula C1H8O.

It can undergo condensation polymerization,

It can be manufactured by fractional distillation of crude oil.

It can undergo substitution reaction with a solution of bromine in 1,1,1-trichlorocthane.

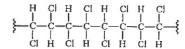
CE98 49

1 st statement				2 nd statement		
Wash bottle	s used	in	the	chemi	stry	Polyethene is an addition polymer.
laboratory	are con	nmo	nly	made	of	
polyethene.						

CE99 28

Which of the following substance is a thermoplastic as well as a condensation polymer?

A. nylon


B. perspex

C. polyethene

D. urea-methanal

CE99 41

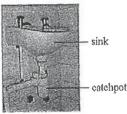
Plastic X has the following structure:

Which of the following statements concerning X are correct?

The monomer of X is CHCI=CHCI.

X can be used to make electric sockets.

The flue gas produced by the incineration of X can cause the formation of acid rain.


(1) and (2) only

B. (1) and (3) only

(2) and (3) only

D. (1), (2) and (3)

CE00_38

Some concentrated sulphuric acid was poured into a sink connected to a catchpot made of polyvinyl chloride (PVC). After some time, the catchpot becomes deformed. Which of the following explanations for the deformation of the catchpot is/are correct?

(1) The heat liberated when the concentrated sulphuric acid mixed with the water in the catchpot caused PVC to soften.

(2) PVC was decomposed into its monomer by the concentrated sulphuric acid.

(3) PVC was oxidized by the concentrated sulphuric acid.

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE01 09

Which of the following statements concerning uses of plastics is correct?

A. Perspex is used for making ash trays.

B. Polyvinyl chloride is used for making raincoats.

C. Polystyrene is used for making floor tiles.

D. Nylon is used for making packing materials for electrical appliances.

CE01_17

Which of the following compounds is a monomer of polyvinyl chloride (polychloroethene)?

A, CH2=CHCl

B. CH2=CCl2

C. CHCI=CHCI

D. CCl₂=CCl₂

CE02 20

The monomer of polymer X is chloroethene. Which of the following statements concerning X is correct?

A. X is a condensation polymer.

B. X is a thermosetting plastic.

C. X is used in making drainage pipes.

D. The repeating unit of X is as follows:

CE02 30

Starch, a natural polymer, is a carbohydrate. When concentrated sulphuric acid is added dropwise to some starch, a black substance is formed. The reaction involved is

A. dehydration

B. depolymerization

C. redox reaction

D. neutralization

CE03 31

Propene is an unsaturated hydrocarbon. Which of the following reactions is/are characteristic of the unsaturated nature of propene?

(1) It undergoes incomplete combustion to give carbon monoxide.

(2) It decolourizes acidified potassium permanganate solution.

3) It undergoes polymerization to give polypropene.

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE03_36

Which of the following statements concerning thermoplastics is/are correct?

(1) They soften upon heating.

(2) They are cross-linked polymers.

(3) They are addition polymers.

A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

CE03 48

1st statement

2nd statement

Polyethene is used for making the handle of

frying pans.

The shape of the polyethene handle remains unchanged during the frying process.

CE05SP 48

1st statement

2nd statement

Polyethene is used to make food wrap.

Polyethene is an addition polymer.

CE04_15

The structure of polymer X can be represented by

What is the monomer of X?

A. 1,1-dimethylethene

1,2-dimethylethene

C. methylpropene

D. but-1-ene

CE04 41

Which of the following statements concerning polyvinyl chloride (PVC) are correct?

- (1) PVC is used in making raincoats.
- PVC softens upon gentle heating.
- When PVC is strongly heated, fumes with an irritating odour are emitted. (3)
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE06 49

1st statement

2nd statement

Both ethene and polyethene can decolourize a solution of bromine in an organic solvent.

Both ethene and polyethene belong to the same

homologous series.

CE07 09

Which of the following items can be made from polystyrene?

A. clothing

B. food wrap

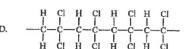
C. electric socket

D. packaging material

CE07 27

Which of the following statements concerning but-2-ene are correct?

- It has the same molecular formula as but-1-ene.
- It can form a polymer with $\begin{array}{c} C \\ C \\ \end{array}$ as the repeating unit.
- It can decolourize acidified potassium permanganate solution.
- (1) and (2) only


B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

CE10 10

The polymer formed from the polymerization of 1,1-dichloroethene is commonly used in making food wrap for microwave cooking. Which of the following can represent a part of the structure of the polymer?

CE11 17

Plastic wastes containing polychloroethene (PVC) should NOT be treated by incineration. The main reason is to prevent the production of dioxins and

A. carbon dioxide.

B. sulphur dioxide.

C. nitrogen dioxide. D. hydrogen chloride.

DSELISP 01

Upon cracking, one molecule of decane (C₁₀H₂₂) gives two molecules of propene and one molecule of an alkane (X). What is X?

A. C₄H₆

B. C₄H₁₀

C7H14 C.

D. C2H16

DSE11SP 04

The structure of polymer X is shown below:

What is the monomer of X?

A. 1,1-dimethylethene

B. 1,2-dimethylethene

Methylpropene

D. But-1-ene

DSEIISP 09

Which of the following statements concerning alkenes is INCORRECT?

- A. They can decolorize a solution of bromine.
- B. they can decolorize red fitmus solution.
- C. They can decolorize acidified potassium permanganate solution.
- D. They can be polymerized to form addition polymers.

DSE12PP 10

The structures of three cycloalkenes are shown below:

Cycloalkenes can be represented by a general formula. Which of the following is the general formula for cycloalkenes? (In these formulae, n is an integer greater than 2.)

- A. CnH2n-1
- C_nH_{2n}

B. C_nH_{2n-2}

C.

D. \cdot C_nH_{2n+2}

DSE12PP II

The equation below represents the cracking of a hydrocarbon:

What is the chemical formula of compound X?

A. C3H6

B. C₄H₈

C. CxH16

D. C14H28

DSE12PP 21

Consider the following organic compound:

Which of the following statements about this compound is/are correct?

- (1) Its systematic name is 1,1-dimethylethene.
- (2) It can decolorize an acidified solution of potassium permanganate.
- (3) It is the monomer of Perspex.
- A. (1) only

B. (2) only

C. (1) and (3) only

D, (2) and (3) only

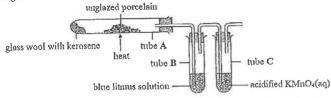
DSE12 11

Compound X has the following structure:

CH3=CHCH2OH

The systemic name of X is

A. Prop-1-en-3-ol


B. Prop-2-en-1-ol

C. 3-hydroxypropene

D. 1-hydroxyprop-3-ene

DSE12 17

The diagram below shows the set-up of an experiment;

The unglazed porcelain in tube A is strongly heated and the glass wool is occasionally heated. Which of the following statements is/are correct?

- (1) A chemical reaction occurs at the glass wool.
- (2) There is NO color change in the solution in tube B.
- (3) There is NO color change in the solution in tube C.
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

DSE12 21

Which of the following compounds can be used as monomers to make addition polymers?

- (1) CF,=CF,
- (2) CH,=C(CH,CH,)CN
- CH₂CH₃

A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

DSB12 22

Which of the following processes involve redox reaction?

- (1) Mixing methanol and ethanol
- (2) Mixing chlorine and methane under sunlight
- (3) Mixing ethane and acidified KMnO4(89)
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

DSE12 24

1st statement

2nd statement

Burning fossil fuels can cause acid rain.

Burning fossil fuels produces carbon dioxide.

DSE13 14

A portion of the structure of an addition polymer X is shown below:

Which of the following is the systematic name of the monomer of X based on the given structure?

- A. 1.1-dictoro-2-methylethene
- B. 1,1-dichloropropene

. 1,2-dichloropropene

D. 3,3-dichloropropene

DSE14 08

Which of the following compounds would be formed when bromoethene reacts with chlorine in a suitable organic solvent?

В.

D.

DSEI4 10

One mole of methane is allowed to react with two moles of chlorine in the presence of fight. Which of the following best describes the organic product(s) that would be formed?

- A. One mole of CCla
- B. One male of CH₂Cl₂
- C. A mixture containing only CCl4 and CH2Cl2
- D. A mixture containing CH₂CI, CH₂Ci₂, CHCl₃ and CCl₄

DSE14 17

What are the advantages of using natural gas over using coal as a fuel in power stations?

- (1) In comparing with coal, natural gas burns more completely.
- (2) In comparing with coal, natural gas has less sulphur-containing substances.
- (3) Natural gas is a renewable energy source, but coal is not.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

DSE15 10

The structure of a certain polymer is shown below:

Which of the following is the systematic name of the monomer of this polymer?

A. Propene

B. But-1-ene

C. But-2-ene

D. Methylpropene

DSE15 19

Which of the following pairs of substances can be distinguished by using acidified KMnO4(aq)?

- Pent-1-ene and
- Pent-2-ene Cyclohexene Cyclohexane
- polyethene
- Poly(chloroethene)
- (1) only

В. (2) only

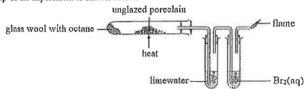
C. (1) and (3) only

D. (2) and (3) only

DSE15 22

Which of the following are renewable energy sources?

- (1) nuclear energy
- tidal energy
- biomass
- (1) and (2) only


B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

DSE15 20

The set-up of an experiment is shown below:

Which of the following observations would be expected?

- (1) Limewater turns milky.
- Bra(ag) changes from brown to colorless.
- The flame is brick red in color.
- (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

DSE16 09

I mol of a hydrocarbon requires 9 mol of oxygen for complete combustion. Which of the following may be this hydrocarbon?

A. C6H6

B. C6H10

C. C6H12

D. C6H14

DSE16 10

Which of the following CANNOT be converted into substances that are less harmful when passed through a catalytic converter?

A. Nitrogen oxides

B. Sulphur dioxide

Carbon monoxide

D. Unburnt hydrocarbons

DSE16 17

Which of the following statements concerning petroleum is/are correct?

- (1) It is a source of aliphatic hydrocarbons
- It can be separated into liquids of different viscosity by a separating funnel.
- It is a fossil fuel derived rom ancient marine organisms.
- (I) only A.

B. (2) only

(1) and (3) only

D. (2) and (3) only

DSE16 19

The hazard warning label below is displayed on a bottle containing chemical Z:

Which of the following chemicals may Z be?

- (1) Sodium
- (2) Trichloromethane
- (3) Concentrated aqueous ammonia
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

DSE17_05

Which is the systematic name of Cl₂CH-CH=CH-CH=CH₂?

- A. 1-dichloropenta-2,4-diene
- B. 5,5-chloropenta-1,3-diene
- C. 1.1-dichloropenta-2,4-diene
- D. 5,5-dichloropenta-1,3-diene

DSE17 18

The structures of organic compound A and B are shown below:

Which of the following statements concerning the two compounds is/are correct?

- (1) A and B belong to the same homologous series.
- (2) A and B can be distinguished by acidified KMnO4(aq),
- (3) Complete combustion of 1.0 g of A and complete combustion of 1.0 g of B would form the same mass of CO₂(g).
- A. (1) only

B. (2) only

C. (1) and (3) only

D. (2) and (3) only

DSE17 20

Which of the following are characteristics exhibited by members of a homologous series?

- (1) They have similar chemical properties.
- (2) They display a gradation in physical properties.
- They can be represented by the same general formula.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

DSE17 22

Which of the following statements concerning burning coal under room conditions are correct?

- (1) Burning coal forms both acidic and non-acidic substances.
- Burning coal forms both gaseous and non-gaseous substances.
- 3) Burning coal forms both poisonous and non-poisonous substances.
- A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

D. (1), (2) and (3)

DSE18 08

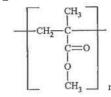
Which of the following molecular formulae can represent an alkanole acid?

A. CH₂O

B. C₂H₆O₂

C. CdllsO2

D. C4H10O2


DSE18 13

The reaction below involves several steps.

Which of the following steps can lead to a termination of the reaction?

DSE18 14

Which of the following statements concerning the polymer is correct?

- A. It is a polyester.
- B. It can be polymerized from (CH₃)₂CHCO₂CH₃
- C. Its monomer can decolorize acidified KMnO4(aq).
- D. It can be made from its monomer through condensation.

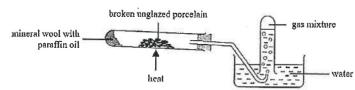
DSE18 15

Which of the following mixtures can be separated by this apparatus?

- A. Rock salt and sand
- B. Propan-2-ol and water
- C. Hexane (C6H14) and water
- D. Methanoic acid and ethanoic acid

DSE18 20

Which of the following hazard warning labels should be displayed on a bottle containing propan-2-ol?



B. (2) only

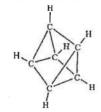
DSE19 07

The set-up of an experiment is shown below:

Which of the following statements is INCORRECT?

- A. The broken unglazed porcelain acts as a catalyst.
- B. Fractional distillation is performed in the set-up.
- C. The gas mixture turns acidified potassium permanganate solution from purple to colorless.
- D. When no more gas can be collected, the delivery tube should be taken out of the water before removing the heat source.

DSE19 10


A part of the structure of a polymer is shown below:

Which of the following can be a monomer of this polymer?

$$^{\rm H,C}$$
 $c=c$

DSE19 18

Consider the following two compounds:

Which of the following statements is / are correct?

- (i) They are both soluble in water.
- (2) They have the same empirical formula.
- (3) They are in the same homologous series.
- A. (1) only
- B. (2) only
- C. (1) and (3) only
- D. (2) and (3) only

DSE20 6

- 6. What is the product of the reaction between chloroethene and bromine dissolved in an organic solvent?
 - A. 2-chloro-1,2-dibromoethane
 - . 1,2-dibromo-1-chloroethane
 - . 2-chloro-1,1-dibromoethane
 - D. 2,2-dibromo-1-chloroethane

DSE20 23

Which of the following hazard warning labels should be displayed on a bottle containing methanol?

- (1) and (2) only
- B. (1) and (3) only (2) and (3) only
- D. (1), (2) and (3)

DSE20 24

Consider the following statements and choose the best answer: 24

1st statement

2nd statement

Perspex can be used to make shopping bags.

Perspex is a condensation polymer.

- A. Both statements are true and the 2nd statement is a correct explanation of the 1st statement.
- В. Both statements are true but the 2nd statement is NOT a correct explanation of the 1st statement.
- C. The 1st statement is false but the 2nd statement is true.
- D. Both statements are false.

DSE21 8

Consider two compounds with their structures shown below

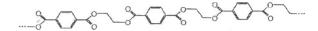
arbon atom

O hydrogen atom

Which of the following statements is correct?

- Both of them are flammable. A.
- They have different empirical formulae. B.
- They belong to the same homologous series. C.
- Both of them can decolourise bromine solution in the dark.

DSE21 11


- The monosubstitution of methane with chlorine under diffuse sunlight involves several steps. Which of the following steps initiates the reaction?
 - Cl₂ → 2 Cl·
 - $CH_4 \rightarrow CH_3 \cdot + H \cdot$ B.
 - CH₄ + Cl₂ → CH₃Cl + HCl C,
 - CH₄ + Cl₂ → CH₃Cl + H · + Cl ·

DSE21 17

- 17. What is the systematic name of CH2BrCHBrCH2CH2I?
 - 1-iodo-3,4-dibromobutane A.
 - В. 4-iodo-1.2-dibromobutane
 - C. 1.2-dibromo-4-iodobutane
 - 3.4-dibromo-1-iodobutane

DSE21 20

The structure of a portion of a polymer is shown below:

Which of the following statements concerning the polymer is / are correct?

- is a monomer of it.
- HOCH2COOH is a monomer of it. (3)
 - (1) only
 - В. (2) only
 - (1) and (3) only
 - C. (2) and (3) only

Structural Questions

Part 1: (a) hydrocarbons, (b) homologous series and (c) alkanes and alkenes CF90 03a

Hong Kong imports naphtha (mainly C3H12), from which town gas is produced.

- (i) What is the raw material from which naphtha is obtained? How is naphtha obtained from this raw material?
- (ii) Town gas is produced by reacting with steam. Write an equation for this reaction. Name two major components in town gas.
- (iii) What is observed when town gas is passed through a sample of citrated blood? Explain your answer.
- (iv) What is observed when town gas is passed over heated copper(II) oxide in a combustion tube? Explain your answer and write appropriate equations.
- (v) State two potential hazards associated with the use of town gas.
- (vi) If you suspect there is a leakage of town gas in your home, explain why
 - you should open all windows at once.
 - (2) you should NOT use your telephone to call for help.

(13 marks)

CE90 05c(ii)

When suiphur dioxide gas reacts with water, the following equilibrium is established:

 $SO_2(g) + 11_2O(1) \Rightarrow 2H^+(aq) + SO_3^{2-}(aq)$

[\Delta H is negative]

Sulphur dioxide gas is a common pollutant found in exhaust fumes from factories, and it can be removed by using aqueous sodium hydroxide.

- (1) Why is sulphur dioxide gas present in the exhaust fumes?
- (2) Give TWO reasons why sulphur dioxide gas should be removed from the exhaust fumes.

(3 marks)

CE91 02a

A student wished to find out which of the two commercial brands of vinegar, A and B, was the better buy, i.e. of lower price per gram of ethanoic acid (CH₃COOH).

