SECTION 13 Industral Chemistry

Chemical knethos

AL96(II) ofb
(i) Draw the Maxwell-Bolizmann curves for the distribution of molecular speeds at two different temperatures for an ideal gas.
(2 marks)
(ii) Use your curves in (i) to explain why, for a fixed mass of an ideal gas at constant volume, the pressure increases as the temperature is raised.

AL97(11)_03
The reaction of iodine with propanone in acidic solutions can be represented by the following equation:
$\mathrm{I}_{2}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq}) \rightarrow \mathrm{CH}_{2} \mathrm{ICOCH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})$
(a) (i) The progress of the reaction can be monitored by a titrimetric method. Outine the experimental procedure. [For reference]
(ii) State how the initial rate of the reaction can be deternined from the titrimertic results.
(iii) Suggest another method to monitor the progress of the reaction.
(b) Following initial rates and initial concenirations were obtained in an experiment at 298 K :

Initial rate $/$ mo! drn -3 $\mathrm{~s}^{-1}$	Initial concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$		
	$[\mathrm{I}(\mathrm{aq})]$	$\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right]$	$\left[\mathrm{H}^{+}(\mathrm{aq})\right]$
3.5×10^{-5}	1.5×10^{-4}	2.0×10^{-4}	5.0×10^{-3}
1.4×10^{-4}	2.5×10^{-4}	2.0×10^{-1}	5.0×10^{-3}
7.0×10^{-5}	2.5×10^{-4}	4.0×10^{-1}	1.0×10^{-2}

(i) Deduce the rate equation for the reaction.
(ii) Calculate the rate constant for the resction at 298 K .
(c) For a given set of intitial concentrations, the initial mate doubles when temperature increased from 298 K to 308 K . calculate the netivation energy of the reaction.

AL98(1)_03a
The table below lists the rate constants, k, at different ternperatures, T, for the first order decomposition of a dicarboxylic acid, $\mathrm{CO}\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)_{2}$, in aqueous solution:

$\mathrm{CO}_{(}\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g})$					
T / K	273	393	313	333	353
$\mathrm{k} / \mathrm{s}^{-1}$	2.46×10^{-5}	4.75×10^{-4}	5.76×10^{-3}	5.48×10^{-2}	$?$

[^0](5 marks)
(ii) Estimate the rate constant of the reaction at 353 K and hence calculate the hatf-1fie of the reaction at the same temperature. [OUT]
(iii) Suggest a method to monitor the progress of the reaction.

AL98(I)_036
The exothermie reaction

$$
\begin{equation*}
E(\mathrm{~g}) \longrightarrow E^{\prime}(\mathrm{g}) \tag{1}
\end{equation*}
$$

is a siugle stage reaction.
(i) Sketch curves to show the distribution of molecular kinetic energy of the reaction, $\mathbb{E}(\mathrm{g})$, at two different temperatures.
(ii) With reference to your answer in (i), explain why the rate of reaction (1) increases with temperature.
(1.5 marks)
(iii) In the presence of a catalyst, C , reaction (1) will proceed at a faster rate via te following mechanism:

$$
\begin{aligned}
& E(\mathrm{~g})+C(\mathrm{~g}) \longrightarrow E C(\mathrm{~g}) \\
& E C(\mathrm{~g}) \longrightarrow C(\mathrm{~g})+E^{\prime}(\mathrm{g})
\end{aligned}
$$

($E C$ is the reaction internediate.)
Sketch labelled energy profites for the conversion of $E(\mathrm{~g})$ to $E^{\prime}(\mathrm{g})$, with and withour atalyst. Explain why reaction (1) proceeds faster in the presence of the catalysi.

AL99(II)_03a

Consider the following data for the reaction:

$$
\mathbf{A}+\mathbf{B} \longrightarrow \text { products }
$$

Iutial concenitration/ $\mathrm{nol} \mathrm{dm}^{-3}$		Initial rate / mol $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$
[A]	[B]	
4.0×10^{-2}	4.0×10^{-1}	6.4×10^{-5}
8.0×10^{-2}	4.0×10^{-2}	12.8×10^{-5}
4.0×10^{-2}	8.0×10^{-2}	6.4×10^{-5}

action.
(i) deduce iss rate equation
(ii) calculate the rate constant, and
(iii) sketch a possible energy profile.

AL00(1)_07b

Without giving any experimental detail, oulline what measurements have to be taken in order to determine the activation energy of a reaction.

AL00 (II) 036
At 333K, the initial rate of the hydrolysis of $\mathrm{CH}_{3} \mathrm{Br}_{\text {s }}$ a $\mathrm{S}_{2} 2$ reaction, was found to be 8.23×10^{-5} mol dun ${ }^{-3} \mathrm{~s}^{-1}$ when the initial concentrations of $\mathrm{CH}_{3} \mathrm{Br}$ and OH^{-}ions were $0.05 \mathrm{~mol}_{\mathrm{dn}}{ }^{-3}$ and 0.20 mol dm^{-3} respectively.
(i) Calculate the rale constant, k , for the hydrolysis at 333 K .
(ii) The table below tists the rate constants for the hydrolysis at three other temperature, T.

T / K	293	308	323
$\mathrm{k} / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$	1.05×10^{-1}	6.15×10^{-1}	3.07×10^{-3}

Deternine the activation energy, E_{a}, for the hydrolysis by plotting an appropriate graph.
(5 marks)
ALOI(II) 03
At an elevated temperature and in the presence of argon, iodine atoms combine to form iodine molecules:

$$
2 \mathrm{~K}(\mathrm{~g}) \longrightarrow \mathrm{I}_{2}(\mathrm{~g})
$$

The table below lists some data about the reaction:

Initial concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$		Initial rale
$[\mathrm{I}(\mathrm{g})] / \mathrm{mol} \mathrm{dm}^{-3}$	$[\operatorname{Ar}(\mathrm{~g})] / \mathrm{mol} \mathrm{dm}^{-3}$	$\frac{\mathrm{~d}\left[\mathrm{t}_{2}(\mathrm{~g})\right]}{\mathrm{dt}} / \mathrm{mol}_{\mathrm{dm}}{ }^{-3} \mathrm{~s}^{-1}$
1.0×10^{-5}	1.0×10^{-3}	8.70×10^{-4}
2.0×10^{-5}	1.0×10^{-3}	3.48×10^{-3}
1.0×10^{-5}	5.0×10^{-4}	4.35×10^{-4}

For this reaction,

(a) Deduce the rate equation.
(b) Calculate the rate constani.
(3 marks)
(1 mark)
(c) Suggest a possible reaction mechanism consistem with the rate equation, state the role of argon, and sketch the energy profile.