The following table listed some of the information about these two brands:

Brand	Price	Volume of vinegar	Concentration of ethanoic acid
A	\$3.00	250 cm ³	50 g dm ⁻³
В	\$6.00	500 cm ³	UNKNOWN

The student carried out a titration experiment to determine the concentration of ethanoic acid in Brand B as follows:

25 cm³ of the vinegar was first diluted to 250 cm³ with distilled water. 25.0 cm³ portions of the diluted solution were then titrated against 0.10 M sodium hydroxide solution, using a suitable indicator, until the end-point was reached.

The following results were obtained:

Titration / Burette reading	1	2	3	4
Final reading (cm ³)	25.50	25.70	26.20	25.90
Initial reading (cm ³)	0.00	1.00	1.30	1.10

- Describe, giving the names of the apparatus used, how 25.0 cm³ of the vinegar should be diluted to 250.0 cm³.
- (ii) Suggest a suitable indicator for this titration and state its color change at the end-point.
- (iii) Based on the titration results, calculate a reasonable average for the volume of the sodium hydroxide solution used.
- (iv) Write the equation for this reaction. (Ionic equation will not be accepted.)
- (v) Calculate the molarity of ethanoic acid in Brand B.
- (vi) Show by calculation which brand of vinegar is the better buy. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)

(13 marks)

CE91 03a

Petroleum, often referred to as a 'fossil' fuel, can be separated into various fractions by fractional distillation. The following table shows the annual production and consumption of petroleum fractions in a certain country

Petroleum fraction	Annual production (in million tonnes)	Annual consumption (in million tonnes)	
Petrol	10	25	
Naphtha	5	5	
Kerosene	20	20	
Diesel oil	15	35	
Heavy oil	40	5	
Liquefied petroleum gas	6	4	

- Why is petroleum referred to as a 'fossil' fuel?
- (ii) Why can the various petroleum fractions be obtained from petroleum by fractional distillation?
- (iii) According to the above table, some fractions are produced in excess while some others are not sufficient to meet the annual consumption requirements.
 - Identify a fraction that is produced in excess and can be converted into those which
 are not sufficient.
 - (2) Suggest a chemical method for the above conversion.
- (iv) A sample of liquefied petroleum gas is known to contain propene and propane.
 - (1) Draw the structural formula of
 - propene, and
 - (II) propane.
 - (2) (I) Write the equation for the complete combustion of propane in air.
 - (II) Explain whether the combustion of propene or propane would produce a more sooty flame.

- (3) How would you show that propane consists of
 - (I) carbon, and
 - (II) hydrogen?
- (4) Apart from combustion, describe another chemical test to distinguish propene from propane.

(13 marks)

CE92 01c

In motor car engines, petrol is mixed with air and burn to produce power.

- Using C₂H₁₈ to represent petrol, write a balanced equation for the complete combustion of petrol. Explain why this reaction can produce power.
- (ii) What would happen if the supply of air is insufficient for the combustion of petrol in the car engine?
- (iii) Leaded petrol has been used for a long time in Hong Kong. In April 1991, unleaded petrol was introduced.
 - (1) (II) Why is petrol leaded?
 - (2) Explain why unleaded petrol has been introduced in Hong Kong.

(7 marks)

CE93 01c

Alkenes can be obtained from petroleum fractions by a process called 'cracking'. Using a suitable petroleum fraction, a student carried out this process in the laboratory and collected the gaseous product over water.

- (i) What is 'cracking'?
- (ii) Draw a labelled diagram of a laboratory set-up that can be used for carrying out the process and collecting the gaseous product.
- (jii) An important safety precaution in the experiment is to prevent sucking back.
 - (1) What is the potential hazard if sucking back occurs?
 - (2) How can sucking back be prevented?
- (iv) If the gaseous product decolorizes a solution of bromine in tetrachloromethane, can you conclude that the gaseous product is ethene? Explain your answer.

(8 marks)

CE93 01d

Chemical reactions play important roles in our daily life. Some are beneficial to us while others are

In the case of a motor car, chemical reactions occur both when it is in motion and at rest. With reference to these reactions, answer the following questions:

- (i) State ONE reaction that is beneficial. Explain your answer.
- (ii) (1) State ONE reaction that is not beneficial. Explain your answer.
 - (2) How can the undesirable effect of this reaction be minimized?

(5 marks)

CE93 03b

In school laboratories, chemical wastes such as concentrated hydrochloric acid, methylbenzene and tetrachloromethane produced during practical work are to be stored in containers and then sent to a chemical waste treatment plant for disposal.

- iii) When chemical wastes such as methylbenzene and tetrachloromethane are burnt in the incinerator in the plant, several pollutants including sulphur dioxide are produced.
 - (1) Explain why sulphur dioxide is emitted from the incinerator.
 - Name TWO pollutants other than sulphur dioxide which are emitted from the incinerator and state ONE harmful effect for each pollutant.

(5 marks)

CE94 05

- iii) If heptane, C7H16, is used as a fuel in the internal combustion engine.
 - Write an equation for the complete combustion of heptane.
- (iv) Explain why car exhaust fumes usually contain oxides of nitrogen.

(3 marks)

CE95 02

In each of the following groups of substances, there is ONE substance which different from the others in terms of their properties. In each group, identify the substance which is different from the others and explain your choice.

(d) carbon monoxide, hydrogen, methane, nitrogen

(2 marks)

CE95 08a

The fumes emitted from a factory using diesel fuel contain several gaseous pollutants. One of these pollutants, Z, has a choking smell and can decolourize bromine water.

- (i) (1) What is Z?
 - (2) What is the effect of Z on the environment?
 - (3) Suggest ONE way to reduce the amount of Z in the fumes.
- (ii) (1) Suggest ONE other pollutant that is present in the fumes.
 - (2) Explain how this pollutant is formed.
 - (3) What is the effect of this pollutant on the environment?
 - (4) Suggest ONE way to reduce the amount of this pollutant in the fumes.
- (iii) If a fire is caused by the burning of diesel fuel, what type of fire extinguisher should not be used to put out the fire?

(8 marks)

CE96 01a(3)

A student suggested the following immediate actions to deal with three domestic accidents. However, these actions are considered inappropriate.

Accident	Suggested action
Leakage of town gas occurs in a kitchen.	Turn on an exhaust fan in the kitchen to remove
	the town gas.

Explain why the action is inappropriate and suggest a proper action.

(3 marks)

CE96 02

The relative molecular mass of an alkanol X is 60.0. X contains 60% of carbon by mass.

- (a) Calculate the number of moles of carbon in one mole of X and hence deduce the molecular formula of X.
- (b) Draw ONE possible structure of X and give its systematic name. (Relative atomic mass: C = 12.0)

(5 marks)

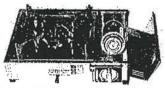
CE96 03

'Fossil fuels' such as petroleum and coal constitute the world's major source of energy. However, many countries have been developing alternative energy sources.

- (a) Why are petroleum and coal called 'fossil fuels'?
- (b) Give TWO reasons why it is necessary to develop alternative energy sources.
- (c) Nuclear power is used as an alternative to fossil fuels in many countries. Suggest ONE advantage and ONE disadvantage of using nuclear power.
- (d) Suggest ONE energy source, other than nuclear power, that can be used as an alternative to fossi! fuels.

(6 marks)

CE97 05


In March 1989, the oil tanker Exxon Valdez was wrecked off the coast of Alaska and split a large amount of crude oil into the sea. The oil spillage caused serious environmental problems.

Briefly explain why oil spillage in the sea can cause serious environmental problems and suggest ONE method of treating the split oil.

(8 marks)

CE97 09a

The photograph below shows a gas burner with a can of fuel. The can contains 250 g of liquefied butane.

- (i) Write the structural formula of butane.
- (ii) (1) Write the chemical equation for the complete combustion of butane.
 - (2) Suggest a chemical test for EACH of the products formed when butane is completely burnt in air.
 - (3) Calculate the volume of the gaseous product formed, measured at room temperature and pressure, if all the butane contained in the can is completely burnt in air.
- (iii) Explain why it is dangerous to use such gas burners in a poorty-ventilated room. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0; molar volume of gas at room temperature and pressure = 24.0 dm³)

CE98 02

For each of the following experiments, state the expected observation and write a relevant chemical equation.

- (a) Ethene is passed into an acidified potassium permanganate solution.
- (b) A mixture of butane and bromine vapour is exposed to diffused sunlight.

(4 marks)

CE99 03

The illustration below shows the exhaust from a motor car using unleaded petrol.

- (a) Explain why the exhaust contains carbon monoxide.
- (b) (1) Write TWO chemical equations for the formation of acid rain from nitrogen oxides.
 - (2) State ONE undesirable effect of acid rain.
- (c) State ONE health hazard associated with particulates.
- d) Suggest ONE other pollutant that may be found in the exhaust.
- (e) Suggest a device that can be installed in the motor car to reduce the emission of carbon monoxide and nitrogen oxides.

(7 marks)

CE99_09b

Cracking of naphtha gives alkane X (relative molecular mass 44), alkene Y (relative molecular mass 42) and other products.

- (i) What is the meaning of the term 'cracking'?
- (ii) Suggest a chemical test to distinguish between X and Y.
- (iii) Deduce the molecular formula of Y.

(5 marks)

CE00_08a

Crude oil is a mixture consisting mainly of alkanes. Fractional distillation of crude oil gives different petroleum fractions. The table below lists the length of carbon chain of the alkanes in some of the fractions.

Fraction	Length of carbon chain
petrol/naphtha	Cs - C ₁₀
kerosene	C ₁₁ - C ₁₈
diesel	C ₁₈ C ₂₅
x	C ₂₀ - C ₃₄

- (i) Describe the principle underlying the fractional distillation of crude oil.
- (ii) (1) Explain why global demand for petrol is greater than that for kerosene.
 - (2) Cracking kerosene can produce petrol. State the conditions required for the cracking process.
- (iii) In Hong Kong, naphtha instead of coal is used to manufacture town gas.
 - State ONE advantage of using naphtha instead of coal to manufacture town gas.
 (You are NOT required to consider the price of the materials.)
 - (2) Explain why an additive with a foul smell is added to town gas before it is delivered to the customers.
- (iv) Give ONE use of fraction X in cars.

(9 marks)

CE00 08b

In some countries, 'gasohol' (a mixture of petrol and ethanol) is used as fuel for cars.

- (i) Explain why burning gasohol causes less air pollution than burning petrol.
- (ii) Ethanol can be manufactured from a petroleum product. Name the manufacturing process and write the chemical equation for the reaction involved.
- (iii) Ethanol can also be manufactured by another process. Name this process.
- (iv) Of the two processes you have mentioned in (ii) and (iii), which one is better for the manufacture of ethanol in gasohol? Explain your answer.

(5 marks)

CE00 09b

Carbon dioxide constitutes about 0.03% of the atmosphere. Over millions of years, the concentration of carbon dioxide in the atmosphere has remained almost constant because of a number of processes.

- (i) Suggest ONE process by which carbon dioxide is added to the atmosphere.
- (ii) Suggest ONE process by which carbon dioxide in the atmosphere is consumed.
- (iii) Carbon dioxide is one of the greenhouse gases in the atmosphere.
 - (1) Explain why carbon dioxide can cause the greenhouse effect.
 - State the importance of the greenhouse gases in the atmosphere to living things on earth.
 - (3) Increasing the concentration of the greenhouse gases in the atmosphere leads to global warming. State ONE harmful effect of global warming.

(6 marks)

CE01 01

The photograph below shows a burning candle:

- (a) The candle wax is a petroleum product. What type of compounds is mainly present in the wax?
- (b) (i) In which of the states does wax act as the fuel in a burning candle? solid, liquid, vapour
 - (ii) State the conditions required for the combustion of wax.
 - ii) Suggest a reason why a burning candle can be extinguished by a strong wind,
- (e) Explain why it is hazardous to add cold water to a tray containing molten wax at a higher temperature.

CE01 07b

For environmental reasons, the Hong Kong Government has launched a plan for taxis to switch from using diesel to using diesel liquefied petroleum gas (LPG).

- (i) Both LPG and diesel are petroleum products. State the origin of petroleum.
- (ii) With reference to their chemical constituents, explain why LPG is a cleaner fuel than diesel.
- iii) State ONE problem that may occur in the initial stage in launching this plan.

(5 marks)

CE02 08a

Sulphur dioxide is formed when coal is burnt in a power station.

- (i) The coal used in the power station contains 1.5% of sulphur by mass. Calculate the volume of sulphur dioxide released, measured at room temperature and pressure, when 1.0 kg of the coal is hurst.
 - (You may assume that all the sulphur in coal is converted to sulphur dioxide upon burning.)
- (ii) State ONE environmental problem associated with the emission of sulphur dioxide into the atmosphere.
- (iii) Suggest ONE measure to reduce the emission of sulphur dioxide from the power station.
- (iv) Particulates are also present in the flue gas generated in the power station.
 - State ONE environmental problem associated with the discharge of particulates into the atmosphere.
 - (2) Suggest ONE way to remove particulates from flue gas.

(Relative atomic masses: O = 16.0, S = 32.0:

molar volume of gas at room temperature and pressure = 24 dm3)

(7 marks)

CE03 07b

Cracking is an important process in petrochemical industry.

- (i) What is the meaning of the term 'cracking'?
- (ii) Account for the importance of cracking in petrochemical industry.
- (iii) Octane (C₈H₁₈) is used in an experiment to study cracking in a school laboratory. Cracking of octane gives a mixture of products, some of which are gases.
 Draw a labelled diagram for the set-up used in the experiment, including the collection of the gaseous products.
- (iv) One of the reactions involved in the cracking of octane gives two hydrocarbons, each containing the same number of carbon atoms.
 - (1) Write the chemical equation for this reaction.
 - (2) Suggest a chemical test to distinguish the two hydrocarbons from each other.

(9 marks)

CE03 09c

Organic wastes can be used as an alternative energy source. Under suitable conditions, the wastes can be digested by bacteria to give a gaseous mixture containing a high proportion of methane. Methane can be used as a fuel.

- (i) Suggest ONE organic waste that can be used for this purpose,
- (ii) Write the chemical equation for the complete combustion of methane,
- (iii) Suggest ONE advantage of using organic wastes as an alternative energy source.
- (iv) Suggest ONE reason why organic wastes are not yet widely used as an energy source.

(4 marks)

CE04 03

- (a) Suggest how iodine tincture can be prepared in a school laboratory.
- (b) A student split some iodine tincture on his laboratory coat. His classmate suggested the following two methods to remove the iodine stain from the laboratory coat:
 - (1) treating the stain with sodium sulphite solution
 - (2) treating the stain with 1,1,1-trichloroethane

State the principle underlying each method. Decide and explain which method is better.

(5 marks)

CE04 04

Acid rain is a serious environmental problem. Discuss the formation of acid rain in relation to human activities, and suggest possible way to reduce its formation.

(9 marks)

CE05 05

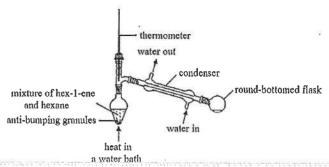
Both peniane (C₅H₁₂) and octane (C₈H₁₈) are members of the same homologous series.

 (a) Using pentane and octane as examples, illustrate TWO characteristics of the members of a homologous series.

(4 marks)

(b) Which compound, pentane or octane, will burn with a more sooty flame? Explain your answer.

(2 marks)


(c) Draw TWO structures which have the same molecular formula C5H12.

(2 marks)

CE06 01b

A student suggested using the set-up shown below to separate hex-1-ene from a mixture of hex-1-ene and hexane,

(At atmospheric pressure, the boiling points of hex-I-ene and hexane are 64 °C and 69 °C respectively.)

- (i) Explain why it is dangerous to use the above set-up to carry out the experiment. Suggest a modification to the set-up so that the experiment can be carried out safely.
- (ii) After the set-up has been modified as suggested in (i), can it be used to separate hex-1-ene from hexane effectively? Explain your answer.
- (iii) Suggest a chemical test to distinguish hex-1-ene from hexane.

(5 marks)

CE06 06

Carbon dioxide and methane are two major greenhouse gases in the atmosphere. The table shows the average concentrations of the two gases in the atmosphere in 1900 and in 2000.

	Average concentration in the	atmosphere (arbitrary units)
Gas	Year 1900	<u> </u> Усаг 2000
carbon dioxide	300 000	400 000
methane	1 000	2 000

(a) Suggest TWO reasons why there was a large increase in concentration of carbon dioxide in the atmosphere in the past ten decades.

(2 marks)

Suggest ONE reason why there was a large increase in concentration of methane in the

(1 mark)

- (c) The presence of greenhouse gases in the atmosphere is important to life on Earth. However, too much greenhouse gases in the atmosphere can cause global warming, which may lead to severe environmental consequences.
 - (i) State the importance of greenhouse gases to life on Earth.
 - (ii) State ONE severe environmental consequence associated with global warming.
 - (iii) Suggest ONE possible way to prevent further increase in the concentration of each of the following greenhouse gases in the atmosphere without sacrificing our present standard of living:
 - (I) carbon dioxide
 - (II) methane

(4 marks)

CE07 02

A student performed an experiment to crack paraffin oil and collect the gaseous products by using a boiling tube.

(a) Draw a labelled diagram to show how the experiment can be performed in the laboratory.

(3 marks)

- (b) (i) The student added a few drops of bromine water into the boiling tube containing the gaseous products. The brown colour of bromine water disappeared immediately. Why?
 - (ii) The student then dropped more bromine water into the boiling tube until the brown colour persisted. After about 10 minutes, the brown colour disappeared. Why?

(4 marks)

365

CE07 07

This question involves how to distinguish four unlabeled test tubes, each containing one of the following colourless liquids.

Methanol, concentrated sodium hydroxide solution, distilled water, hexane

(a) By heating a small amount of each of the colouless liquids to dryness, ONE of the liquids can be distinguished. Suggest which liquid can be distinguished, and state the observation involved.

2 marks)

- b) By applying a flame directly to a small amount of each of the colouless liquids. TWO of the liquids would catch fire.
 - (i) Suggest which two liquids would catch fire.
 - (ii) For the two liquids that would eatch fire, the observations involved during combustion are different. Suggest the difference in these observations, and explain your answer.
 - (iii) Without using other chemicals apart from the above colourless liquids, suggest another method to distinguish the two liquids that would catch fire. State the expected observation. (Smelling is not accepted.)

(4 marks)

CE08 07

Crude oil can be separated into different products such as petrol, diesel oil and fuel oil by a process called 'A'. The fuel oil obtained can then be converted into smaller molecules by another process called 'B'.

(a) Name process A and process B.

(2 marks)

- (b) (i) Explain whether petrol or diesel oil has a higher viscosity.
 - (ii) Explain whether petrol or diesel is a cleaner fuel.

(2 marks)

- (c) (i) Suggest one importance of process B in industry.
 - (ii) One of the compounds in fuel oil is C₂₈H₅₈, which can be converted into smaller molecules as shown in the following equation.

- Suggest a possible structure of D, and state its systematic name.
- (2) Suggest a chemical test to distinguish D from C₂₀H₄₂, and state the expected observation.

(5 marks)

CEII 01a

A non-luminous flame is obtained when the air hole of a Bunsen burner is fully open. Methane is one of the components of the gaseous fuel used in the Bunsen burner. With reference to methane only and aided by a chemical equation, explain why the flame obtained is non-luminous.

(3 marks)

CE11 06

To reduce air pollution caused by vehicles, several measures have been adopted in recent years.

- Many taxis and mini-buses have switched from using diesel to liquefied petroleum gas (LPG) as fuel.
 - (i) Give the name of a compound which is a major component of LPG.
 - Why is LPG considered to be a 'cleaner' fuel than diesel? (ii)

(2 marks)

- Catalytic converters have been installed in most petrol-driven vehicles.
 - State TWO functions of catalytic converters.
 - (ii) State one harmful product emitted from catalytic converters.

(3 marks)

Some regions supply ultra low sulphur diesel (ULSD) for diesel vehicles. Explain how this measure reduces air pollution.

(2 marks)

Part 2: (d) addition polymers

CE90 01a

The table below describe some reactions of liquid propan-1-of:

EXPERIMENT	RESULT	
Propan-1-ol is heated and the vapour passed	Gas Z is produced.	
over heated broken porcelain.		

- (iv) Z can undergo addition polymerization to form a polymer.
 - Name the polymer formed and draw the repeating unit. (1)
 - (2) State one household articles that can be made from the polymer.

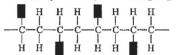
(3 marks)

CE91 02b

The following diagrams show three plastic items. The universal adaptor is made of thermosetting plastic while the other two are made of thermoplastics.

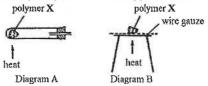
Universal adaptor

Foam lunch box


Food wrap

- Explain why thermoplastic are not suitable for making universal adaptor.
- The foam lunch box is made from a plastic containing a trapped gas. Name the plastic that is commonly used and state the purpose of trapping a gas within the plastic.
- Name a plastic that is commonly used to make food wrap, and write an equation to (iii) show the formation of the plastic from its monomer.

(5 marks)


CE92 04a

The structure of polymer X can be represented by the following diagram:

Where represents a group containing carbon and hydrogen atoms only.

- Draw the structure of the monomer of X.
- (2) Name an example of a polymer with the structure of X.
- (3) Two separate pieces of X are strongly heated as shown in diagram A and B below:

What would be observed in each case?

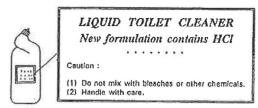
Explain your answer.

Upon analysis, 5.00 g of the monomer of X are found to contain 4.62 g carbon. If the relative molecular mass of the monomer is 104, deduce its molecular formula.

(Relative atomic masses: H = 1.0, C = 12.0)

(9 marks)

CE93 02a

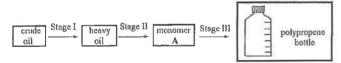

Turning knobs on radios are often made of plastics with metal coating.

State TWO reasons why plastics are used in the manufacture of turning knobs.

(2 marks)

CE95 06a

The illustration below shows the plastic bottle of a domestic toilet cleaner and its label.



- (1)Explain why plastic is used for making the bottle for the toilet cleaner,
 - (2) Name ONE plastic material suitable for making the bottle for the toilet cleaner.

(2 marks)

CE96 07b

The flow diagram below shows the three key stages involved in the production of polypropene bottles from crude oil.

- (i) What is the process involved in obtaining heavy oil from crude oil in Stage I?
- (ii) (1) Draw the structure of monomer A.
 - (2) What are the TWO main processes involved in the production of monomer A from heavy oil in Stage Π?
- (iii) What are the TWO main processes involved in the production of polypropene bottles from monomer A in Stage III?
- (iv) Suggest ONE reason why the disposal of polypropene wastes can cause pollution problems.
- (v) Polypropene wastes can be recycled by melting and remoulding.
 - (1) What preliminary treatment of the polypropene wastes is required before recycling?
 - (2) Name ONE plastic which cannot be recycled by melting and remoulding.

(9 marks)

CE97 01

For each of the tasks listed in the table below, decide which substance on the right is the best to use to accomplish the task. Explain your answer in each case.

(3 marks)

CE97 07b

The structure of five compounds, I, II, III, IV and V, are shown below:

In the above structures, represents a saturated hydrocarbon chain containing 1 to 6 carbon atoms and represents a saturated hydrocarbon chain containing 12 to 20 carbon atoms.

(i) Which compound can be used to make an addition polymer? Write a chemical equation to represent the addition polymerization.

(2 marks)

369

CE98 07b

Polyvinyl chloride (PVC) is a plastic which has a wide range of uses.

- (i) Write the chemical equation for the formation of PVC from its monomers.
- ii) Plastic products made of PVC may vary greatly in rigidity.
 - (1) Give ONE flexible product made of PVC.
 - (2) Give ONE rigid product made of PVC.
 - (3) Explain whether PVC is suitable for making electric sockets or not.
- (iii) Incineration of PVC wastes products hydrogen chloride into the atmosphere.
 - (1) State ONE harmful effect of the discharge of hydrogen chloride into the atmosphere.
 - (2) Suggest how hydrogen chloride can be removed from incinerator flue gas prior to its discharge to the atmosphere.
 - (3) Suppose that all the chlorine in PVC is converted to hydrogen chloride upon incineration. Calculate the volume of hydrogen chloride produced, measured at room temperature and pressure, when a plastic waste containing 100 kg of PVC is incinerated.

(You may assume that no other chlorine-containing compounds are present in the waste.)

(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, Cl = 35.5; molar volume of gas at room temperature and pressure = 24.0 dm^3)

(9 marks)

CE99 01

Each of the tasks listed in the table below can be accomplished by using material A or B.

Task	Materials	
	A	В
(a) To make water pipes	polyvinyl chloride	iron
(b) To make lenses	perspex	glnss
(c) To make shopping bags	polyethene	paper

In each case, state an advantage of

- (i) using A over B to accomplish the task.
- (ii) using B over A to accomplish the task.

(You are not required to consider the price of the materials.)

(6 marks)

CE99 09b

Cracking of naphtha gives alkane X (relative molecular mass 44), alkene Y (relative molecular mass 42) and other products.

- (i) What is the meaning of the term 'cracking'?
- (ii) Suggest a chemical test to distinguish between X and Y.
- (iii) Deduce the molecular formula of Y.
- (iv) Y can be used as a starting material for the production of plastic Z.
 - (1) Write the chemical equation for the formation of Z from Y.
 - Suggest how plastic cups can be made from Z.
- (v) Suggest an advantage and a disadvantage of using plastic wastes as an energy source. (Relative atomic mass: H = 1.0, C = 12.0)

(10 marks)

CE00 07b

Polystyrene can be prepared in the laboratory by heating a mixture of styrene and kerosene under reflux.

- (i) Draw a labeled diagram of the set-up used for heating the mixture under reflux.
- (ii) Suggest ONE safety precaution that should be taken when heating the mixture. Explain your
- (iii) Styrene has the following structure:

C6H5CH=CH2

- (1) What characteristic in the structure of styrene enables it to act as a monomer?
- Write the chemical equation for the polymerization.
- (iv) Disposable lunch boxes are commonly made of expanded polystyrene,
 - Suggest ONE reason why polystyrene should be expanded before it is used to make disposable lunch boxes.
 - (2) State whether you agree with the following statement. Explain your answer. 'Landfilling is better than incincration for the disposal of polystyrene wastes.'

(8 marks)

CE01 07a

Polystyrene is used in making shopping bags and its monomer is ethene.

- (i) Draw the electronic diagram of ethene, showing electrons in the outermost shells only.
- (ii) Name the type of polymerization involved in the production of polyethene.
- (iii) State ONE property of polyethene that makes it suitable for making shopping bags.
- (iv) (i) Suggest ONE way to dispose of polyethene wastes.
 - (2) Give ONE advantage and ONE disadvantage of the way you have suggested in (1).

(6 marks)

CE02 05

Using alkenes as an example, describe the characteristics of members of a homologous series,

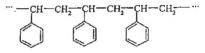
(9 marks)

CE03 05

Plastic wastes cause environmental problems in modern cities. Suggest possible ways of treating plastic wastes, and discuss their advantages and disadvantages.

(9 marks)

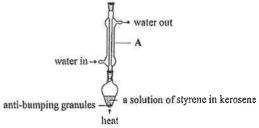
CE04 06c


Pyrolysis is one of the methods commonly used for treating plastic wastes. During pyrolysis, plastic wastes are decomposed at high temperature in the absence of air to give a mixture of products, including methane and ethene.

- (i) Explain why it is necessary to carry out the pyrolysis in the absence of air.
- ii) Suggest a method that can be used to separate methane from other pyrolysed products.
- iii) Give ONE major use of methane and ONE major use of ethene in industry.
- (iv) (1) Suggest another method which is commonly used for treating plastic wastes.
 - (2) For each of the two methods, pyrolysis and the method you have suggested in (1) above, state ONE advantage.

(7 marks)

CE05 06


(a) Polystyrene is a plastic with a wide range of uses. It has the following structure:

- (i) Draw the structure of styrene, the monomer of polystyrene.
- (ii) Suggest why polystyrene does NOT have a constant relative molecular mass.

(2 marks)

(b) Polystyrene can be prepared from styrene using the set-up shown below:

- (i) Name apparatus A.
- (ii) Suggest, with explanation, a safety precaution that should be taken in the preparation.
- (iii) Name the type of polymerization involve in the formation of polystyrene from its monomer.

(4 marks)

- (c) Plastics are very useful materials. Many objects previously made with metals are now made with plastics. For each of the following objects, suggest ONE advantage of using plastics over using metals in making the object.
 - (i) the casting for an electric rice cooker
 - (ii) a drainage pipe
 - (iii) a helmet for a soldier

(3 marks)

CE06_11

Plastics can be classified into thermoplastics and thermosetting plastics according to their thermal properties.

(a) Explain, in terms of bonding and structure, why thermoplastics and thermosetting plastics behave differently upon heating.

(3 marks).

- (b) Polyethene (PE) is a thermoplastic commonly used in making shopping bags.
 - (i) Write the chemical equation for the formation of PE from its monomer.
 - (ii) Explain, in terms of bonding, why objects made of PE are durable.

(2 marks)

CE07 08

- (a) Teflon is a plastic that can be used to make artificial hip joints. Teflon is an addition polymer of linear structure consisting of carbon and fluorine only. The ratio of the number of carbon atoms to the number of fluorine atoms in the polymer is 1:2.
 - (i) Draw the portion of the Teflon structure with 10 carbon atoms.
 - (ii) Write the repeating unit of Teflon, and suggest a possible monomer of Teflon.

Repeating Unit:

Monomer:

(3 marks)

CE08 08

The active ingredient of a superglue has the following structure:

Superglue can join objects together quickly through the polymerization of the active ingredient in the presence of water vapour.

(a) Name the type of polymerization that the active ingredient undergoes.

(1 mark)

(b) Write a chemical equation for the polymerization involved.

(1 mark)

CE09 04

The diagram below shows a truck with a storage tank for transporting concentrated hydrochloric acid.

(a) Suggest a hazard warning label that should be posted on the storage tank.

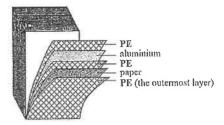
(I mark)

- (b) The storage tank is made of steel and the inner wall has a lining of polyethene.
 - (i) Draw the structural formula of polyethene.
 - (ii) Explain the function of the lining of polyethene in terms of the chemistry concept involved.

(3 marks)

(e) The storage tank contains 57000 kg of concentrated hydrochloric acid, which occupies a volume of 50 m³. If the percentage by mass of HCl in the acid is 38.0%, calculate the molarity of the acid.

(2 marks)


CE10 12f

Polypropene (PP) can be used to make bottles for storing drain cleaners containing strong alkalis. Write a chemical equation for the polymerization to form PP.

(1 mark)

CE11 07

The diagram below shows the structure of a common beverage box consisting of layers of paper, polyethene (PE) and aluminium.

(a) Draw the repeating unit of PE.

(1 mark)

Name the type of polymerization involved in making PE.

(1 mark)

c) Explain the function of the outermost PE layer of the beverage box.

(I mark)

(d) Oxygen can pass through paper and PE. Explain how the box can prevent the beverage from spoilage.

(2 marks)

- (e) Polychloroethene, commonly called polyvinyl chloride (PVC), is also a polymer.
 - (i) Draw the structure of the monomer of PVC.
 - (ii) PVC can be used to make food packaging material. However, it may release some substances to contaminate the food. Suggest one substance that may be released.

(2 marks)

AL99(I) 06b

(i) Briefly explain why car exhaust contains carbon monoxide and nitrogen oxides.

(2 marks)

(ii) The installation of catalytic converters onto car exhaust systems can reduce the concentrations of pollutants in car exhaust. With the help of equations, briefly describe the function of a catalytic converter.

(2 marks)

(iii) Explain why leaded petrol is not used in cars equipped with catalytic converters,

(1 marks)

ASL99(I) 07 [Similar to DSE16 05c]

Feeding bottles for babies can be made from poly(propene) which usually contains butylated hydroxytoluene (BHT).

(a) Write the repeating unit of poly(propene).

(1 mark)

- (b) 'The average relative molecular mass of a sample of poly(propene) is 4.2 × 105.
 - i) Why is an average value of relative molecular mass quoted in the above statement?

(I mark)

(ii) Calculate the average number of repeating units in a polymer chain of the sample.

(1 mark)

ASL99(II) 09 (modified)

(a) When exposed to diffused sunlight, methane and chlorine react to give chloromethane. Using the electronic diagram, outline the mechanism of this reaction.

(3 marks)

- (b) The reaction of methane with chlorine also gives dichloromethane.
 - Draw a three-dimensional structure for dichloromethane and explain whether the molecule is polar or non-polar.

(3 marks)

(ii) Explain why the reaction of methane with chlorine is not suitable for the preparation of dichloromethane.

(1 mark)

ASL99(II) 10 (modified) [Similar to DSE12 15]

(a) Car exhaust contains a high concentration of carbon monoxide, nitrogen oxides and hydrocarbons. With the help of balanced equations, briefly explain why the installation of catalyst converters onto car exhaust systems can reduce the emission of these pollutants.

(4 marks)

- (b) Car exhaust also contains a high concentration of carbon dioxide.
 - State ONE environmental problem caused by an increase in concentration of carbon dioxide in the atmosphere. Explain your answer.

(2 marks)

(ii) Suggest ONE measure to alleviate the environmental problem in (i).

(1 mark)

- (c) Photochemical smog is usually associated with a brown haze.
 - (i) What pollutant causes the brown colour of photochemical smog?

(1 mark)

(ii) State ONE harmful effect of photochemical smog.

(I mark)

ASL01(I) 06 [Same as DSE13 06]

Both polypropene (PP) and polyvinyl chloride (PVC) can be produced from naphtha, a petroleum fraction.

(a) State the three main processes involved in the production of PP from naphtha.

(3 marks)

b) Why is PVC more rigid than PP?

(2 marks)

- c) Adding plasticizers to PVC can reduce its rigidity. The soft PVC produced can be used to make garden hoses.
 - (i) Explain how plasticizers work.

(1 mark)

(ii) Suggest one reason why PVC garden hoses become brittle after a period of time.

mane

(d) Explain why the incineration of PVC wastes causes serious environmental problems.

(1 mark)

ASL02(II)_10

Burning of coal in a power station produces flue gas which contains nitrogen monoxide and sulphur dioxide. The flue gas is treated with copper(II) oxide, ammonia and air prior to discharge into the atmosphere.

a) Explain why nitrogen monoxide and sulphur dioxide are formed when coal is burnt.