ASL02(I)_02

An experiment was carried out to study the acid-catalyzed bromination of propanone at 298 K .

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{H}^{+}(\mathrm{aq})} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}_{\mathrm{g}}(\mathrm{aq})+\mathrm{HBr}(\mathrm{ag})
$$

The table below lists the results of the experiment.

Initial concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$			Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
$\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right]$	$\left[\mathrm{Br}_{2}(\mathrm{aq})\right]$	$\left[\mathrm{H}^{+}(\mathrm{aq})\right]$	
0.30	0.050	0.050	5.7×10^{-5}
0.30	0.100	0.050	5.7×10^{-5}
0.30	0.050	0.100	1.2×10^{-4}
0.40	0.050	0.200	3.1×10^{-4}
0.40	0.050	0.050	7.6×10^{-5}

(a) Deduce the rate equation for the reaction.
(b) Calculate the rate constant for the reaclion at 298 K .

ALO3(I) 02b

The following mechanism was proposed for the reaction of $\mathrm{H}_{2}(\mathrm{~g})$ with $\mathrm{I}_{2}(\mathrm{~g})$ to give $\mathrm{Hl}(\mathrm{g})$.

$$
\begin{array}{ll}
\text { Step 1: } & \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{~g}) \tag{fast}\\
\text { Step 2: } & \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{~g}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{~g})
\end{array}
$$

(i) Write an expression for the equilibrium conslant, K_{c}, for Step 1. er ${ }^{2}(\mathrm{H})$ with $\mathrm{I}_{2}(\mathrm{~g})$ is first order with respect to $\mathrm{H}_{2}(\mathrm{~g})$ and $10 \mathrm{~K}(\mathrm{~g})$.

ASLi03(I) 04

Chloroftuorocarbons (CFCs) were once widcly used as acrosol propellants and refrigerants. It is now known that the refease of CFCs into the atmosphere will lend to the depletion of ozone in the stratosphere. In the stratosphere, molecules of CFCs and O_{3} absorb ultra-violet radiation and undergo decomposition to give Cl and O atoms respectively. The following two reactions then oscur:

$$
\begin{aligned}
& \mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2} \\
& \mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2}
\end{aligned}
$$

Combination of the above equations gives the overall equation for the depletion of ozone: $\mathrm{O}_{3}+\mathrm{O} \longrightarrow 2 \mathrm{O}_{2}$
(a) Cl can be considered as a catalyst in the depleting of ozone.
(i) Is Cl a homogeneous catalyst or a heterogeneous catalyst? Explain.
(ii). Sketch the energy profiles for the uncatalyzed and catalyzed reactions.

Uncatalyzed reaction

Catalyzed reaoation

reaction coordinate
(b) Explain why a CFC molecule can lead to the depletion of a large number of ozone molecules in the stratosphere.

AL.04(1)_03a
Consider the following systenn which comprises two single step reactions.

$$
E(\mathrm{~g})+F(\mathrm{~g}) \frac{\mathrm{k}_{1}}{\frac{\mathbf{k}_{1}}{=}} 2 G(\mathrm{~g})
$$

(k_{1} and $\mathrm{k}-\mathrm{f}$ are the rate constants)
(i) Write the respective rate equations for the forward and backward reactions.
(ii) Sketch a labelled encrgy profile for the forward reaction.
(2 marks)
(iii) Predict, with explanation, whether k_{1} or $k-1$ will increase to a greater extent when temperature of the system is increased.

ALO4(1) _03a
The decomposition of dinitrogen pentoxide in teirachloromethane can be represented by the following equation:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{inCCl} 4) \longrightarrow 4 \mathrm{NO}_{2}\left(\mathrm{inCCl}_{4}\right)+\mathrm{O}_{2}(\mathrm{~g})
$$

(i) Suggest an experimental method that can be used to follow the progress of the decomposition, and state the underiying principle of the method.
(ii) The rate constant for the decomposition at 332 K was found to be 5 times that at 318 K . Calculate the activation energy for the decomposition.

AL0S(1)_02a

Nitrogen monoxide reacts with fluorine to form nitrosyl fluoride, FNO , according to the following equation:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{FNO}(\mathrm{~g})
$$

(i) Draw the electronic structure of nitrosyl fluoride.
(ii) What is the oxidation state of nitrogen in the following cempounds?
NO mo
(iii) The rate equation for the above reaction is:

$$
\mathrm{rate}=k[\mathrm{NO}(\mathrm{~g})]\left[\mathrm{F}_{2}(\mathrm{~g})\right]
$$

The commonly accepted mechanism for this reaction involves two steps, one of these steps produces $F N O$ and the free radical F - in equimolar amounts.
Write balanced equations for the two mechanistic steps, indicating which is the rate determining stcp.

ASL06(II)_10a

Anmonia reacts with oxygen in the presence of plathum to give nitrogen monoxide

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{F}<0
$$

(i) $\mathrm{NH}_{3}(\mathrm{~g})$ and $\left.\mathrm{O}_{2} \mathrm{~g}\right)$ are allowed to react in a vessel of constant volume. Find the rate of consumption of $\mathrm{O}_{2}(\mathrm{~g})$ if the rate of formation of $\mathrm{NO}(\mathrm{g})$ is $1.24 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-1} \mathrm{~s}^{-1}$.
(ii) Platinum is a catalyst in the above reaction. What is meant by the term 'catalyst'?
(iii) State an imporfant industrial product that can be obtained from $\mathrm{NO}(\mathrm{g})$

ASLOG(II)_10b

The graph below shows the distribution of the molecular kinetic energies of a gas at a certain emperature. E_{1} is the activation energy for a reaction of the gas without a catalyst.