(2 marks)

- (b) In the treatment process, nitrogen monoxide reacts with ammonia and air to give nitrogen. In this reaction, copper(II) oxide acts as a catalyst.
 - (i) What is the meaning of the term 'catalyst'?

(I mark)

(ii) Write a chemical equation for the conversion of nitrogen monoxide to nitrogen.

1 mark)

(c) In the treatment process, sulphur dioxide reacts with copper(II) oxide and air to give copper(II) sulphate(VI). Write a chemical equation for this reaction.

(1 mark)

- (d) The copper(II) oxide consumed in the treatment process is regenerated by heating the copper(II) sulphate(VI) formed in (iii) with methane to give sulphur dioxide, carbon dioxide and copper. The copper is subsequently converted back to copper(II) oxide.
 - (i) Write a chemical equation for the reaction of copper(II) sulphate(VI) with methans.

(1 mark)

(ii) Suggest how the copper formed can be converted back to copper(II) oxide.

(1 mark)

ASL03(II) 08 (modified) [Similar to DSE12_15]

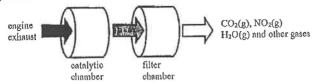
Under suitable conditions, CH4 reacts with Cl2 to give CH3Cl.

- (a) For this reaction,
 - (i) state the conditions required, and

(2 marks)

(ii) outline a mechanism and give the names of the mechanistic steps involved.

(3 marks)


(b) Apart from CH₃Cl, what other organic products will be formed when CH₄ reacts with Cl₂?

(2 marks)

AL04(II) 06a

The exhaust of heavy-duty diesel engines contains a significant amount of particulate matter (PM) and harmful gases such as nitrogens oxides. A Continuously Regenerating Trap (CRT®) is a device which is designed for use in exhaust systems of buses and lorries running on diesel with low sulphur content to remove PM and some of the harmful gases.

The digram below shows how a CRT works:

 (i) With the help of chemical equations, explain why nitrogen oxides are present in the engine exhaust.

(2 marks)

(II) State one harmful effect of nitrogen oxides on the environment.

(1 mark)

377

(ii) Carbon monoxide and hydrocarbons are two other harmful gases present in the engine exhaust.

Use chemical equations to show how these two gases can be removed in the catalytic chamber of a CRT.

(2 marks)

(iii) A CRT is an automated, self-regenerating device which does not require cleaning of the filter. In a CRT, PM is trapped onto the filter and is then oxidized by one fo the harmful passes to less harmful products.

(I) Which element is mot abundant in PM?

(1 mark)

(II) With the help of chemical equation(s), describe how PM trapped on the filter of a CRT can be removed. Hence, explain why the filter need not cleaned.

(2 marks)

 Suggest why buese and lorries equipped with CRT should not run on diesel with high sulphr content.

(1 mark)

ASL04(II) 12

(a) Polyvinyl chloride (PVC) is rigid and can easily be broken.

(i) Explain, in terms of intermolecular forces, why PVC is rigid.

(2 marks)

(ii) The rigidity of PVC can be reduced by the addition of suitable plasticizers. Suggest why plasticizers can help reduce the rigidity of PVC.

(1 mark)

(b) Expanded polystyrene is commonly used in making disposable lunch boxes. The monomer of polystyrene (PS) in phenylethene, which has the following structure:

(i) Write a chemical equation for the formation of PS from its monmers.

(1 mark)

(ii) Suggest ONE foaming agent suitable for making expanded PS.

(1 mark)

(iii) Explain why expanded PS has good heat insulating properties.

(2 marks)

ASL05(II) 11

The following substances are found in car exhaust:

Carbon monoxide, carbon dioxide, nitrogen oxides, hydrocarbons and particulates

(a) Explain why the following substances are present in car exhaust.

(i) Carbon monoxide

(1 mark)

(ii) Nitrogen oxides

(I mark)

(b) For each of the following air pollutants, state one harmful effect.

(i) Nitrogen oxides

(1 mark)

(ii) Particulates

(I mark)

(c) The instillation of catalytic converter onto car exhaust system can help reduce the emission of carbon monoxide and nitrogen oxides.

With the help of appropriate chemical equation(s), explain how a catalytic converter works.

(2 marks)

(d) Do you agree with the following statement? Explain your answer. 'The exhaust of diesel engine contains a higher concentration of particulates than that of petrol engine.'

(2 marks)

ASL08(I)_09 (modified)

Propenamide, the monomer of polypropenamide (also known as polyacrylamide), is a potential carcinogen. The melting point of propenamide is 84 °C and its solubility in water is 2.16 g cm⁻³ at 30 °C.

(a) Draw the structure of propenamide.

(1 mark)

(b) Polyacrylamide gel (PAAG) is polyacrylamide saturated with water. A sample of PAAG for break augmentation is suspected to contain about 1% propenamide. Suggest a chemical test to show the presence of propenamide in the sample.

(2 marks)

(c) Propenamide can be identified by converting it to a solid derivative and determining the melting point of the derivative. With the help of a chemical equation, suggest ONE solid derivative of propenamide suitable for this purpse.

(1 mark)

DSEIISP_02 [Similar to DSE14 03]

Polyethene is used in making shopping bags and its monomer is ethene.

(a) Draw the electronic diagram of ethene, showing electrons in the outermost shells only.

(1 mark)

(b) Name the type of polymerisation involved in the production of polyethene.

(1 mark)

(c) State ONE property of polyethene that makes it suitable for making shopping bags.

(I mark)

(d) (i) Suggest ONE way to dispose of polyethene wastes.

(1 mark)

(ii) Give ONE advantage and ONE disadvantage of the way you have suggested in (i).

(2 marks)

379

DSE12PP 05

The fuel used in the torch for the Beijing 2008 Olympic Games was an alkane X with the following composition by mass:

C, 81.8%

H. 18.2%

(a) Deduce what X could be.

(3 marks)

(b) Suggest an industrial process for obtaining X.

(1 mark)

(c) Kerosene was once used as a fuel for the Olympic torch. State ONE advantage of using each of the following substances as fuel for the torch.

(i) X

(1 mark)

(ii) Kerosene

(1 mark)

DSE12PP 07

(b) (i) With reference to the properties of the materials involved, explain why

(I) a polypropene container is used to contain the calcium oxide.

(1 mark)

DSE12 02

Poly(ethenyl ethanoate) is a polymer. Its monomer is ethenyl ethanoate with the structure shown below:

(a) Ethene is the raw material used in making ethenyl ethanoate. Ethene can be produced from hydrocarbons of higher molecular mass by an important industrial process.

(i) Name this industrial process.

(1 mark)

ii) Explain why this process is important.

(1 mark)

(b) Draw the structure of poly(ethenyl ethanoate).

(1 mark)

(c) Ethyl ethanoate is an organic solvent.

(i) Draw the structure of ethyl ethanoate.

(1 mark)

Suggest a chemical test to show to distinguish between ethenyl ethanoate and ethyl
ethanoate.

(2 marks)

DSE12_10

Suggest THREE measures for reducing the emission of air pollutants upon using fossil fuels.

(3 marks)

DSE12 15 [Same as ASL99(II)_09a]

Use electron diagrams to illustrate, step by step, how CH₄ reacts with Br₂ under sunlight to form CH₄Br.

(Show electrons in the outermost shells only.)

(3 marks)

DSE13 06 [Same as ASL01(I) 06a]

Briefly describe how polypropene can be produced from naphtha.

(3 marks + 1 mark)

DSE13 10

- (c) Some people have the view that cars powered by hydrogen-oxygen fuel cells are more environmentally friendly than those powdered by petrol.

 Comment on this view from each of the following aspects:
 - (i) Source of fuel

(1 mark)

(ii) The car emissions.

(1 mark)

DSE14 03 [Similar to DSE11SP_02]

Both polyethene (PE) and 'Saran' can be used to make food wrap, but 'Saran' is more suitable than PE in making food wrap for use in microwave ovens.

(a) The monomer of PE is ethane. Suggest a chemical test to show that ethane is an unsaturated compound.

(2 marks)

b) 'Saran' can be formed from the polymerization of the compound shown below:

(i) State the systematic name of this compound.

(1 mark)

(ii) Name the type of polymerization involved in forming 'Saran'.

(1 mark)

(iii) Draw the structure of 'Saran', showing at least THREE repeating units.

(I mark)

(c) In terms of intermolecular force, explain why 'Saran' is more suitable than PE in making wrap for use in microwave ovens.

(2 marks)

(d) When incinerated, why would food wrap made from 'Saran' cause more serious pollution problem than food wrap made from PE?

(1 mark)

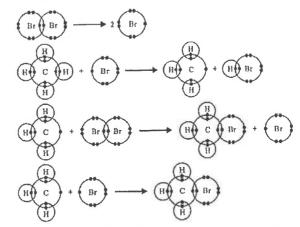
DSE14 06

Petrol is a commonly used motor car fuel. It can be obtained from petroleum by fractional distillation

a) (i) Explain, from molecular level, why petrol can be obtained from petroleum by fractional distillation.

(2 marks)

 Other than directly obtaining petrol from fractional distillation of petroleum, suggest a way for producing extra petrol.


(1 mark)

- (b) Motor cans powered by petrol emit air pollutants such as nitrogen monoxide and carbon monoxide. Installing a certain device in motor cars can convert these two oxides to less harmful substances.
 - (i) Name this device.

(1 mark)

DSE15 06

The steps involved in the reaction of methane with bromine forming CH₃Br can be shown by the following diagram. Only electrons in the outermost shells are shown.

(a) Name the type of the reaction for the formation of CH3Br from methane and bromine.

(1 mark)

(b) State the condition needed for the reaction to occur.

(1 mark)

State the expected observation for the reaction.

(1 mark)

d) With reference to its electronic structure, explain why the species

reactivity.

(1 mark)

- (c) The reaction of methane with bromine can also form other single-carbon-containing organic compounds.
 - (i) Suggest one such compound.

(1 mark)

(ii) Suggest a condition so that the reaction of methane with bromine can form more CH₃Br but less other organic compounds.

(1 mark)

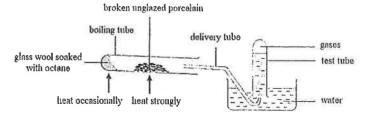
DSE15_08

Natural gas is an important energy source for electricity generation. It contains mainly methane (CH4),

- (a) Write the general formula of the molecules in the homologous series that methane belongs to.
 - (1 mark)
- (b) The combustion of methane is an exothermic reaction. Its chemical equation is shown below: $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(i)$
 - Complete the table below by stating all the covalent bond(s) that are broken and formed during the combustion of methane.

Covalent bond(s) broken

Covalent bond(s) formed


(2 marks)

(c) Some regions tend to generate electricity more by natural gas but less by coal. Give TWO reasons from environmental protection consideration.

(2 marks)

DSE16 03

The diagram below shows an experimental set-up in which the glass wool soaked with octane is heated occasionally and the broken unglazed porcelain is heated strongly. Some gases are collected in the test tube over water.

(a) Name the type of reaction that occurs in the boiling tube. Suggest one importance of this type of reaction in industry.

(2 marks)

(b) Explain why, instead of a large piece of unglazed porcelain, broken unglazed porcelain is used in this experiment.

(1 mark)

- (c) Suppose that during the experiment, octane changes to ethane gas and propene gas only and they can be collected in the test tube.
 - (i) Write the balanced equation for the reaction of changing octane to ethane and propene.

(1 mark)

- (ii) The gases collected in the test tube are shaken thoroughly with a few drops of Br₂(in CH₃CCl₃)
 - (1) State the expected observation.

(1 mark)

(2) Draw the structure of the product formed from the reaction between propene and Br₂.

(I mark)

(d) When no more gas can be collected, what should be done to end the experiment for safety consideration? Explain your answer.

(2 marks)

DSE16 05

Polymer B shown below can be used as water absorbing material in diapers. It can be formed from the polymerization of compound A.

(a) Draw the structure of compound A and state its systematic name.

(2 marks)

(b) State the type of polymerization for the formation of B from A.

(1 mark)

(c) Suggest why the relative molecular mass of B is expressed using a range of values instead of a single fixed value, [Similar to ASL99(I)_07b]

(1 mark)

(d) It is known that the reaction of polymer B with NaOH(aq) forms polymer C which can absorb water better. Draw the structure of C.

(1 mark)

DSE17 03

Answer the following questions.

(a) Explain why propene can form a polymer, but propane cannot.

(1 mark)

DSE17 08

Combustion of petrol increases the concentration of carbon dioxide in the atmosphere, and may contribute to global warming. Combustion of petrol also emits poisonous air pollutants.

(a) Write a chemical equation for the complete combustion of octane (CaH1s), a component in petrol.

(1 mark)

(b) Draw the electron diagram for a molecule of carbon dioxide, showing electrons in the outermost shell only.

(1 mark)

(c) Give one reason FOR and one reason AGAINST the following statement:

'Switching from using petrol-driven cars to using electric cars can help alleviate global warming.'

FOR:

AGAINST:

(2 marks)

(d) Carbon monoxide is one of the poisonous air pollutants emitted from the combustion of petrol. Under what condition would carbon monoxide be formed during the combustion of petrol?

(1 mark)

 (i) Name a device that can be installed in petrol-driven cars so as to reduce the emission of carbon monoxide.

(1 mark)

(ii) Suggest one air pollutant in car exhaust which cannot be removed by the device in (i).

(Lmark)

DSE18 04

Petroleum is an important source of hydrocarbons.

(a) Describe the origin of petroleum.

(2 marks)

(b) D. E and F are isomeric alkene containing four carbon atoms. D and E are cis-trans isomers.

i) Draw the structure of E (trans-isomer).

(1 mark)

i) State the systematic name of one possible structure of F.

(1 mark)

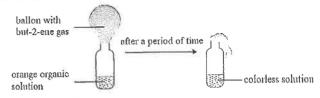
) Ethene and ethane are hydrocarbons.

(i) Suggest how ethene can be converted to ethane.

(I mark)

(ii) Suggest a chemical test to distinguish between ethane and ethene.

(2 marks)


DSE18 09

Tetrafluoroethene undergoes polymerization to form a polymer called 'Teflon'. Using this example describe this type of polymerization.

(4 marks + 1 mark)

DSE19 03

An experiment was carried out as shown below:

a) (i) Suggest what the orange organic solution may be.

(I mark)

(ii) With the help of a chemical equation, explain the color change in the solution.

(2 marks)

DSE19 05

The structure of a compound is shown below:

Reacting with a reagent under certain conditions, it can give two compounds with the same molecular formula CsHnCl) but different structures

(a) Suggest what the reagent is.

(1 mark)

(b) State the condition needed for the reaction to occur at room temperature.

(I mark)

(c) Name the type of the reaction involved.

(1 mark)

(d) (i) Draw the structure of ONE of these two compounds and give its systematic name.

(2 marks)

(ii) Draw the structure of the other compound.

(1 mark)

(iii) These two compounds are isomers. State the type of isomerism exhibited by them.

(1 mark)

DSE20 08

*8. Describe how 1,2-dibromoethane can be produced from crude oil, via an alkene, using appropriate chemicals and processes. Write the chemical equations for the reactions involved.

(6 marks)

DSE21_01(b)

Acetylene (C_2H_2) is a fuel, It can be obtained from calcium carbide (CaC_2) by two different reactions as represented by the equations shown below:

$$CaC_2 + A \xrightarrow{2200 \, ^{\circ}C} C_2H_2 + Ca$$

Reaction (I)

$$CaC_2 + 2H_2O \xrightarrow{25 \text{ °C}} C_2H_2 + Ca(OH)_2$$

Reaction (II)

(b) Write a chemical equation for the complete combustion of acetylene.

387

DSE21 4(a),(b),(c)(i),(c)(ii)

4. The chemical equation for a possible cracking reaction of decane (C₁₀H₂₂) is shown below:

$$C_{10}H_{23} \rightarrow C_4H_{10} + 2X$$

- (a) State the systematic name of X.
- b) Suggest a chemical test to show how X and butane can be distinguished.
- (c) X can form a polymer Z.
 - (i) Suggest why X can form a polymer.
 - (ii) Draw the repeating unit of Z.

2022

The structure of a portion of a polymer is shown below:

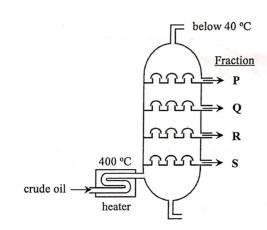
Which of the following statements concerning the polymer is correct?

A. It can be used as a substitute for glass.

B. Its repeating unit is
$$\begin{bmatrix} H & CI & H & H \\ & & & & I \\ C & & & C & C \end{bmatrix}$$

- C. It can be made from its monomer through addition polymerisation.
- D. It can decolourise bromine dissolved in an organic solvent quickly.
- 16. The molecular formula of compound X is C₄H₇Br and it has one carbon-carbon double bond. It can react with Br₂ (dissolved in an organic solvent) to give the following organic product:

Which of the following is / are the possible structure(s) of X?


- (1) CH₂BrCH₂CH=CH₂
- (2) H₂C=CHCHBrCH₃
- (3) CH₃CH=CHCH₂Br
 - A. (1) only
 - B. (2) only
 - C. (1) and (3) only
 - D. (2) and (3) only

19. Consider the following two compounds:

Which of the following statements is / are correct?

- (1) They belong to the same homologous series.
- (2) They have the same molecular formula.
- (3) They are insoluble in water.
 - A. (1) only
 - B. (2) only
 - C. (1) and (3) only
 - D. (2) and (3) only

23. The simplified diagram below shows how different petroleum fractions can be obtained from a fractionating tower.

Which of the following statements are correct?

- (1) Fraction S has a darker colour than fraction Q.
- (2) Fraction \mathbf{R} has a higher viscosity than fraction \mathbf{P} .
- (3) Fraction Q is more flammable than fraction P.
 - A. (1) and (2) only
 - B. (1) and (3) only
 - C. (2) and (3) only
 - D. (1), (2) and (3)

2022

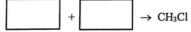
6. Consider the following chemical equation for the formation of CH₃Cl from methane and chlorine:

$$CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$$

(a) Name the type of reaction involved.

(1 mark)

(b) State the condition needed for the reaction to occur at room temperature.


(1 mark)

- (c) The reaction involves three stages: initiation, propagation and termination. In the initiation stage, chlorine free radicals (Cl*) are formed from chlorine molecules.
 - (i) With reference to the electronic structure, explain why a chlorine free radical (Cl*) is a reactive chemical species.
 - (ii) Complete the chemical equations below by filling in a suitable chemical species in each of the following boxes:

One of the steps in the propagation stage:

$$Cl \cdot + CH_4 \rightarrow +$$

One of the steps in the termination stage:

(3 marks)

(d) Explain why CH₃Cl is not the only organic product formed in the reaction between methane and chlorine.

(1 mark)

(e) From the hazard warning labels shown below, circle a label that should be displayed on a gas cylinder containing methane.

(1 mark)

Mark	200	Cal	han	20

Part I: (a) hydr	pearbons, (b)) homologous ser	es and (c) a	lkanes and alken	es		
CE90_06	В	CE90_18	D	CE90_21	A	CE91_05	В
CE91_22	C	CE91_24	C	CE91_34	٨	CE91_36	D
CE92_21	A	CE92_24	A	CE92_49	D	CE93_29	D
CE93_32	В	CE93_33	D	CE94_21	C	CE94_22	٨
CE94_23	D	CE94_32	Α	CE94_41	D	CE95_15	C
CE95_20	В	CE95_23	D	CE95_39	Á	CE96_13	A
CE96_14	В	CE96_20	D	CE97_10	Α	CE97_16	В
CE97_18	Α	CE97_19	C	CE97_23	D	CE97_24	٨
CB97_33	D	CE97_38	D	CE97_42	В	CE98_03	A
CE98_07	C	CE98_14	A	CE98_29	D	CE98_39	D
CE98_47	В	CE99_03	C	CE99_30	A	CE99_32	C
CE99_35	D	CE99_44	D	CE00_06	D	CE00_08	Λ
CE00_14	8	CE00_21	Α	CE00_25	A	CE00_27	B
CE00_40	٨	CE01_03	D	CE01_07	A	CE01_12	В
CE01_14	D	CE01_31	В	CE01_32	D	CE01_41	D
CE02_05	В	CE02_09	В	CE02_12	C	CE02_33	В
CE02_34	D	CE02_43	D	CE02_44	D	CE02_48	C
CE03_08	D (66%)	CE03_10	B (85%)	CE03_17	D (33%)	CE03_31	D (54%)
CE03_33	D (48%)	CE03_37	D (58%)	CE03_38	A (51%)	CE05SP_16	D
CE05SP_19	C	CE04_21	B (36%)	CE04_28	B (30%)	CE04_37	B (40%)
CE04_42	D (41%)	CE04_45	B (58%)	CE04_46	C (42%)	CE05_01	D (55%)
CE05_02	B (51%)	CE05_04	A (60%)	CE05_12	D (62%)	CE05_21	B (48%)
CE05_28	D (34%)	CE05_37	C (70%)	CE05_43	D (50%)	CE05_45	B (80%)
CE05_46	D (84%)	CE05_47	B (43%)	CE06_11	B (72%)	CE06_12	B (27%)
CE06_16	B (44%)	CE06_17	A (58%)	CE06_22	۸ (44%)	CE06_23	B (71%)
CE06_30	C (38%)	CE06_44	A (65%)	CE06_45	A (33%)	CE06_46	C (72%)
CE07_02	D (34%)	CE07_04	B (36%)	CE07_08	B (57%)	CE07_10	D (24%)
CE07_14	C (41%)	CE07_26	B (40%)	CE07_30	A (41%)	CE07_33	B (45%)
CE07_49	B (61%)	CE08_06	C (60%)	CE08_14	A (62%)	CE08_27	B (45%)
CE08_29	A (73%)	CE08_49	D (68%)	CE09_03	B (60%)	CE09_H	B (74%)
CE09_16	B (74%)	CE09_21	B (86%)	CE09_25	A (82%)	CE09_26	A (74%)
CB10_02	D (60%)	CE10_12	B (65%)	CE10_25	D (76%)	CE10_27	B (50%)
CE10_29	C (43%)	CE10_50	C (53%)	CEII_10	A (58%)	CE11_18	D (85%)
CE11_22	A (67%)	CE11_38	C (79%)	CE11_42	C (55%)		
Part 2: (d) add	tion polyme	<u>15</u>					
CE91_26	D	CE91_27	D	CE92_25	Α	CE92_43	C
CE93_35	С	CE94_20	C	CE94_41	D	CE95_22	C
CE95_35	Α	CE96_05	В	CE97_18	V	CE97_40	Α
CE98_14	A	CE98_49	В	CE99_28	A	CE99_41	B

CE00 38	A	CE01_09	В	CE01_17	Α	CE02_20	C
CE02_30	A	CE03_31	D (54%)	CE03_36	A (43%)	CE03_48	D (66%)
CE05SP 48	В	CE04 15	C (41%)	CE04_41	D (67%)	CE06_49	D (58%)
CE07_09	D (57%)	CE07_27	D (53%)	CE10_10	D (82%)	CE11_17	D (66%)
_	` '	-					
DSE							
DSEIISP_01	В	DSEIISP_04	С	DSEIISP_09	В	DSE12PP_10	В
DSEI2PP 11	В	DSE12PP_21	В	DSE12_11	B (61%)	DSE12_17	B (50%)
DSE12 21	A (69%)	DSE12 22	C (84%)	DSE12_24	B (61%)	DSE13_14	B (81%)
DSE14 08	B (78%)	DSE14_10	D (70%)	DSE14_17	A (88%)	DSE15_10	B (82%)
DSE15_19	B (73%)	DSE15 22	C (84%)	DSE15_20	B (55%)	DSE16_09	C (77%)
DSE16_10	B (63%)	DSE16_17	C (73%)	DSB16 19	C (27%)	DSE17_05	D (63%)
DSE17 18	B (50%)	DSE17 20	D (71%)	DSE17 22	D (50%)	DSE18_08	C (82%)
DSE18_13	B (75%)	DSE18 14	C (49%)	DSE18_15	C (83%)	DSE18_20	A (63%)
DSE19 07	В	DSE19_10	C	DSE19_18	В		

DSE20_6 B DSE20_23 C DSE20_24 D

Structural Questions

Part 1: (a) hydrocarbons, (b) homologous series and (c) alkanes and alkenes

0_03α	
raw material: crude oil (petroleum)	[1]
method: by fractional distillation	[1]
$C_5H_{12} + 5H_2O \longrightarrow 5CO + 11H_2$	[1]
hydrogen and carbon monoxide	[1]
The colour of citrated blood changes to cherry/ bright red.	[1]
This is the colour of the compound formed between carbon monoxide and haemoglobin	[1]
to form carboxyhaemoglobin.	
Black copper(II) oxide turned to brown copper.	[1]
Copper(II) oxide is reduced by hydrogen and carbon monoxide.	[1]
$CuO + H_2 \longrightarrow Cu + H_2O$	[1]
$CuO + CO \longrightarrow Cu + CO_2$	[1]
[Do NOT accept: $2CuO + H_2 + CO \longrightarrow 2Cu + H_2O + CO_2$]	
Town gas is poisonous / toxic and has an explosion risk.	[1]
(1) for ventilation / letting in fresh air / letting out town gas,	[1]
[Do NOT accept: town gas is poisonous]	
(2) dialing the telephone will trigger off a spark (or electric spark) which may ignite	[1]
the town gas (or may cause an explosion).	
0 05c(ii)	
Sulphur dioxide gas is released by burning fuels containing sulphur.	[1]
as a gas: (any one)	[1]
toxic (or poisonous) nature	
choking smell	
harmful to human respiratory system	
 harmful to plants 	
yellowing of leaves	
when dissolved in water (any one)	[1]
forms acid rain	
is corrosive to building (or metals)	
makes soil acidic	
1 02a	
First, use a pipette to draw 25.0cm ³ of vinegar to a 250.0cm ³ volumetric flask,	[2]
	[1]
	[1]
At end point, the colour changes from colourless to red.	[1]
	raw material: crude oil (petroleum) method: by fractional distillation C ₃ H ₁₂ + 5H ₂ O → 5CO + 11H ₂ hydrogen and carbon monoxide The colour of citrated blood changes to cherry/ bright red. This is the colour of the compound formed between carbon monoxide and haemoglobin to form carboxyhaemoglobin. Black copper(II) oxide turned to brown copper. Copper(II) oxide is reduced by hydrogen and carbon monoxide. CuO + H ₂ → Cu + H ₂ O CuO + CO → Cu + CO ₂ [Do NOT accept: 2CuO + H ₂ + CO → 2Cu + H ₂ O + CO ₂] Town gas is poisonous / toxic and has an explosion risk. (1) for ventilation / letting in fresh air / letting out town gas. [Do NOT accept: town gas is poisonous] (2) dialing the telephone will trigger off a spark (or electric spark) which may ignite the town gas (or may cause an explosion). Do Csc(ii) Sulphur dioxide gas is released by burning fuels containing sulphur. as a gas: (any one) • toxic (or poisonous) nature • choking smell • harmful to human respiratory system • harmful to plants • yellowing of leaves when dissolved in water (any one) • forms acid rain • is corrosive to building (or metals) • makes soil acidic 1 O2a First, use a pipette to draw 25.0cm ³ of vinegar to a 250.0cm ³ volumetric flask. Then fill up to the mark with distilled water. Use phenolphthalein as indicator.

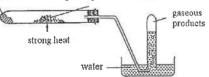
(iii)	Tit	ration /Burette reading	g 1	2	3	4
	Fir	al reading (cm ³)	25.50	25.70	26.20	25.90
	Ini	tial reading (cm ³)	0.00	1.00	1.30	1.10
	Vo	ume of NaOH used	25,50 0.00	25.70 - 1.00	26.20 - 1.30	25.90 - 1.10
			= 25.50	= 24.70	= 24.90	= 24.80
	1st to	ial would not be cour	ted since the valu	e is largely dif	ferent from oth	ers.
	Rea	sonable average volur	ne of NaOH used	= (24.70 + 24	1.90 + 24.80) /	3
				$= 24.80 \text{ cm}^3$		
(iv)	NaC	H+CH₃COOH —	- CH ₃ COONa -	H ₂ O		
(v)	NaC	H + CH ₃ COOH —	 CH₃COONa 	H ₂ O		
	mol	e of CH ₃ COOH = m	ole of NaOH =	$0.10 \times \frac{24.80}{1000}$	□ 0.00248	
	[CH	$_{3}$ COOH] _{diluted} = $\frac{0.00}{10}$	$\frac{0248}{25} = 0.0992$	mol dm ⁻³		
	[СН	3COOH] _{undiluted} = 0.	$0992 \times \frac{250}{25} = 0$.992 mol dm	-3	
(vi)	Give	en: better buy = lower	price per gram o	f СН ₃ СООН		
	mas	s of CH ₃ COOH in	Brand A = 50 ×	$\frac{250}{1000} = 12.5$	g ₌	
	mol	e of CH ₃ COOH in 1	3rand B = 0.99	$2 \times \frac{500}{1000} = 0.$	496	
	mas	s of CH3COOH in 1	Brand $B = 0.49$	$6\times60=29.7$	6 g	
	For	Brand A,\$ of CH3	$COOH = \frac{3.00}{12.5} =$	\$0.24		-
	For	Brand B,\$ of CH3	$COOH = \frac{6.00}{29.76} =$	\$0.20		
	Brat	d B is better buy.				
	1_03a					
(i)		because petroleum co		-) ,
(ii)		erent petroleum fractio	ons have differen	t boiling points		
(iii)		heavy oil				
<i>(</i>)- \$	(2)	eracking	r			
(iv)	(1)	(I) CH ₂ =CH-CH	_			
	(4)	(II) CH ₃ -CH ₂ -CI		I.O.		
	(2)	**	→ 3CO ₂ + 4F		o nuanana L-	. blakes w
		(II) Propene give percentage of	s a more sooty	mame becaus	e propene ha	s nigner mass
	(3)	, -	caroon. opane gives a gas	(CO2)		
	(2)		opane gives a gas n lime water mill			
			opane gives a liq	100		-1
			n dry cobalt(II) c		rom blue to nin	ık.
		vii vaii tui		paper i	one to pil	

(4) either one of the following tests:

The safe	Observation			
Test	Propene	Propane		
Adding bromine water or bromine in CCl ₄ (Do not accept Br ₂ (g))	Colour changes from brown to colourless	Does not decolourize		
Adding acidified KMnO4	Colour change from purple to colouriess	Does not decolourize		

CE92 01c

- (i) 2C₈H₁₈ + 25O₂ → 16CO₂ + 18H₂O [1]


 OR, C₈H₁₈ + 25/2 O₂ → 8CO₂ + 9H₂O

 The reaction is highly exothermic, the gas produced expand rapidly, so the motor is [2] pushed rapidly.
- (ii) Carbon dust and carbon monoxide are produced. [1]

 OR. Incomplete combustion occurs.
- (iii) (I) (II) To increase efficiency of fuel combustion. [1]
 - (2) It is because leaded petrol burns and releases lead compounds [1] which can damage human nervous system. [1]

CE93 01c

- (i) Cracking is the process of breaking down large hydrocarbon molecules into many small [1] hydrocarbon molecules under the action of heat (and catalyst) in the absence of air.
- (ii) rocksil soaked broken pieces of with paraffin oil unglazed porcelain / Al₂O₃

2 marks for showing cracking

I mark for showing collection of gas over water

- (iii) (1) The boiling tube may be cracked / broken by cold water flowing in.
 - (2) Remove the delivery tube from water first, then stop heating. [1]
- (iv) No, this can only conclude that the gaseous products contain C=C bond alkene or [2] unsaturated hydrocarbons.

CE9	3_010	i		
(i)	Bun	ning of fi	uel because	[1]
	it is	an exoth	ermic reaction that provide energy to move the cars.	[1]
(ii)	(1)	Incom	plete combustion of fuel	[1]
		becaus	e will produce air pollutant like carbon and carbon monoxide.	[1]
	(2)	Install	catalytic converters in cars.	[1]
CE9	3_031)		
(iii)			el used in incineration contains sulphur.	[1]
. ,	(2)		dust. It will sick and mark harms to human respiratory system.	[2]
	, ,	Carbon	monoxide. It is a toxic gas.	[2]
CE9	4 056)		
(iii)			+11O ₂ > 7CO ₂ + 8H ₂ O	[1]
(iv)	٠,		mperature inside car engine will make nitrogen gas (N2) to react with	[2]
,		_	(O ₂) to form oxide of nitrogen.	. ,
CEO	5 020	ı		
Nitro		1		[1]
	_	ouro in ai	r (the others can burn in air).	[1]
11 041		, (1111 III GI	i (iii viii vii viii) viii viii)	1.1
	5_08a			
(i)	(1)	•	r dioxide / SO ₂	[1]
	(2)		respiratory system / produces acid rain / cause smog / toxic	[1]
	(3)	installa	tion of scrubbers (pass fumes through alkalis) / use fuel of low sulphur t.	[1]
(ii)	Anv		he following groups of answer:	[4]
` '	•	Part (1)	carbon monoxide / CO	
		art (2)	incomplete combustion (of fuel)	
		art (3)	poisonous / toxic	
		Part (4)	ensure that there is sufficient supply of air during combustion of fuel	
			OR, installation of catalytic converter	
	• F	Part (1)	particulates / carbon particles	
	P	Part (2)	incomplete combustion (of fuel)	
	F	art (3)	cause smog / carcinogenic	
	F	art (4)	ensure that there is sufficient supply of air during combustion of fuel	
			OR, installation of catalytic converter	
			OR, installation of electrostatic precipitator	
	• P	'art (1)	nitrogen oxide / NO _x	
	P	'art (2)	combination of N2 and O2 at high temperature	
	P	art (3)	poisonous / toxic / produces acid rain / photochemical smog	
	P	art (4)	installation of scrubber	

installation of catalytic converter

[1]

[2]