(i) Copy the graph, including the position of E_{\mid}and mark on it the expected activation energy, E_{2}, of the reaction in the presence of a catalyst at the same temperature. Explain your answer: (2 matks)

ASL07(II)_02

Consider the reaction below:
$\mathrm{Br}_{2}(\mathrm{aq})+\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq}) \longrightarrow 2 \mathrm{Br}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})$
(a) Suggest an experimental nethod to follow the change in concentration of $\mathrm{Br}_{2}(a f)$ in the reaction mixture. Give a reason for your suggestion.

The table below lists the experimental data obtained al a certain tenperature:
The table below lists the experimental data obtained al a certain temperature:

Run	Volume used $/ \mathrm{cm}^{3}$	Initial rate for tite disappearance

Run	0.010 M Br 2 (aq)	$0.20 \mathrm{MHCO}_{2} \mathrm{H}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(1)$	of $\mathrm{Br}_{2}(\mathrm{aq}) / \mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$
1	2.0	10.0	8.0	1.2×10^{-5}
2	4.0	10.0	6.0	2.4×10^{-5}
3	8.0	100	2.0	4.8×10^{-5}

(b) Suggest how the intital rate for the disappearance of $\mathrm{Br}_{2}(\mathrm{aq})$ can be found.
(c) Why is it necessary to keep the concentration of $\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})$ much higher than that of $\mathrm{Br}_{2}(\mathrm{aq})$?
(d) Deduce the order of the reaction with respect to $\mathrm{Br}_{2}(\mathrm{aq})$.
(e) Suggest how the order of the reaction with respect to $\mathrm{HCO}_{2} \mathrm{H}$ (ac) can be determined

ASL07(II)_03

Consider the acid-caialyzed reaction:

$$
X(a q)+Y^{Y}(a q) \xrightarrow{H^{+}(a q)} Z(a q)
$$

$\Delta \mathrm{H}<0$
The following mechanism was proposed:

$$
\begin{equation*}
X(a q)+H^{+}(a q) \Longrightarrow X H^{+}(a q) \tag{f}
\end{equation*}
$$

$\mathrm{XH}^{+}(\mathrm{aq})+\mathrm{Y}(\mathrm{aq}) \rightarrow \mathrm{Z}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$ (slow)
Based on this mechanism,
(a) Sketch a labelled energy profile, and:
(b) Deduce the rate equation
(ii) Explain why the rate of a catalyzed reaction would be different from that of an uncatalyzed

AL08(I)_03a

Which one of the following graphs represents the distribution of molecular speeds of one mole of a gas at two different temperiture T_{1} and T_{2}, where $T_{2}>T_{1}$?
(a)

(b)

(c)

(d)

ASL08(11)_03
The gaseous reaction below takes place at $750^{\circ} \mathrm{C}$ in a closed container with a fixed volume.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{N}_{2}(\mathrm{~g})
$$

(a) Suggest an experimental method that can be used to follow the concentiation of $\mathrm{N}_{2}(\mathrm{~g})$ in the reaction mixture. Briefly explain tle principle of your suggested metiwd.
(b) The table below lists three sets of experimental daia of the reaction at $750^{\circ} \mathrm{C}$: (2 marks)

Experiment	Initial concentration $/ \mathrm{mol} \mathrm{dm}{ }^{-3}$		Initial rate for the formation$\text { of } \mathrm{N}_{2}(\mathrm{~g}) / \mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$
	$\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{NO}(\mathrm{g})$	
1	0.010	0.0250	0.500
2	0.005	0.0250	0.250
3	0.010	0.0125	0.125

Deduce the rate equation for the reaction, and calculate its rate constant at $750^{\circ} \mathrm{C}$.
(c) is the reaction an elementary reaction? Explain.

ASL09(II) 05
An experiment was deviscd to study the kinstics of the following acid-catalyzed reaction:

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq}) \xrightarrow{\mathrm{H}^{+}(\mathrm{aq})} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{(}(\mathrm{aq})
$$

Four runs of the experiment were conducted at the same femperature, and the reaction mixtures used were prepared according to the table below:

Run	Volume used $/ \mathrm{cm}^{3}$				
	$0.02 \mathrm{M} \mathrm{I}_{2}(\mathrm{aq})$	1.0 M $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	
	50.0	5.0	20.0	25.0	
2	50.0	10.0	15.0	25.0	
3	50.0	15.0	10.0	25.0	
4	50.0	20.0	5.0	25.0	

In each run, $10.0 \mathrm{~cm}^{3}$ of the reaction mixture was withdrawn at regular time intervals and added to excess $\mathrm{NaHCO}_{3}(\mathrm{aq})$. When effervescence subsided, the resulting mixture was titrated against standard $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}($ (aq) using starch solution as indicator. The graph below shows the plot of the tirc against time for each run.

(a) What is the purpose of adding the reaction mixture to excess $\mathrm{NaHCO}_{3}(\mathrm{aq})$ before each titration?
(b) Deduce the reaction order with respect to iodine.
(c) Using the above information, plot a graph to deduce the reaction order with respect to propanonc.
(d) Suggest how the reaction order with respect to $\mathrm{H}^{+}(\mathrm{ng})$ can be determined.

ALIO(I) 01
(b) A student made the following remark:
'The rate of an elementary gascous reaction increases with temperature because the average kinctic energy of the reactant molconles increases with temperature,

Is the explanation provided by the student regarding the inerease in reaction rate appropriate? Elaborate your answer.
(3 marks)

ASL $10(\mathrm{II}) \quad 08$

'Methanal oleck experiment' is based on the following reaction:

$$
\mathrm{HCHO}(\mathrm{aq})+\mathrm{SO}_{3}^{2}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \longrightarrow \mathrm{CH}_{2} \mathrm{OHSO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

In a methanal clock experiment, five $20.0 \mathrm{~cm}^{3}$ methanai solutions were prepared by mixing different volume of $0.30 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCHO}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{d})$. A small but fixco amount of a solution containing $0.20 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaHSO}_{3}(\mathrm{aq}), 0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and a few drops of phenolphthalein indicator was added to each of the five methamal solutions. The time for the first appearance of a pink color in each ron was recorded.
The table below lists the experimental data obtained:

Run	1	2	3	4	5
Volume of $0.30 \mathrm{~mol} \mathrm{cma}^{-3}$ $\mathrm{HCHO}(\mathrm{ag})$ used $/ \mathrm{cm}^{3}$	5.0	7.5	10.0	12.5	15.0
Volume of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ used $/ \mathrm{cm}^{3}$	15.0	12.5	10.0	7.5	5.0
Time for the first appearamce of the pink color/s	35.7	23.3	17.9	14.1	12.0

(a) Given that $\mathrm{NaHSO}_{3}(\mathrm{aq})$ and $\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ constitute a buffer system, account for the appearance of the pink color in the reaction mixtures.
(2 marks)
(b) Explain why a small but fixed amount of the buffer solution is used in the experiment. (1 mark)
(c) Using the above information, plot a graph to deduce the reachion order with tespeet to methanal.
(d) With reference to the above experimental data, identify ONE major error in this experiment.

(1 mark)

(e) Can methyl orange be used instead of phenolphthalein to perform methanal clock experiments? Explain.

ASL11()_03
The reaction between $A(g)$ and $B(g)$ itas a rate constant of $9 \times 10^{-3} \mathrm{dm}^{6} \mathrm{mot}^{-2} \mathrm{~s}^{-1}$. Which one of the following is a possible rate equation for this reaction?
A. \quad rate $=k[A(\mathrm{~g})]^{2}[\mathrm{~B}(\mathrm{~g})]^{2}$
B. \quad rale $=k[A(\mathrm{~g})][\mathrm{B}(\mathrm{g})]^{2}$
C. \quad rate $=k[A(g)]^{2}$
D. \quad rate $=k[B(\mathrm{~g})]^{-1}$

ASLII(II) 01

In the upper atmosphere, ozone is converted to diatomic oxygen according to the equation shown below. This reaction is an elementary reaction with a rate constant of $2,6 \times 10^{5} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-4}$ at 210 K.

$$
\mathrm{O}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-392 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(a) Write the rate equation for this reaction.
(1 mark)
(b) The relationship between reaction rate constant k and absolute temperature T can be represented by the Arrhentus cquation:

$$
\begin{aligned}
k=A e^{-\left(B_{a} / R T\right)} \quad \text { where } \quad & R \text { is the gas conslant, } \\
& A \text { is the Arrhenius constants, and } \\
& E_{q} \text { is the activation energy. }
\end{aligned}
$$

Given that A for this reaction is $4.8 \times 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$, calculate its E_{n}.
(2 marks)
(c) If chlorine free radicals ($\mathbf{C l}$) are present in the upper atmosphcre, they will catalyze the conversion of ozone to diatomic oxygen leading to ozone depletion.
(i) Given that the rate equation for the $\cdot \mathrm{Cl}$ catalyzed ozone deptetion is:

rate $\left.\left.=k\left[\mathrm{O}_{3}(\mathrm{~g})\right]\right] \cdot \mathrm{Cl}(\mathrm{g})\right]$

propose a mechanism that is consistent with the rate equation. Briefly explain your answer.
(ii) Thea activation energy for the Cl catalyzed ozone depletion is $0,44 \mathrm{~kJ} \mathrm{mal}^{-1}$. One the same diagram, sketch labelled energy profile for the conversion of ozone to diatomic oxygen in the absence and in the presence of ${ }^{\circ} \mathrm{Cl}$ respectively. (You are NOT required to draw the energy profles to scale.)

ASLI2(II)_04
An experiment was conducted to study the kinetics of the following reaction al a certain temperature. $2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NOBr}(\mathrm{g})$
The table below lists the results obtained:

Trial	Initial concentration		Initial rate of appearance of NOBr(g)$110^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
	$\mathrm{NO}(\mathrm{g}) / \mathrm{mol} \mathrm{dm} \mathrm{m}^{-3}$	$\mathrm{Br} 2(\mathrm{~g}) / \mathrm{mol} \mathrm{dm}{ }^{-3}$	
1	0.0160	0.0120	3.24
2	0.0160	0,0240	6.38
3	0.0320	0.0060	6.42

(a) Find the initial rate of disappcarance of $\mathrm{Br} 2(\mathrm{~g})$ in Trial I.
(b) For this reaction, deduce its rate equation, and calculate is rate constant at this temperature.
(4 marks)
(c) From the above information, studene \mathbf{D} proposed that this reaction is an elementary reaction while student E consider it not.
(i) Suggest ONE reason to support students D's view.
(ii) Suggest ONE reason to support students E's view

ASL13(I) 04 (modified)

Consider the following experiment for studying the kinetic of reaction (β):

$$
5 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{O})
$$

A solution containing $\mathrm{Br}(\mathrm{aq})$ ions, $\mathrm{BrO}_{3}^{-}(\mathrm{aq})$ ions, a small fixed amount of phenol and a few drops of methyl red indicator is mixed with $\mathrm{H}^{+}(\mathrm{aq})$. The $\mathrm{Br} 2(\mathrm{nq})$ fomed then reacts mpidly with the phenol present to give a colorless product, Once all the plenol is consumed, any further $\operatorname{Br}(a \operatorname{an})$ witl bleach the metlyl red indicator. Thus the time taken for the red color of the mixture to disappear represents the time for the reaction (@) to reach a cestain point.
The table below lists the results obtained in four trials of such an experiment at $25^{\circ} \mathrm{C}$.

Trial	Initial concentration/moldm			Time laken for the red color to disappear $/ \mathrm{s}$
	$\mathrm{Br}^{-3}(\mathrm{aq})$	$\mathrm{BrO}_{3}^{-}(\mathrm{aq})$	$\mathrm{H}^{+}(\mathrm{aq})$	
1	0.034	0.007	0.100	2052
2	0.017	0.007	0.100	342
3	0.034	0.021	0.100	128
4	0.017	0.007	0.400	

(a) Explatia why a simall fixed amount of phenol is used.
(1 mark)
(b) From the experimental results, deduce the order of reaction with respect to each of the reactants.
(c) The experiment was repeated at $50^{\circ} \mathrm{C}$ with all reactants at the same initial concentrations as in Trial I. The time taken for the red color to disappear was found to be 145 s . Calculate the activation energy of reaction (β).
(3 marks)
(d) Would such an experiment give reliable results if it was conducted at temperature above 80 ${ }^{\circ} \mathrm{C}$? Explain.