	Part (1) unburnt hydrocarbons	
	Part (2) incomplete combustion (of fuel)	
	Part (3) cause smog / carcinogenic	
	Part (4) ensure that there is sufficient supply of air during combustion of fuel OR, installation of catalytic converter	
(iii)	•	
(11)	water type fire extinguisher	[1]
CES	96_01a(3)	
Ехр	fain:	
	Turning on the exhaust fan may produce a spark	[1]
	which may cause an explosion / the ignition of the town gas / cause a fire	[1]
Prop	per treatment:	
	Turn off the gas supply / open windows to let out the town gas	[1]
	OR, inform the Town gas company (police / fire service) via an outside telephone.	
CE9	96_02	
(a)	mass of 1 mole of $X = 1 \times 60 = 60$ g	
	mass of C in $X = 60 \times \frac{60}{100} = 36 \text{ g}$	
	$\frac{100}{100} = 30 \text{ g}$	
	no. of mole of $C = \frac{36}{12} = 3$	
	$\frac{10.01 \text{ move of } c - \frac{1}{12}}{12}$	[1]
	The general formula of alkanol is C _n H _{2n+1} OH	[1]
	Thus, molecular formula of X is C3H7OH (C3H8O).	[1]
(b)	Any ONE of the following	[1]
	ОН	
	H ₃ C CH,	
		[1]
	propan-1-oi propan-2-oi	
CE9	6_03	
(a)	Petroleum and coal were formed from the remains (dead/decayed bodies) of living	[1]
	organisms (animals and plants) that lived millions (thousands) of years ago.	
(b)	Any TWO of the following:	[2]
	 The reserve of fossil fuels is limited / may be used up / is non-renewable energy 	
	source,	
	 The price of fossil fuel is controlled by countries which have large reserve of 	
	these fuels.	
	 For economic and political reasons, countries which do not have reserve of fossil 	
	fuels have to develop other energy sources.	
	 Burning of fossil fuels produces a lot of air pollutants. 	
	 Burning of fassil fuels can cause clobal warming / greenhouse effect 	

(c) Advantage: (any one) [1]	
In the long run, nuclear power is cheapet.	
Can produce a large quantity of energy	
 Production of nuclear power produces less air pollutants / nuclear power is a clean 	
energy source	
Disadvantage: (any one) [1]	
 Leakage of radioactive source is disastrous (harmful / cancer causing) 	
 Difficult to treat the waste. 	
 Setting up the plant is expensive. 	
(d) Solar energy / hydroelectric power / geothermal energy / tidal power / wind power / [1]	
power from biomass.	
CE97 05	
Chemical knowledge:	
Environmental problems caused by oil spillage: [4]	
Oil is less dense than water and is insoluble in water, the oil layer can block the oxygen	
supply to marine life and cause death of marine life.	
Oil is flammable, it may cause huge fire which is hard to put out.	
Oil wasted ashore may spoil the beaches, the decomposition of oil is low and the effect	
is long lasting. Oil clogs the feather of sea birds and prevent them from flying or	
swimming, so the sea birds may die of cold or pneumonia (肺炎).	
· Oil layer blocks the sunlight from penetration into sea water and hinders the	
photosynthesis of aquatic plants.	
 Oil is toxic / poisonous to marine life. 	
 If detergent is used to clean up the split oil, the detergent remained in the sea may cause 	
harm to marine life.	
Treatment of oil spillage: [1]	
 Treat oil with detergent which can emulsify the oil which break down oil into droplets. 	
 Use floating barrier or boom to prevent the spread of oil. 	
 Use micro-organism to break down the oil. 	
Presentation [3]	
rresentation [5]	
CE97_09a	
(i) CH ₃ -CH ₂ -CH ₂ -CH ₃ [1]	
(ii) (1) $2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 + 10H_2O$ [1]	
(2) Carbon dioxide can turn lime water milky. [1]	
Water can turn anhydrous copper(II) sulphate from white to blue.	
OR, Water can turn anhydrous cobalt(II) chloride (paper) from blue to pink.	
(3) mole of butane in the can $=\frac{250}{58} = 4.31$	
$2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 \div 10H_2O$	

	mole of $CO_2 = 4.31 \times 4 = 17.24$	[1]
	volume of CO_2 produced = $17.24 \times 24 = 413.8$ dm ³	[1]
	(Accept answers from 412 to 414 dm ³ ; deduct 1 mark for wrong / no unit)	
(iii)	Incomplete combustion of butane may occur which produces carbon monoxide (CO)	[2]
	which is toxic.	
CE9	8_02	
(a)	potassium permanganate solution changes from purple to colourless.	[1]
	н н онон	
	$C = C + [O] + H_2O \longrightarrow H - C - C - H$ $H H$	[1]
	н н н н	
	OR , $CH_2=CH_2+[O]+H_2O \longrightarrow CH_2(OH)CH_2(OH)$	
(b)	Brown colour of bromine changes to colorless.	[1]
	↑ + Br. →	
	+ Br ₂	
	Br	
	OR , $CH_3CH_2CH_2CH_3 + Br_2 \longrightarrow CH_3CH_2CHB_1CH_3 + HB_1$	[1]
CE9	9_03	
(a)	incomplete combustion	[1]
(b)	$(1) 2NO + O_2 \longrightarrow 2NO_2$	[1]
	$2NO_2 + H_2O \longrightarrow HNO_3 + HNO_2$	[1]
	(2) damage buildings / statues,	[1]
	OR, increase the rate of corrosion of metals / decrease crop yield / harmful	
	to aquatic life	
(c)	Irritates the respiratory system / causes hing cancer.	[1]
(d)	Unburnt hydrocarbons / alkanes / sulphur dioxide	[1]
	(do not accept carbon dioxide / lead compounds / dark smoke)	
(e)	Catalytic converter	[1]
	9_09b	F13
(i)	Breaking down of large hydrocarbon (molecules) to small hydrocarbon (molecules) by	[1]
<i>(</i> 11)	heat and with help of a catalyst,	res
(ii)	Treat compounds with bromine in 1,1,1-trichloroethane / bromine water.	[1]
	Y can cause the bromine solution to change from brown to colourless rapidly.	[1]
	OR. Treat compounds with acidified KMnO4	
	Only Y can cause the acidified KMnO4 solution to change from purple to	
/!!!	colourless.	
(iii)	General formula of alkene is C_nH_{2n} 12n + 2n = 42, $n = 3$	111
		[1]
	Y is C ₃ H ₆	[1]

CE00_08a

(1)	OR,	Vapour of alkanes with high relative molecular mass condenses at higher temperature.	[2]
(ii)	(1)	Petrol is mainly used as fuel for motor cars.	[1]
,	, ,	The rapid growth in the number of motor cars makes the demand for petrol much greater than that for kerosene.	[1]
	(2)	Thermal cracking: heating (kerosene) under pressure in the absence of air. OR, catalytic cracking: heating (kerosene) in the presence of a catalyst in the absence of air at a much lower pressure.	[1]
(iii)	(1)	Any ONE of the following; It is easier to transport / store naphtha. Using naphtha produces less air pollutants.	[1]
	(2)	To alert consumers of the leakage of town gas which contains carbon monoxide which is toxle / hydrogen which is explosive.	[2]
(iv)	Lubr	icating oil	[1]
CE0	0.086		
(i)		ing gasohol produces a smaller amount of carbon monoxide / less unburnt ocarbons / gasohol burns completely / produces less soot (dark smoke).	[1]
(ii)	Cata	lytic hydration of ethene.	[1]
	CH ₂ =	=CH ₂ + H ₂ O → CH ₃ CH ₂ OH	[1]
(iii)	Ferm	entation of carbohydrates.	[1]
(iv)	Oper	n-ended question:	
		centation because it can save petroleum / the price of production of ethanol is low in ultural countries.	[1]
	OR,	Catalytic hydration because ethanol can be produced at a faster rate.	
CEO	0.096		
(i)	Burn	ing fossil fuels (wood) / respiration.	[1]
(ii)		osynthesis / dissolving carbon dioxide in seas (oceans).	[1]
(iii)	(1)	Carbon dioxide absorbs (infra-red) radiation from the earth surface and traps the energy.	[2]
	(2)	The atmosphere is maintained in a temperature range suitable for plant and animal growth.	[1]
	(3)	Any ONE of the following: • melting of ice in the polar caps which may cause flooding of the low-lying areas	[1]
		change in rainfall pattern	
		 weather disrupt ecosystem worldwide 	

CE0	1_01	
(a)	saturated hydrocarbon / alkane	[1
(b)	(i) vapour	[1
	(ii) oxygen (air) and heat / high temperature	[2
	(iii) The strong wind causes a lowering of temperature / removal of heat.	[1
(c)	The high temperature of molten wax causes water to evaporate rapidly.	[1
	The steam produced causes the molten candle wax to splash out. The hot wax may cause burning of skin.	[1
	OR, The steam produced causes the wax to form tiny drops of wax which can easily catch fire / can burn violently.	×
CE0	1_076	
(i)	Remains of sea animals and plants (e.g. planktons) that lived millions of years ago.	[1
(ii)	The carbon content of alkanes in diesel is higher than that in LPG.	[1
	It is more difficult for diesel to undergo complete combustion.	[1
	So, burning diesel produces more particulates / carbon monoxide / unburnt hydrocarbons.	[1
(iii)	Any one of following:	[1
	not enough LPG refill centers	
	investment to buy LPG taxis	
	not enough service centers	
	(accept reasonable answers)	
CE0	2 08a	
(i)	Mass of sulphur in 1.0 kg of coal = $1000 \times 1.5\% = 15$ g	
.,	$S+O_2 \longrightarrow SO_2$	
	mole of SO_2 released = mole of sulphur used = $\frac{15}{32}$ = 0.469	[]
	Volume of SO_2 released = $0.469 \times 24 = 11.26 \text{ dm}^3$ (Accept I1 and I1.3 dm ³)	[2
ii)	Acid rain / high incidence of respiratory illnesses / corrosion of buildings.	[1
(iii)	Installation of scrubbers / installation of desulphurization system / use of coal of lower sulphur content.	[1
iv)	 High incidence of respiratory illnesses / causing cancer / darkening of building walls / reduce visibility / smog. 	[1
	(2) Installation of electrostatic precipitator.	
CE03	3 07b	
i)	breaking down of large molecules into smaller ones,	[1]
ii)	Cracking can help to produce extra petrol which is used as fuel for motor vehicles, OR, . Cracking produces unsaturated hydrocarbons (e.g. alkene) which can be	[2
	converted to other useful organic compounds.	

(iii) broken pieces of rocksil soaked unglazed porcelain / Al2O3 with paraffin oil gaseous products strong heat (I mark for the set-up used for cracking octane; I mark for collection of gaseous product; I mark for the labels of an appropriate catalyst and heat.) (iv) (1) $C_8H_{18} \longrightarrow C_4H_{10} + C_4H_8$ [1] (2) Treat compounds with Br2 in CH3CCl3. [1] The unsaturated hydrocarbon readily turns Br2 in CH3CCl3 from brown to [1] colourless. CE03 09c [1] sewage sludge (ii) CH₄ + O₂ → CO₂ + H₂O [1] (iii) Save fossil fuels. [1] (iv) Possible answers: (any one) [1] · Methane produced in blogas plants cannot meet the huge demand of domestic fuel. · Investment in the construction of biogas plant may be great. · Biogas plants release air pollutants. · Difficult to collect large amount of organic wastes. CE04 03 [1] Dissolve iodine in ethanol/ alcohol. (1) I2 is reduced by SO32 (aq) to colourless I-(aq). [2] (2) I2 dissolves in 1,1,1-trichloroethane. [1] (1) is better than (2). In (2), the stain will be spread by 1,1,1-trichloroethane/ the stain will remain on the [1] coat when 1,1,1-trochloroethane vaporizes. 1,1,1-trichloroethane is toxic/harmful. CE04 04 Chemical knowledge (6 marks) Formation of acid rain: Burning of coal in power stations gives sulphur dioxide [1] Roasting of sulphur-containing ores gives sulphur dioxide Burning of diesel in diesel engines gives sulphur dioxide Sulphur dioxide dissolves in rain water to give sulphurous acid. [1] 399

[3]

Combination of N ₂ and O ₂ at high temperatures, e.g. in car engines or power stations gives	[1]
NO _x /NO/NO ₂ .	E 1 7
NO ₂ is finally formed which, when dissolves in rain water, gives HNO ₂ / HNO ₃ .	[1]
OR, Burning of chlorine-containing plastic wastes gives HCl(g)	
OR, HCl(g) dissolves in rain water to give HCl(aq)	
Possible ways to reduce the formation of acid rain:	
For sulphur dioxide:	
Use low-sulphur coal / natural gas / wind power (etc) instead of high-sulphur coal	[1]
OR, installation of scrubbers / flue gas desulphurization system.	
For NO _x :	
Installation of catalytic converters in car exhaust systems.	
OR, Installation of low nitrogen oxide burner / scrubbers in power stations	
For HCl;	
Installation of scrubbers in exhaust system of incinerators / treat plastic wastes by	
[Accept other possible ways for the removal of SO ₂ , NO _x and HCl.)	
Effective communication	[3]
Effective communication	[2]
CE05_05	
(a) Any TWO of the following pairs:	[4]
Both pentane and octane can be represented by a same general formula.	
The general formula for pentane and octane is C _n H _{2n+2} /Adjacent members differ by	
one –CH ₂ .	
 There are gradual changes in physical properties among the members of a homologous series. 	
The boiling point / melting point / viscosity / density of octane is higher than that of	
pentane.	
Members of the same homologous series have similar chemical properties.	
Both pentane and octane can undergo substitution reaction with Br2 / Cl2.	
(b) Octane, it has a higher percentage of carbon by mass. Its chance to undergo incomplete	[2]
combustion to give carbon is higher.	
(c) Any TWO of the following:	[2]
CH ₃ CH ₂ CH ₂ CH ₃ CH ₃	
(CH ₃) ₂ CHCH ₂ CH ₃	
(CH ₃) ₄ C	
CE06_01b	
(i) Pressure builds up in the set-up when the mixture is heated. It is dangerous to conduct an	[1]
experiment using a closed system. An explosion is liable to occur.	
Modification: add a receiver adaptor between the condenser and the round-bottomed	[1]
flask.	100-00-0

(ii)	No. The boiling point of hex-1-one and hexane are very close together. They cannot be separated by simple distillation.	[1]		
(iii)				
CE0	6_06			
(a)	The number of motor vehicles increases rapidly. Large quantities of petrol / diesel are	[1]		
	burnt to produce CO ₂ .	F13		
	The rapid growth in population leads to deforestation, which can provide more land for	[1]		
(b)	housing. Increase in the number of rice paddies / cattle. The remains / manure decay to give methane.	[1]		
(c)	 Greenhouse gases can trap heat which is reradiated from the Earth, and keep the atmosphere warm for life to sustain on Earth. 	[1]		
	(ii) Increase in temperature of the atmosphere can cause melting of polar ice caps /	[1]		
	flooding / change in rainfall pattern etc.	F1.3		
	(iii) (I) Any ONE of the following:	[1]		
	Use alternative energy sources to generate electricity, e.g. nuclear			
	energy, wind energy, solar energy, HEP etc.			
	Use H ₂ as fuel (fuel cell) in cars			
	 Plant more trees (II) Natural gas / marsh gas / methane from biomass can be used as a fuel. 	[1]		
	(11) Matthew Bas / Matthews Bas / Matthews			
CEC	07 02			
(a)				
	rocksil soaked broken pieces of with paraffin oil unglazed porcelain / Al ₂ O ₃			
	gaseous			
	strong lieat			
	Cracking set-up	[1]		
	Gas collection set-up	[1]		
	Labelling of paraffin oil and porcelain/porous pot/pumice stones/aluminium oxide/etc.	[1]		
(b)	(i) The products of cracking contained unsaturated (hydrocarbons) / alkenes / C=C /	[2]		
	ethane / reasonable name of alkene, which decolourized the bromine water			
	immediately by addition reaction.	103		
	(ii) The products of cracking also contained saturated (hydrocarbons) / alkanes /	[2]		

the bromine water slowly by substitution reaction.