ASL13(I)_05
(a) Using the axes given below, sketch two curves to show the distribution of molecular kinetic energies of a gas at two temperature T_{1} and T_{2}, where $T_{1}<T_{2}$.

molecular kinatic energy
(2 marks)
(b) Explain why the rate of gas-phase elementary reaction increases with temperature.
(2 marks)

DSE1ISP_01a

In acid solution, chtorate ions (ClO_{3}^{-}) slowly oxidize chloride ions so chlorine, The following kinetio data are obtained at $25^{\circ} \mathrm{C}$:

$\left[\mathrm{ClO}_{3}-(\mathrm{aq})\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{Cl}^{-(\mathrm{aq})]}\right.$ $/ \mathrm{mol} \mathrm{dn}^{-3}$	$\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
0.08	0.15	0.20	1.0×10^{-5}
0.08	0.15	0.40	4.0×10^{-5}
0.16	0.15	0.40	8.0×10^{-5}
0.08	0.30	0.20	2.0×10^{-5}

(i) Write the balanced equation for this reaction.
(ii) Determine the order of the reaction with respect to each reactant.
(iii) Determine the rate constant at this temperature.
(3 marks)
deduce the activation erergy of the reaction
(Gas constant $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

DSE12PP - 016
The atuospheric oxidation of L -ascorbic acid is a first order reaction
(i) What do you understand by the term 'first order reaction'?
(1 mark)
(ii) The table below hists the rate constamts k for this reaction at four different temperatures T :
The table below lists the rate constants k for this renction at four different temperatur

T / K	313	323	333	343
$k / 10^{-3} \mathrm{~h}^{-1}$	27.0	35.4	50.4	65.4

By plotting a suitable graph, determine the activation energy E_{2} of this reaction. (Gas constant R $=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

DSE12_01c

Thiree trials of an experiment were performed at the same temperature for the study of the kinetic of the following reaction.

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})-\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The table below shows the data obtained:

Trial	Initial concentration of $\mathrm{NO}(\mathrm{g})$ $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$	Initial concentration of $\mathrm{H}_{2}(\mathrm{~g})$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial rato with respect to $\mathrm{N}_{2}(\mathrm{~g}) / \mathrm{mol} \mathrm{dma}^{-3} \mathrm{~s}^{-1}$
1	2.50×10^{-2}	5.00×10^{-3}	1.20×10^{-6}
2	2.50×10^{-2}	1.00×10^{-2}	2.40×10^{-6}
3	1.25×10^{-2}	1.00×10^{-2}	6.00×10^{-7}

Explain why 'initial rate' is conmonly used in the study of the kinetics of a reaction.
ii) Deduce the order of reaction with respect to $\mathrm{NO}(\mathrm{g})$ and that to $\mathrm{H}_{2}(\mathrm{~g})$.
(2 marks)
(ii) State the rate equation for the reaction, and calculate its rate constant at the temperature of the experiment.

DSE13_01a

For gaseous reactions, an increase in femperature leads to an increase in reaction rate.
(i) The graph below shows the Maxwell-Boltzmam distribution curves of molecular kinetic energies of a gas at two temperatures, T_{1} and T_{2}

(1) What do the axes, x and y, in the above graph respectively represent?
(2) With reference to the above graph sugest why an thcrease in temperate an increase in the reaclion rate of a gaseous reaction,
(ii) In a chemical kinetics experinent, lice rate constants (k) of a reaction at various temperatures
(T) were determined. The graph below shows the plot of $\log k$ against $\frac{I}{T}$. Calculate the activation energy of this reaction.
\{Gas constant $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

(3 marks)

DSE14 Ola

Answer the following shor questions
(i) What is meant by the term 'activation energy'?
(ii) At room temperature, ethanol can be produced by fermentation of sugars in the presence of yeast. State the function of yeast, and explain why this function falls at high temperalures.
(2 marks)

DSE14_01b
The kinctics of the following reaction at a certhin temperature were studies;
$\mathrm{BrO}_{3}^{-}(\mathrm{aq})+61^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})-3 \mathrm{H}_{2}(\mathrm{aq})+\mathrm{Br}^{(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Several trials of an experiment were attempted under the same experimental conditions except varying the initial concentration of BrO_{3}-(aq) to mensure the initial rate of fonnation of $\mathrm{I}_{2}(\mathrm{aq})$. The following graph shows the experimental results obtained from these trials:

(i) What is the meant by the term 'initial rate'?
(ii) Suggest a methad, with justification, to follow the progress of the fonmation of I_{2} (aq).
\qquad
(iii) With referchce to the graph above, deduce the order of reaction with respect to $\mathrm{BrO}_{3}-(\mathrm{aq})$.
(iv) The labie below lists the information for two trials of on experiment on the same reaction performed at the same temperature:

	Initial concentration/mol dmi ${ }^{-3}$			Initial rate of formation of I_{2} (aq) $/ \mathrm{mol} \mathrm{dn}^{-3} \mathrm{~s}^{-1}$
	$\mathrm{BrO}_{3}^{-}(\mathrm{aq})$	5 (aq)	$\mathrm{H}^{+}(\mathrm{al})$	
Trial 1	0.17	0.15	0.10	2.30×10^{-3}
Trial 2	0.17	0.30	0.20	1.84×10^{-2}

(I) Given that the order of reaction with respect to H (ag) is 1 , deduce the order of reaction with respect to H^{+}(aq).
(2 marks) experimental conditions.

DSE15_01a
(i) A certain reaction is zeroth order with respect to $\mathrm{I}_{2}(\mathrm{aq})$ and first order with respect to both $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$.
(1) State the effect, if any, of a change in the concentration of $\mathrm{I}_{2}(\mathrm{gq})$ in the reaction mixture on the rate of the reaction.
(2) Write the rate equation for the reaction.
(iii) The rate constant of a certain reaction doubles when the temperature is increased from 298 K to 308 K . Calculate the activation energy of the reaction.
(Gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$; Ar'rhenius equation: $\log k=$ constant $-\frac{E_{a}}{2.3 R T}$)

DSE15_016
Ethanoic acid can be produced by two routes as listed below:
Route (1)
sugar solution $\xrightarrow{\text { yeast }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (aq) $\xrightarrow[\text { eatalyst }]{\mathrm{O}_{2}} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
Route (2)
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{CO}(\mathrm{g}) \xrightarrow[\text { catalyst }]{180^{\circ} \mathrm{C} ; 30 \mathrm{~atm}} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})$
(i) The reactions in both Routes (1) and (2) require the use of catalysts.
(1) Draw, the same sketch, TWO labelled energy profiles for a reaction, one with a catalyst and the other one without catalyst.
(2) Theoretically, catalysts are not consumed in reactions. Suggest why it is still necessary to replace the used catalyst from time to time in industrial processes.

DSEI6_013

(ii) What does the area under a Maxwell-Bolizmann distribution curve represent?

DSE16_01c

The hydrolysis of sucrose can be represented by the following equation:
(i) Tiree trials of an experiment were performed under the same experimental conditions to study the kinetics of the hydrolysis. The table below shows the data obtained:

	Inilial concentration of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})$ $f \mathrm{~mol} \mathrm{dm}^{-3}$	Initial concentration of $\mathrm{HCl}(\mathrm{aq})$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate of disappearance of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{OH}_{\mathrm{H}}(\mathrm{aq}) / \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
Trial 1	0.010	0.10	6.0×10^{-7}
Thal2	0.020	0.20	2.4×10^{-6}
Trail 3	0.010	0.30	1.8×10^{-6}

(1) Given that the order of reaction with respect to $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is zero, deduce the order of reaction with respect to $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})$ and that to $\mathrm{HCl}(\mathrm{aq})$.
(2 marks)
(2) State the rate equation for the reaction,
(I mark)
(3) Based on the resulf in Trial 1, calculate the rate constant under the exporimental conditions.
(1 mark)
(ii) The hydrolysis of suctose cen also be performed by the action of a certain enzyme. Suggest the function of the enzyme in the hydroiysis.
(iii) Enzymatic hydrolysis of starch eventuatly gives glucose as the only product. According to the principles of green chemistry, suggest TWO reasons why starch is considered to be more suitable than sucrose as a source of glincose.

DSE17 01a
(ii) The following graph shows the variation of the concentration of a reaction $A(a q)$ in a certain reaction at a fixed temperature with time:

Suggest, with explanation, the order of reaction with respect to $\mathbf{A}(\mathrm{aq})$.

DSE17 016

The manufacture of sulpharic acid involves the following conversion of $\mathrm{SO}_{2}(\mathrm{~g})$ to $\mathrm{SO}_{3}(\mathrm{~g})$:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-197 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(i) Nitrogeti oxides (NO and NO_{2}) were once used as catalysts for the conversion, and the catalytic process is considered to consist of the following two steps:
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \Longrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g})$
Draw, in the same sketch, TWO labelled energy profiles (x -axis; reaction coordinate; y -axis: potential energy) for the above conversion: one with nitrogen oxides as the catalysts (using dotted line '- - - -'); the other one without catalyst (using solid line -).
(3 marks)
(ii) Nowadays in industry, a solid catalyst vanadium(V) oxide is used for the conversion of $\mathrm{SO}_{2}(\mathrm{~g})$ to $\mathrm{SO}_{\mathrm{t}}(\mathrm{g})$.
(1) The reactants need to be purified before passing into the reaction chamber containing the catalyst. Why?

DSE17_Olc
Phosgene (COCh_{2}) is an important chemical. It can be produced from the reaction of $\mathrm{CO}(\mathrm{g})$ will $\mathrm{Cl}(\mathrm{g})$:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Ch}_{2}(\mathrm{~g})-\mathrm{COCl}_{2}(\mathrm{~g})
$$

(iii) At a certain temperature, if the concentration of $\mathrm{CO}(\mathrm{g})$ is doubled while the concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ is kept unchanged, the new rate of reaction will become 2.83 tines the original rate. Deduce the order of reaction with respect to $\mathrm{CO}(\mathrm{g})$.
(Note: The order of a reaction may NOT be an integer.)
(2 marks)
DSE18 01a
(ii) Sketch a labelled diagram for a Maxwell-Bolizmann distribution curve,

DSE18 010

Two sets of experiments (one at 360 K ; another at 345 K) were performed to study the chemical kinetics of the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

For each set of the experiments, the variation of $\log \mathrm{ra}$ with $\log \left[\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})\right]$ was plotied and both of them got a straight tine as shown in the graph below:

Representing

$\left[\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})\right] \mathrm{l}$	initial concentration of $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$	mol dm
ro	initial rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$	mol dm
ℓ_{1}	straight line obtained at 360 K	
ℓ_{2}	straight line obtained at 345 K	

It is given that $\log x_{0}=\log k+n \log \left[\mathrm{~N}_{2} \mathrm{Os}(\mathrm{g})\right] \mathrm{l}$, where k is the rate constant and n is the order of reaction will respect to $\mathrm{N}_{2} \mathrm{O}_{s}(\mathrm{~g})$.
(i) Given that ℓ_{1} and ℓ_{2} have the same slope, what can you deduce in terms of chemient kintetics?
(ii) From ℓ_{1}, deduce the order of reaction with respect to $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$
(iii) From ℓ_{2}, deduce the rate constant for the reaction at 345 K .
(iv) According to the releramt informion of tho (2 morks)
(iv) According to the relevant information of the graph, calculate the activation energy of the reaction.
(Gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

DSE19_01a iii
(iii) Three trials of an experiment were performed under the same experimental conditions to study the kinctics of the following reaction

$$
2 \mathrm{~A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) \rightarrow 2 \mathrm{C}(\mathrm{aq})+2 \mathrm{D}(\mathrm{aq})+\mathrm{E}(\mathrm{~s})
$$

The table below shows the data obtained :

Trial	Initial concentration of $\mathrm{A}(\mathrm{aq}) / \mathrm{mol}_{\mathrm{dm}}{ }^{-3}$	Initial concentration of $\mathrm{B}(\mathrm{aq}) / \mathrm{mol}^{-3}$	Initial rate of formation of $\mathrm{B}(\mathrm{aq}) / \mathrm{mol}^{-3} \mathrm{~mm}^{-3} \mathrm{~s}^{-1}$
1	0.0836	0.202	0.26×10^{-4}
2	0.0836	0.404	1.04×10^{-4}
3	0.0418	0.404	0.52×10^{-6}

Deduce the order of reaction with respect to $\mathrm{A}(\mathrm{aq})$ and that with respect to $\mathrm{B}(\mathrm{aq})$.
DSE19_1c

1. (c) in industry, $\mathrm{CaO}(\mathrm{s})$ is produced from the decomposition of $\mathrm{CaCO}_{3}(\mathrm{~s})$

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \neq \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=+180 \mathrm{~kJ} \mathrm{mor}^{\frac{1}{2}}
$$

The diagram below shows an operating furnace for producing CaO (s) in an industrial plant. $\mathrm{CaCO}_{3}(8)$ and $C(s)$ enter the firnace from the top while mir suters the frracce pear the bottom.