CE07_07

(a)	conce	entrated	sodiun	n hydroxide so	olution			[1]	
	solid	/ powde	r left					[1]	
(b)	(i)	methar	iol and	hexane				[1]	
	(ii)				flame while hexar me than methano		ith a yellow flame / hexanc	[1]	
					higher than that i		ol .	[1]	
(iii)	Add						ly to methanol and hexane.	[1]	
. ,							xide solution while hexane		
	is no	t.							
	OR,	Jus	st mix	them together	r. Two layers obs	erved. Up	per layer is hexane while		
				er is methanol					
	OR	Ca	rry out	boiling point	test. The one with	higher bo	oiling point is hexane.		
CE0	8_07								
(a)	A: fr	actional	distilla	ation				[1]	
	B: cr	acking						[1]	
(b)	(i)	(i) Diesel oil has	s a higher vis	cosity because th	e interme	lecular forces between the	[1]		
			olecules are larger than those in petrol.						
	(ii)	(ii) Petrol is a cleaner fuel because							
		it burn		completely				[1]	
		OR,		shorter carbo					
		OR,			to hydrogen ratio				
		OR,			contents than die				
(c)	(i)				petrol for meeting			[1]	
		OR,					for meeting the demands.		
		OR,	То				other compounds.	(03	
	(ii)	(1)		CH₃CH₂CH		but-1-en		[2]	
			OR	CH3CH=CH		but-2-en			
			OR	CH ₃ C(CH ₃)	=CH ₂		propene / methylpropene		
		(2)		Test		Observation			
					C20H42		D	[2]	
					Brown / orange	/ yellow	Brown / orange / yellow	[Z]	
			Bron	ine solution	to colourless s		to colourless		
					under lig	ht	immediately / quickly /		
							in the dark		
				ified KMnO4	No observable	changes	Purple to colourless		
			solut	O ₄ solution	No observable	changes	Brown precipitate		
			Burn		More dark sr		Less dark smokes		

CRI	l 01a		
		tygen is provided when air hole is fully open.	Ш
	~	combustion of methane has occurred.	[1]
		CO ₂ + 2H ₂ O	[1]
C1.14	1 202	207 2170	L*J
CEI	1_06		
(a)	(i)	Butane	[1]
	(ii)	LPG burns more completely.	[1]
		OR, LPG gives less sooty flame on burning.	
(b)	(i)	Any 2 points, 1 mark for each point.	[2]
		 Reduce the amount of nitrogen oxides in the exhaust. 	
		 Reduce the amount of unburnt hydrocarbons in the exhaust. 	
		Reduce the amount of carbon monoxide in the exhaust.	
		Reduce the amount of soot.	
		 Reduce the amount of suspended particulates in the exhaust. 	
	(ii)	Nitrogen gas (N ₂) or water (H ₂ O) or carbon dioxide (CO ₂)	[1]
(c)	Burn	ning of ultra low sulphur diesel (ULSD) gives less sulphur dioxide.	[1]
. ,		hur dioxide causes acid rain / is harmful to human respiratory system.	[1]
	,		
Part :	2: (d)	addition polymers	
CE9	01a((iv)	
(1)	polyp	propene	[1]
	H	ÇH ₃	[1]
	—ċ	CH ₃	
	H	 H	
(2)	house	chold articles:	
(-)		ls / buckets / cups	[1]
	00111	o y catalog y cape	F-7
CE9	L_02b		
(i)	Then	moplastic are easily melt and catch fire because electricity produces heat.	[1]
(ii)	Polys	styrene,	[1]
	The g	gas is a good insulator of heat, so as the plastic.	[1]
(iii)	(1)	polyethene / polythene	[1]
		$n (CH2=CH2) = \begin{bmatrix} H & H \\ I & I \\ C & C \end{bmatrix}_{\mathfrak{n}}$	
		$n (CH_2 = CH_2) = + \dot{C} - \dot{C}$	[1]
		LHHJn	
	2_04a		
(i)	(1)	T T	[1]
		C=C 	
[30	S 16	H H	11.97 - 53.07
	(2)	polypropene / polystyrene	[1]

	(3) In A, X will melt	[1]
	because X is heated in a limited supply of air.	[1]
	OR, because X is a thermoplastic.	
	In B, X will burn	[1]
	because there is much air supplied for burning.	[1]
(ii)	mole ratio of $C: H = \frac{4.62}{12}$: $\frac{5.00 - 4.62}{1} = 0.385 : 0.38 = 1 : 1$	[2]
	n(CH) = 104, hence $n = 8$	
	Molecular formula of monomer of X is CaHa.	[1]
CE93	3_02a	
(i)	Plastics are chemically unreactive and cheap.	[2]
	5_06a(iv)	
(1)	It is inert / does not react with HCl / the bottle is not easily broken / flexible / light in weight / can be molded easily.	[1]
(2)	polyethene / polythene / polypropene / polystyrene / polyvinyl chloride etc.	[1]
CE9	6_07b	
(i)	fractional distillation of crude oil	[1]
(ii)	$ \begin{array}{ccc} & H_3C & H \\ & C = C \\ & H \end{array} $	[1]
	н′ н	
	(2) Step 1: (catalytic) cracking of heavy oil	[1]
	Step 2: fractional distillation of the mixture to obtain propene	[1]
(iii)	Step 1: monomer A (propene) is polymerized to give polypropene	[1]
	Step 2: polypropene is injection moulded to give the polypropene bottle	[1]
(iv)	Polypropene is non-biodegradable.	[1]
	OR, Burning of polypropene waste may produce toxic gas / air pollutants.	
(v)	(1) Separating polypropene from other plastic wastes	[1]
	OR, cleaning the polypropene wastes	
	(2) Urea-methanal	[1]
CE9	7_01c	
-	styrene	[1]
	ing bottles are usually sterilized by heating in boiling water. Polyethene has a low melting t, it softens at the temperature of boiling water.	[1]
-	-methanal. It cannot be moulded into the shape of a bottle / it is not transparent.	[]]

CE97 07b (i) compound IV [1] [1] CE98 07b (i) $n H_2C=CH_2 \longrightarrow -[CH_2-CHCI]_n$ [1] [1] (ii) (1) Any one: · rain coats bottles garment · surface of sofa hose · cable sheathing · foot wear · tiles curtains (2) Any one: [1] · pipes bottles record (3) No. PVC is a thermoplastic, it melts upon heating. [1] (iii) (1) Acid rain / damage to the respiratory system. [1] (2) Washing the flue gas with alkali / water. [1] pass the gas through scrubber. [1] mole of HCl produced = mole of PVC repeating units = = 16000[1] volume of HCl produced = $16000 \times 24 = 384000 \text{ dm}^3$ [1] CE99 01 (a) (i) Any one: [1] · Polyvinyl chloride is more corrosive resistant than iron · It can be more easily shaped · It is chemically inert [1] (ii) Any one: · Iron is stronger · Iron has higher tensile strength than PVC (b) (i) Perspex is not easily broken / lighter. [1] (ii) Glass cannot be easily scratched / has better light transmission property. [1]

(c)	(i)	Any one:	[1]
		It is waterproof	
		Polyethene is more durable	
		It has higher tensile strength	
	(ii)	Any one:	[1]
		Paper is biodegradable	
		 It causes less pollution problems when disposed of 	
		 It can be made from renewable materials 	
		It is air permeable	
CE9	9 09b		
(i)	-	king down of large hydrocarbon (molecules) to small hydrocarbon (molecules) by	Ш
(7		with the help of a catalyst.	[1]
(ii)		compounds with bromine in 1,1,1-trichloroethane / bromine water.	[1]
` '		a cause the bromine solution to change from brown to colourless rapidly.	[1]
	OR,	Treat compounds with acidified KMnO4.	F.1
		Only Y can cause the acidified KMnO4 solution to change from purple to	
		colourless.	
(iii)	Gene	ral formula of alkene is C _n H _{2n}	
	12n -	-2n = 42	[1]
		n = 3	
	Y is	C ₃ H ₆	[1]
(iv)	(1)	CUI	[ii]
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(2)	Apply heat to Z until it softens / melts.	[1]
		Compress (inject) molten Z to the shape of a cup in a mould and allow it to cool.	[1]
(v)	Adya	mtage:	. ,
	to red	luce the consumption of non-renewable energy source or fossil fuels.	[1]
	Disac	lvantage:	
	burni	ng plastie wastes produces air pollutants / toxic gases.	[1]
	OR,	the cost to remove the pollutants produced by burning plastic wastes is high.	

CE00 07b [2] (i) water out water in mixture of kerosene antibumping granules and styrene heat (ii) Add anti-bumping granules to prevent bumping and ensure smooth heating. [2] A small flame / an electric heating mantle / an oil (water) bath should be used because kerosene is flammable. Heat the mixture in a fume cupboard because styrene vapour is irritant. [1] carbon-carbon double bond / C=C [1] (iv) (1) To improve the heat insulating properties of the material. [1] (2) Open-ended question: [1] Agree: · landfilling causes less air pollution problems · degradation of polystyrene wastes takes a long time · a lot of landfilling sites are needed · incineration can produce energy CE01_07a [1] [1] addition

(iii) durable / water repelling / chemically inert / high tensile strength

(iv) any one of answer:

	Answer I	Answer 2	Answer 3
(1)	incineration	landfilling	recycling
(2) Advantage	can reduce the volume of solid waste OR, converts plastic wastes into energy	does not cause much air pollution OR, produces methane which is a fuel	saves petroleum which is a non- renewable energy source OR, reduces the volume of solid waste
Disadvantage	release toxic gases (CO / dioxins)	a lot of landfill sites are required OR, causes underground water pollution	difficult to separate from other wastes OR, energy consuming

CE02 05

Chemical knowledge (total 6 marks)

- Members of a homologous series can be represented by the same general formula of [1] alkenes: CnH2n
- Successive members of a homologous series differ in their structure by one CH2 unit
- Formulae: ethene (C2H4), propene (C3H6) etc.
- . Members of a homologous series have the same functional group
- Functional group of alkenes: C=C
- Structures of alkenes: ethene (CH2=CH2); propene (CH3CH=CH2)
- Their physical properties change gradually from one member to the next [1]
- The melting point / boiling point of alkene increase with increase in relative molecular [1]
- mass
- . Members of a homologous series have similar chemical properties
- One example of the reactions of alkenes which is characteristics of unsaturated [1] hydrocarbons

e.g. CH₂=CH₂+Cl₂ --- CH₂Cl-CH₂Cl

Effective communication

CE03 05

Chemical ways of treating plastic wastes:

(any three of the following; in each case, I mark for advantage and I mark for disadvantage)

1	Incinerat	<u>lon</u>

Operation cost is low. Volume of solid waste can be greatly reduced, [1] Advantages energy can be recycled, reduce land wastage, etc.

Disadvantage: Incineration produces toxic gases, the cost of operating a controlled [1]

incineration plant is high, etc.

· Recycling

Save materials, plastic wastes can be converted to useful products. Π Advantage:

The cost of operating a recycling plant is high, separation of the Disadvantage:

different types of plastics in the waste is costly, low quality plastics are produced by melting and re-moulding plastic wastes, etc.

· Landfilling

Advantage: Does not cause much air pollution, a lot of plastic waste can be treated [1]

in a short period of time, etc.

land wastage, it takes a long time for plastic wastes to degrade, may [1] Disadvantage:

cause pollution of underground water, slow release of toxins from landfill sites, etc.

Pyrolysis

Save materials, useful products (e.g. methane, ethane) can be Advantage:

obtained, etc.

Disadvantage: Requires a lot of energy.

Effective communication

CE04 06c

- In the presence of air, plastic wastes will be oxidized / burn / give CO2 and H2O.
- Fractional distillation of the liquefied pyrolysis products. [1]
- Methane: fuel/steam cracking to give CO or H2/production of CH2Cl2 (CHCl3 and CCl4) 111 Ethene: making starting materials for polymers (PE or PVC) / manufacture of ethanol [1] (or ethane-1,2-diol)

(accept other correct answers)

- (iv) (1) Incineration / landfilling / recycling [1]
 - (2) Advantage of pyrolysis (any one)
 - · useful products can be obtained [1]
 - · cause less air pollution problems
 - · save materials
 - · not necessary to separate the plastic wastes

Advantage of incineration (any one)

- · low operation cost
- · reduce solid waste volume / reduce land wastage
- · not necessary to separate the plastic wastes

[1]

[3]

[1]

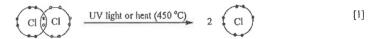
[3]

 Π

		low operation cost causes less air pollution problems not necessary to separate the plastic wastes OR, Advantage of recycling (any one) low operation cost save materials causes less air pollution problems reduce land wastage	
CE0	5 06		
(a)	(i)	CH=CH ₂	[1
		or H ₂ C=CHC ₆ H ₅	
	(ii)	PS is a mixture of polymeric molecules of different chain lengths.	[]
(b)	(i)	Condenser	[1
	(ii)	Electric heating mantle / oil bath / sand bath should be used because kerosene is flammable.	[2
	4111	OR, Heat the mixture in a flame cupboard because styrene vapour is irritant.	
	(iii)	Addition polymerization	[1
(c)	(i)	Electricity leakage can be prevented.	[1
	(ii) (iii)	Plastic does not corrode easily,	[]
	(m)	Low density	[1
CE0	6_11		
(a)	betw	moplastics are made up of molecules with long carbon chains. The attraction cen the polymers is weak van der Waals' forces. At elevated temperatures, the cules can move relative to each other (translational motion).	[1
		ermosetting plastics, there are cross-links between the polymer molecules. There is motion between the chains.	[1
	Then	mosetting plastics do not melt upon heating / cannot be reshaped at high erature. But, thermoplastics soften upon heating / can be moulded at high	[1
	temp	eratures.	
(b)	(i)	$ \begin{array}{ccc} & H_2C = CH_2 & \longrightarrow & - \left\{ CH_2 - CH_2 \right\} \\ & & & \end{array} $	{1
	(ii)	PE contains only $C-H$ and $C-C$ bonds. These bonds are strong / unreactive / not readily attacked by chemicals.	[1

Advantage of landfilling (any one)

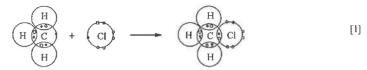
OR.


CE07 08 [1] (ii) Repeating unit: [1] Monomer: CF2=CF2 / tetrafluroethene [1] CE08 08 (a) Addition polymerization [1] [1] CE09 04 [1] (a) Corrosive [1] [1] (ii) Polyethene lining is inert / does not react with acid. [1] It can prevent acid from reacting with the steel storage tank. (c) mass of HCl = $57000000 \times 38\% = 21660000$ g mole of HCl = $\frac{21660000}{1 + 35.5}$ = 593424.7 = 593400 [1] [HCl] = $\frac{593400}{50000}$ = 11.87 M (Accept 11.86 - 11.90) [1] CB10 12 [1] CE11_07 [1] [1] (b) Addition polymerization [1]

(c) Prevent wetting the paper layer.

(d)	The box has an aluminium layer.	[1]
	Aluminium can react with oxygen so as to prevent the beverage from spoiling.	[1]
(e)		[1]
	(ii) Monomer of PVC	[1]
	OR. short chain molecule of PVC	1.1
	OR, plasticiser	
	OR, presticisci	
AL9	9(I)_06b	
(i)	CO; incomplete combustion of petrol.	[1]
	NO: combination of N2 and O2 at high temperature,	[½]
	$N_2 + O_2 \longrightarrow 2NO$	
	NO2: air oxidation of NO	[½]
	2NO + O₂ → 2NO₂	
(ii)	In the catalytic converier, Rh catalyzes the reaction	[1/2]
. ,	2NO + 2CO N ₂ + 2CO ₂	[1/2]
	Air is introduced to the converter and acts as an exidizing agent.	[1/2]
	Pt/Pd catalyzes the reactions	
	$2CO + O_2 \longrightarrow 2CO_2$	[3/2]
	$C_7H_{16} + 11O_2 \longrightarrow 7CO_2 + 8H_2O$	[1/2]
	(Accept any equation showing the oxidation of alkane with 5 to 10 carbon atoms.)	
(iii)	Lead / lead compounds can poison the catalysts Pt / Pd	[1]
()		-
ASL	.99(I)_07	
(a)	H CH3	
	H CH ₃ C- <u>J </u>	
	ĬĬ	[1]
	н н	
(b)	(i) Polymer is a mixture of polymer chain with different hydrocarbon length.	[1]
	(ii) Average number of repeating unit = $\frac{\text{molecular mass of poly(propene)}}{\text{formula was a formation unit}}$	
	Average number of repeating unit formula mass of repeating unit	

ASL99(II) 09 (modified)


(a) Chain initiation

Chain propagation

Chain termination

(b) (i) Dichloromethane is polar. As C-Cl bond is polar and CH_2Cl_2 is an [l] asymmetrical moleule.

(ii) As other products such as CH₃Cl or CCl₄ are also formed, which further [1] decrease the reaction yield of dichloromethane.

ASL99(II) 10 (modified)

- (ii) Replace the fossil fuel by alternative fuel such as hydrogen gas.

 (Accept other reasonable answer)
- (c) (i) Presence of nitrogen dioxide [1]
 - (ii) Cause respiratory disease [1]

ASL01(I) 06

- (a) Cracking of naphtha gives a mixture of hydrocarbons which include propene. [1]

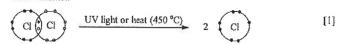
 Fractional distillation of the gaseous products can separate propene from other hydrocarbons.

 Polymerization of propene at elevated temperatures. [1]
- (b) The molecular size of repeating unit of PVC is larger than that of PP. Under the same [1] length of the polymer chain, there is a stronger van der Waals' force between PVC [1] polymer chains that in PP.
- (c) (i) The intermolecular attraction between polymer chains weakens if there are plasticizer molecules between the polymer chains, increasing the distance between two polymer chains.
 - (ii) The plasticizer molecules decompose under the prolonged sunlight radiaton, [1] and PVC restores its rigidity.
- (d) Buring PVC wastes will produce toxic Cl₂ gas / acidic HCl gas and others chlorinated [1] compounds such as dioxin.

ASL02(II) 10

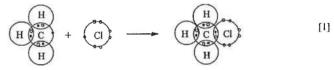
- (a) At high temperature, N₂(g) and O₂(g) in the air combine to form NO(g)

 N₂(g) + O₂(g) --- 2NO(g)


 Burning sulphur impurities in the coat produces sulphur dioxide.