(i) State one feedstock for CaCO_{3} (s).
(ii) Explain why the injection of $\mathrm{C}(\mathrm{s})$ and air can result in a higher average temperature in zone B than in zone A .
(iii) The operation pressure is set at about 1 atm, Give TWO reasons why a higher operation pressure is not preferted.
(iv) The activation energy of the above decomposition of $\mathrm{CaCO}_{3}(\mathrm{~s})$ is $160 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the ratio of the rate constant at 1500 K to the rate constant at 1200 K for the decomposition of CaCO_{3} (s)
(Gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
(v) According to chemical equilibrium, suggest why the decomposition of $\mathrm{CaCO}_{3}(\mathrm{~s})$ mainly occurs in zone B.

1. (c) Consider the following reaction $\left(\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})\right.$ as catalyst) and its rate equation:
$\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{H}^{+}(\mathrm{aq})} \underset{\text { (colouriess) }}{\mathrm{CH}_{3} \mathrm{COCH}_{2} 1(a q)}+\mathrm{HI}(\mathrm{aq})$
Rate $=\mathrm{k}_{1}\left[\left[_{2}(\mathrm{aq})\right]^{\mathrm{W}}\left(\mathrm{CH}_{3} \mathrm{COCH}_{5}(\mathrm{aq})\right]^{\mathrm{X}}\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{y} \quad(\mathrm{~m}, \mathrm{x}\right.$ and y are integers) Two trials of an experiment were performed under the same experimental conditions to study its eagents used; while the graph shows the variation of the absorbance of the reaction mixtures with reagens
time :

Trial	Initial concentration of $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq}) / \mathrm{mol}^{-3} \mathrm{dm}^{-3}$	Initial concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{mol}^{2} \mathrm{dm}^{-3}$	Initial concentration of $\mathrm{I}_{2}\left(\mathrm{aqq} / \mathrm{mol}^{2} \mathrm{dm}\right.$
1	1.0	0.10	0.0050
2	2.0	0.10	0.0050

(i) Explain why the rate of change of the absorbance can represent the tate of reaction.
(ii) Under these experimental conditions, the rate equation can be simplified as Rate $\left.=\mathrm{k}_{2} \Pi_{2}(\mathrm{aq})\right]^{\mathbf{W}}$. With reference to Line 1 , deduce w.
(iii) With reference to Lite 1 and Line 2, deduce x of the rate equation.
(iv) Given that $\mathrm{y}=1$ and the unit of the rate of reaction is mol $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$, what is the unit of the rate constant \mathbf{k}_{1} ?
(v) It is proposed that the reaction proceeds consecutively in two steps and is exothermic:
$\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq}) \sim \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})=\mathrm{CH}_{2}(\mathrm{aq})$
slow
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})=\mathrm{CH}_{2}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}(\mathrm{aq})+\mathrm{HI}(\mathrm{aq})$
fast
Draw an energy profile for the reaction. Label the axes.

DSE21_01(a)

(i) At certain conditions, the activation energy for the decomposition of $\mathrm{HCOOH}(1)$ to $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ shown below is $+77.7 \mathrm{kr} \mathrm{mol}^{-1}$.

$$
\mathrm{HCOOH}(\mathrm{l}) \longrightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=+28.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

What is the activation energy for the formation of $\mathrm{HCOOH}(1)$ from $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(1)$ at the same conditions, in $\mathrm{kJ} \mathrm{mol}^{-1}$?
(ii) The activation energy for a certain reaction is $465.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The rate constant of the reaction at $27^{\circ} \mathrm{C}$ is k_{1}. Calculate the tate constant of the reaction at $37^{\circ} \mathrm{C}$ in terms of k (Gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{miol}^{-1}$; Arrhenius equation : $\log k=$ constcrtt $-\frac{E_{s}}{2.3 R T}$)
(iii) The rate equation for the reaction $\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{g})$ at certain conditions is given below, with \mathbf{k}_{2} being the rate constant

$$
\text { Rate }=k_{2}[A(g)][\mathbf{B}(\mathrm{g})]^{\frac{3}{2}}
$$

(1) What is the order of reaction with respect to $\mathbf{B}(\mathrm{g})$?
(2) The unit of the rate is mol $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$. State the unit of k_{2}

DSE21_01(b)(iv)
(iv) Catalyst is used in the reaction of Haber process.
(1) Suggest a catalyst that can be used.
(2) With the aid of a Maxwell-Boltzmann distribution curve, explain why the reaction becomes faster when a catalyst is used.

1. (a) Answer the following short questions :
(i) Under certain conditions, ethanoic acid can be manufactured by the following reaction :

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{CO}(\mathrm{~g}) \xrightarrow{\mathrm{Rh}, \mathrm{HI}} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})
$$

(1) Suggest one reason why this reaction is considered to be green.
(2) Suggest one reason why this reaction is NOT considered to be green.
(ii) A factory manufactures catalytic converters with a catalyst coating on a porous structure.
(1) Suggest one advantage of using a porous structure in the catalytic converters.
(2) Explain why the effectiveness of the catalyst may decrease after prolonged use.
(iii) Which one of the following items is NOT manufactured from petrochemicals?
nylon rope, glass bottle, soapless detergent
(1 mark)
(b) The diagram below shows a membrane electrolytic cell used in the chloroalkali industry. Brine and liquid \mathbf{X} are continuously added into the membrane electrolytic cell to produce gas \mathbf{A}, gas \mathbf{B} and sodium hydroxide solution.