 [½]

 S(s) + O₂(g) --- SO₂(g)
- (b) (i) A catalyst can speed up the reaction by providing an alternative pathway with [1] lower activation energy.
- (ii) $6NO(g) + 4NH_3(g) \longrightarrow 5N_2(g) + 6H_2O(1)$ [1]
- (c) $2SO_2(g) + 2CuO(s) + O_2(g) \longrightarrow 2CuSO_4(s)$ [1]
- (d) (i) $2CuSO_4(s) + CH_4(g) \longrightarrow 2SO_2(g) + CO_2(g) + 2Cu(s) + [1] + 2H_2O(1)$
 - (ii) Heating Cu in the air [1]


ASL03(II)_08 (modified)

- (a) (i) Under sunlight or under ultra-violet radiation [1]
 Use a mixture of CH₄ and Cl₂ in a mole ratio of 1 ; 1 [1]
 - (ii) Chain initiation

Chain propagation

Chain termination

- (b) CH₂CH₂, CHCl₃ and CCl₄ [1]
 AL04(II) 06a
- (i) (I) At high temperature, N₂(g) reacts with O₂(g) to give NO(g). [1] N₂(g) + O₂(g) --- 2NO(g) [½]
 - $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$ [½]
 - (II) Acid rain / photochemical smog [1]

 2CO(g) + O₂(g) → 2CO₂(g) [1]
 - i) $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$ [1] OR, $2CO(g) + 2NO(g) \longrightarrow 2CO_2(g) + N_2(g)$

$$C_nH_{2n+2}(g) + \frac{3n+1}{2}O_2(g)$$
 $\longrightarrow nCO_2(g) + (n+1)H_2O(g)$
[1]

n is an integer

- (iii) (I) Carbon [1] (II) Nitrogen dioxide oxidizes C in PM to $CO_2(g)$ / gaseous products. [1] $C(s) + NO_2(g) \longrightarrow CO_2(g) + NO(g)$ [1]
- C(s) + 2NO(g) -- CO₂(g) + N₂(g)

 (iv) SO₂ (or other sulphur compound) would poison the catalyst.

 [1]

ASL04(ID 12

- (a) (i) The C-Cl bonds and C-H bonds in PVC are polar. The rigidity of PVC is due [1] to the strong van der Waals' force (dipole-dipole attraction) which occurs between slightly negative chlorine atoms on one polyme chain and the slightly positive hydrogen atoms on an adjacent chain.
 - (ii) The intermolecular attraction between the polymer chains weakens if there are [1] plasticizer molecules between the polymer chains.

(b) (i)
$$CH=CH_2$$
 CH_2-CH_3 n [1]

- (ii) Hydrocarbons [1]
- (iii) Air is good insulator. Trapping of air in expanded PS would enhance the [1] heat insulating properties.

ASL0	5(11)_1		
(a)	(i)	Incomplete combustion of fuel / petrol / diesel	[1]
	(ii)	At high temperature / the temperature of the car engine, N2(g) and O2(g)	[1]
		combine to form NO(g)	
		$N_2(g) + O_2(g) \longrightarrow 2NO(g)$	
		The NO(g) formed in then oxidized to NO2(g)	[1]
		$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$	
(b)	(i)	Photochemical smog / acid rain	[1]
	(ii)	Carcinogen / causing respiratory illnesses	[1]
(c)	The c	atalyst (Pt / Rd) in the catalytic converter speeds up the reaction of NO(g) with	[1]
	CO(g) to give CO2(g) and N2(g) which are les harmful.	
	2NO(g) + $2CO(g) \longrightarrow N_2(g) + 2CO_2(g)$	[1]
(d)	Yes		
		HCs in diesel contains a much higher percentage of carbon. Incomplete ustion will give a greater amount of particulates.	[1]
1224	agen no	(modified)	
(a)		CHCONH ₂	[1]
(b)		Br ₂ /H ₂ O or Br ₂ /CCl ₄	[1]
(0)		resence of propenamide cause the reddish brown reagent to turn colorless.	[1]
(c)		+ CH ₂ =CHCONH ₂ CH ₂ BrCHBrCONH ₂	[1]
(0)	212		
	1SP_0	2	
(a)	1		
	(
	7	C(*) C	[1]
	1		
	(1	H	
(b)	Addi	lion polymerization	[1]
(c)	Dura	ble / water repelling /chemically inert / high tensile strength	[1]
(d)	(i)	Incineration	[1]
(-)	(ii)	Advantage: can reduce the volume of solid waste / converts plastic waste into	[1]
	(**)	energy.	
		Disadvantage: releases toxic gas (CO / dioxin) / CO2 which is a greenhouse gas	FIT
		/ particulates which cause respiratory diseases (darkening of building) / cost to	
		remove air pollutant from flue gas is high.	
	(i)	Landfilling	[1]
	(ii)	Advantage: does not cause much air pollution / produces methane which is a	[1]
	(**)	fuel. Disadvantage: a lot of landfill sites are required / causes underground	[1]
		Water pollution.	
	(i)	Recycling	[1]
	.,		416
			410

	(ii)	Advantage: saves petroleum which is a non-renewable energy source / reduces the volume of solid waste / does not cause much air pollution / can help to	[1]		
		conserve plastic materials. Disadvantage: difficult to separate PE from other wastes / recycling is energy consuming.	[1]		
DSE	12PP_05	5			
(a)	Mole ratio of C: H = $\frac{81.8}{12}$: $\frac{18.2}{1}$ = 6.82: 18.2 = 3:8				
			[1]		
		te has the general formula C _n H _{2n+2} is propane / C ₃ H ₈	[1] [1]		
(b)		ional distillation of the petroleum gaseous fraction.	[1]		
. ,	OR,	Cracking of naphtha / heavy oil (or any appropriate petroleum fraction) followed actional distillation of the products.			
(c)	(i)	X: C ₃ H ₈ easily undergoes complete combustion to give CO ₂ and H ₂ O. The products pose little harm to the environment.	[1]		
	(ii)	Kerosene: kerosene undergoes incomplete combustion to give a luminous flame. The flame can be more easily seen.	[1]		
DSE	12PP 07				
(b)	(i)	(1 PP is a poor conductor of heat. Using PP container to hold CaO(s) will) protect hands for skin burns, PP can withstand the high temperature caused by the reaction of CaO(s)	[1]		
		with $H_2O(1)$.			
ngr	12 02				
(a)	(i)	Cracking / Catalytic cracking / Thermal cracking	[1]		
. ,	(ii)	This process can produce small molecules / alkene / etheno / petrol /			
		hydrocarbons of lower molecular mass from large hydrocarbons to meet the industrial demand / to make useful materials / to make useful fuels.	[1]		
		OR, This process can produce more small molecules / alkenes / ethene /			
		petrol / hydrocarbons of lower molecular masses from large			
4.1		hydrocarbons.			
(b)					
	T c	о СН3			
	Lн	Н п	[1]		
(c)	(i)	0			
		CH CH -0, CH			

[1]

(ii) Bromine test – ethenyl ethanoate can decolorize orange / brown / yellow [1] bromine / Br2 solution immediately while ethyl ethanoate cannot. [1] (NOT Accept Br).

(Require to mention the reaction of Br_2 with ethenyl ethanoate is much faster than ethyl ethanoate)

OR, Treating with acidified potassium permanganate solution - ethenyl ethanoate can decolorize purple acidified potassium permanganate solution while ethyl ethanoate cannot.

(Also accept treating with potassium permanganate solution (without acidification) with the correct descriptions of observations—change from purple to brown (precipitate)).

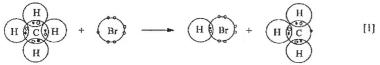
DSE12 10

Any THREE

[3]

[1]

- · Install catalytic converters in car
- Use unleaded petrol
- Replace diesel with LPG for vehicles / Use LPG for vehicles/mini-bus/bus/taxi
- · Install scrubbers in power plant
- Using Ultra Low Sulphur Diesel / Use low sulphur coal in power plant / use low Sulphur fuels.
- Use electrostatic precipitator
- · Remove dust by mechanical filtering


DSE12 15

Chain initiation

UV light or heat (450 °C) 2 Br

Chain propagation

Chain termination

DSE13 06

Cracking of naphtha gives a mixture of hydrocarbons which include propene. [1]
 Fractional distillation of the gaseous products can separate propene from other hydrocarbons.
 Polymerization of propene at elevated temperatures />45 °C / high pressure />5 atm / in the presence of a suitable catalyst / Zleg;er-Natta catalyst gives polypropene (Polymerization + any 1 condition).
 (Polymerization of propene can be described in the form of a chemical equation.)
 Communication [1]

DSE13 10

(c)

(i) Accept both 'agree' and 'disagree' answers. Award I mark for a sound argument.

Agree: The hydrogen can be obtained from renewable source (with one proper example) (E.g. electrolysis of water using the electricity generated from hydropower / reforming of CH4 obtained from animal manure.)

Disagree: The hydrogen gas used is produced from fossil fuel such as steam reforming of nature gas.

Disagree: (Electrical) energy is consumed in the production of hydrogen (from water).

(NOT Accept the answer is yes, because the hydrogen can be obtained from the electrolysis of water, and so the fuel cells do not consume fossil fuel.)

(ii) Agree: Only water is produced from the hydrogen-oxygen fuel cells

OR, No CO₂ / SO₂ / NO₈ / CO / unburnt hydrocarbon in the exhaust.

DSE14 03

(a) Add Br2(aq) or Br2(organic solvent) / acidified KMnO4(aq) / neutral or alkaline [1]

KMnO4(aq). [1]

Reddish brown or brown or orange Br2(aq) decolorized or becomes colorless (paler).

OR, Purple KMnO4(aq) decolorized or becomes colorless (paler)

OR, Purple KMnO4(aq) becomes brown.

NOT accepted ; yellow $Br_2(aq)$, Br_2 , Bromine, $Br_2(g)$, $Br_2(l)$

b) (i) 1,1-dichtoroethene [1] (ii) Addition (polymerization) [1]

NOT accept: additional polymerization

(c) 'Saran' is more heat resistant / has a higher meiting point / is less soluble in oil [1]

Because the polar attraction (force) between 'Saran' polymer chains is stronger than [1]
that between PB

OR, the molecular size of Saran are layer, hence it has a larger dispersion forces or van del Waals' force or intermolecular forces than in PE.

(d)	Incineration of food wrap made from 'Saran' will produce toxic gases / harmful gases / dioxin / hydrogen chloride / HC/ chorine / Cl ₂ , while that made from PE will not.		
DSE	14 06		
(a)	 (i) Components having different boiling points can be separated from by fractional distillation. 	each other	[1]
	The longer the carbon chain, the higher is the boiling point.		[1]
	(ii) Cracking of heavy oil / heavy hydrocarbons		[1]
(b)	(i) Catalytic converter		[1]
	15_06		г13
(a)	Substitution Light / ultra-violet / UV / heat / radical initiator (e.g. benzoyl peroxide)		[1]
(b)	Orange / brown color of bromine fades away		[1]
(c)	Orange / brown color of bromine changes to colorless (slowly) (bromine color: NOT accept 'yellow')		[1]
(3)	Br atom does not have the stable noble gas electronic configuration.		[1]
(d)	OR Br atom does not have the stable octet electronic configuration.		[1]
	OR The electronic configuration of Br atom does not fulfill the actet		
(e)	(i) CH ₂ Br ₂ / CHBr ₃ / CBr ₄		[1]
(0)	(ii) Use (large) excess amount of CH ₄		[1]
	OR, Br2 is the limiting reactant.		
DSE	15_08		
(a)	C _n H _{2n+2}		[1]
(b)	(i) Covalent bond(s) broken C-H and O=O		[1]
	Covalent bond(s) formed C=O and O-H		[1]
(c)	 Natural gas burns (more) completely but coal does not. / 		[1]
	Burning coal would produce soot / carbon monoxide but burning natural not.	gas would	
	- Compared with natural gas, coal contains more impurities. /		[1]
	Burning coal would produce more pollutant, such as SO ₂ , metal comp NO ₂ .	ound dust,	
DSE	216 03		
(a)	cracking		[1]
	To produce petrol / to produce alkenes /		[1]
	to produce smaller hydrocarbons from larger hydrocarbons / to convert he petrol	eavy oil to	
(b)	The reaction will be faster when using broken unglazed porcelain instead piece of unglazed porcelain due to larger surface area.	of a large	[1]
(a)	(i) C ₂ H ₁₈ C ₂ H ₆ + 2CH ₃ CH=CH ₂		[1]
(c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[1]

	(ii)	(1)	Orange / brown Br ₂ solution turns to colorless / decolorize (bromine colour: accept "reddish brown" or "red"; not accept "yellow")	[1]
		(2)	CH ₃ CHBrCH ₂ Br	[1]
d)	The d	leliver	y tube should be taken out of the water level before removing the heating	[1
	sourc	ee, oth	erwise sucking back will happen / the boiling tube will be cracked.	[1]
OSE1	6_05			
a)		Ω		
		Ľ	011	
	~		OH	[1]
	-	enoic a	icid	[1]
(b)	Addi			[1
	•		ept "additional")	
(c)			are of polymer molecules with different lengths.	[1]
11.	OR,		olymer molecules are of different length / carbon chains / n values.	
(d)		O ₂ Ni		[1]
	1	-CI	¹ 2] n	Į1
		à		
OSEI	7 03			
a)	_	nene i	nolecule has C=C bond whereas propane molecule has not.	[1]
,		•	: Propene is unsaturated while propane is saturated. / Propene is an alkene	
	•	•	ne is an alkane.)	
			·	
OSEI	7_08			
(a)	2C ₈ H	18 +	25O ₂ 16CO ₂ + 18H ₂ O	[1
	The s	toichi	ometric coefficients should be whole numbers.	
(b)	.5	V	\sim	[1
	(0	# 0	(† 0)	
	80_	_		
(c)			ing carbon capture techniques, the CO2 produced in power stations can be	
	trap	ped an	d stored, thus the emission of carbon dioxide into the atmosphere will be	
			Compared with petrol-driven car, power stations have higher energy	
			and will reduce CO2 emissions. / Using renewable energy sources like solar	
			power the electric car will reduce CO ₂ emissions.	
			I': The electricity used in powering car is mainly produced by burning of	
			s, and the CO ₂ so produced will still be emitted into the atmosphere.	
. 15		_	batteries for electric car will increase CO ₂ emissions.	r.
(d)			ply of air or oxygen / too large amount of petrol.	[1] [1]
(e)	(i)		ilylic converter	[1]
	(ii)	rart	iculates / supended particulate / Sulphur dioxide / PM	L1

DSE18 04

(a)	Petroleum is formed when large quantities of dead marine organisms (such as	[1]					
	planktons and algae),						
	that are buried underneath sedimentary rock and subject to intense heat and pressure						
	for a long time.						
(b)	(i) H ₃ C H	[1]					
	r-r						

(b) (i)
$$H_3C$$
 H [1] $C=C$ H CH_3

- But-1-ene or methypropene [1]
- Pass excess H2 to ethene in the pressure of Pt / Pd / Ni **[11**] Catalytic hydrogenation
 - Ethene turns Br2(In CH3CCl3) 111 from brown / orange to colorless, while ethane does not. [1]

(Not accept yellow) (Accept KMnO4/H+ - purple to colorless

KMnO₄ - purple to brown (precipitate)

KMnO₄/OH⁻ - pumple to brown (precipitate))

(Accept: combustion test; ethene gives more sooty flame, while ethane gives less sooty flame)

DSE18 09

Five knowledge points (1 mark for each point), a maximum of 4 marks: [4] Unsaturated compounds / compounds with C=C bonds can undergo addition

- polymerization.
- No small molecules will be eliminated during addition polymerization.
- High temperature / high pressure / catalyst is used. (Any 2 conditions)
- Structure of monomer: CF2=CF2
- Structure of the repeating unit: -CF2-CF2- OR the polymer: -[CF2-CF2]a-Communication mark

Chemical knowledge = 0 to 2, communication mark = 0

Chemical knowledge = 3 to 4, communication mark = 0 or 1)

DSE19 03

- (i) Bromine (in organic solvent) F11 (Not accept aqueous bromine solution)
 - CH₃CH=CHCH₃ + Br₂ --- CH₃(CHBr)₂CH₃ [1] But-2-ene / an alkene reacts with Br2, and Br2 is decolorised / all Br2 is [1] consumed / a colourless product is formed.

[1]

422

DSE19 05

(8) Chlorine / Cla [1] (not accept Cl2(aq)) Light / hu / ultra-violet / UV / radical initiator [1] (i) CH₂Cl H-C-C-CH-CI or CH.

Substitution (reaction)

H-C-C-CHCl-CH.

1,3-dichloro-2,2-dimethylpropane or 1,1-dichloro-2,2-dimethylpropane [1] (Also accept 1,3-dichlorodimethylpropane or 1,1-dichlorodimethylpropane) (The structure and the systematic name must be matched.)

- The structure other to the answer in (i) [1]
- structural isomer / position isomer [1]

DSE20 08

(c)

(d)

8. (Any 5 points from below: 1 mark for each point)

Separation of crude oil gives heavy oil, fuel oil etc. by oil refinery / fractional distillation.

Cracking of (crude oil) / heavy oil / gas oil / fuel oil / naphtha / etc. gives a mixture of small molecules / mixture with ethene / CH2=CH2. (Accept: C2H4) (Not accept; lubricating oil / bitumen etc.)

C₇H₁₆ → CH₂=CH₂ + C₅H₁₂ (Accept: C₇H₄) (Accept: Hydrocarbons with 5 or more carbon atoms, e.g. C(H12) (The equation must be balanced) (Ignore state symbols)

Fractional distillation of the above mixture / small molecules gives ethene / CH3=CH2

Addition reaction of ethene / CH2=CH2 and bromine / Br2 gives 1,2-dibromoethane / BrCH-CH-Br. (Not accept: C2H4Br2 Br2(aq)) (Accept: C2H4)

CH2=CH2 + Br2 → BrCH2CH2Br

(Ignore state symbols, need to show carbon carbon double bond)

Note: Candidates have to show the correct process sequence, i.e. fractional distillation, cracking, fractional distillation and addition.

Communication mark (Chemical knowledge = 0 to 3, communication mark = 0, Chemical knowledge = 4 to 5, communication mark = 0 or 1. Incomplete answer or difficult to understand, communication mark = 0.) 111