(i) What is \mathbf{X} ?
(1 mark)
(ii) Gas \mathbf{A} is formed at the anode of the membrane electrolytic cell.
(1) What is \mathbf{A} ?
(2) Explain why \mathbf{A} is formed.
(iii) Gas B and sodium hydroxide solution are formed at the cathode of the membrane electrolytic cell.
(1) Write a half equation for the formation of \mathbf{B}.
(2) Explain why sodium hydroxide solution is formed and why it does not contain sodium chloride,
(iv) Suggest a chemical that can be manufactured from the reaction between \mathbf{A} and sodium hydroxide solution

1. (c) The chemical kinetics of the following reaction at a certain temperature was studied :

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Several trials of an experiment were performed under the same experimental conditions, except varying the initial concentration of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$ (represented by $\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})\right] 0$), to measure the initial rate of formation of $\mathrm{S}(\mathrm{s})$ (represented by r_{0}). The following graph shows the experimental results obtained from these trials :

(i) What is meant by the term 'initial rate'?
(ii) The rate equation for the reaction is shown below :

$$
\text { Rate }=\mathrm{k}\left[\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})\right]^{a}\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{b} \quad \text { where } \mathrm{k} \text { is the rate constant, }
$$

a is the order of reaction with respect to $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$
and \boldsymbol{b} is the order of reaction with respect to $\mathrm{H}^{+}(\mathrm{aq})$.
Given that the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ used was much higher than that of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$ in each trial, explain why the above rate equation can be modified as shown below :

$$
\text { Rate }=\mathrm{k}^{\prime}\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})\right]^{a} \quad \text { where } \mathrm{k}^{\prime} \text { is regarded as a constant. }
$$

(2 marks)
(iii) By using the dotted lines in the graph above, deduce the order of reaction with respect to $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$.
(3 marks)
(iv) The experiment was repeated at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ separately, while other experimental conditions were the same. The rate constant of the reaction at $25^{\circ} \mathrm{C}$ is k_{1} and the rate constant of the reaction at $35{ }^{\circ} \mathrm{C}$ is k_{2}. The ratio of k_{2} to k_{1} is $1.9: 1.0$. Calculate the activation energy of the reaction, in $\mathrm{kJ} \mathrm{mol}^{-1}$.
(Gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$; Arrhenius equation : $\log k=$ constant $-\frac{E_{a}}{2.3 R T}$)
(2 marks)
END OF SECTION A

Marking Scheme

AL96(II)_01b
(i)

$>T_{1}$

As temperature increases, fraction of molecules with high average speed / kinetic energy increases.
Hence, force exerted by the collision of molecules on the container wall / the [1] change in momentum of molecules upon colision / frequency of collision increases.

AL97(II) 03

(a) (i) At regular time intervals, withdraw a known volume of the reaction mixture. Add it to excess NaHCO_{3} to quench the reaction. [1]
Tifrate against standurd $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ (aq) using starch solution as indicator. [1]
(ii) Plot a graph of the tilre against time. [i]

Determine the slope of the curve at $t=0 . \quad[1]$
(iii) Colorimetry / use a colorimeter to monitor the concentration of 1_{2}. [1]
$\begin{aligned} & \text { (b) (i) Initial rate is independent of }\left[I_{2}\right] \text {. } \\ & \therefore \text { order w.r.t. }\left[I_{2}\right]=0\end{aligned} \quad$ [1]
\therefore order w.r.t. $\left[\mathrm{I}_{2}\right]=0$
Initial tate doubles when $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ is increased by a factor of 2 .
\therefore order w.r.t. $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]=1$
Intial rate doubles when $\left[\mathrm{H}^{+}\right]$is increased by a factor of 2 .
\therefore order w.r.t. $\left[\mathrm{H}^{+}\right]=1$
\therefore Initial rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]$[1]
(ii) $3.5 \times 10^{-5}=k\left(2.0 \times 10^{-1}\right)\left(5.0 \times 10^{-3}\right)$ [1]
$k=3.5 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
(d) $\ln \frac{k_{2}}{k_{1}}=-\frac{E_{\mathrm{G}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln 2=-\frac{E_{a}}{8.314}\left(\frac{1}{308}-\frac{1}{298}\right)$
$E_{a}=+52.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ (Range: $52.8-53.3$)
$\mathrm{AL} 98(\mathrm{II}) \quad 03 \mathrm{a}$
(i)

k / s^{-1}	$\operatorname{in}(k)$	T / K	$\frac{1}{\mathrm{~T}} / \mathrm{K}^{-1}$
2.46×10^{-5}	-10.61	273	3.66×10^{-3}
4.75×10^{-4}	-7.65	293	3.41×10^{-3}
5.76×10^{-3}	-5.16	313	3.19×10^{-3}
5.48×10^{-2}	-2.90	333	3.00×10^{-3}

graph of ha k against $\frac{1}{T}$

(1 mark for the curve and $3 / 2$ marks for each axis)
Slope $=-E_{s} / \mathbb{R}$
$E_{\mathrm{A}}=-\mathrm{R}($ slope $)=-\left(8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-}\right)(-11646 \mathrm{~K})=+96.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(Accept answers from 87.0 to $106.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; error in sign is not acceptable and the answer must be accompanied with the graph.)
(1 mark for numerical answer, $1 / 2$ marks for the unit)
(ii) From the graph
A. $353 \mathrm{~K}, \mathrm{lnk}=-0.92$

$$
k=0.40 \mathrm{~s}^{-1}
$$

(Accept answers from 0.35 to $0.44 \mathrm{~s}^{-1}$; rate constant obtained by numerical calculation is also acceptable,)
(1 mark for numerical answer, $1 / 2$ marks for the unit)
For the first order reaction
$k=\frac{\ln 2}{t_{1 / 2}}, \quad t_{1 / 2}=\frac{\ln 2}{k}=1.73 \mathrm{~s}$
(Accept answers from 1.56 to 1.90 s)
(1 mark for numerical answer, $1 / 2$ marks for the unit)

(ii) At a bigher temperature (T_{2}), the portion towards high kinetic energy is much larger (refer to the curves in (i)), More particles would have sufficient energy to overcome E_{a} and to react.
Increasing the number of effective collision increases the rate of reaction.
(iii)

($1 / 2$ marks for each axis; $1 / 2$ narks for each curve, the curve for the catalyzed reaction should have a hump; $1 / 2$ marks for labelling the reactants, produets and intermediate; $1 / 2$ marks for showing a lower encrgy state for the product (i.e, indication of an excthermic reaction.)
The presence of a catalyst causes the reaction to take place via an alternative
reaction pathuray with a lower activation energy.
Lowering the kinetic barrier increases the rate of reaction.
AL99(II) 03a
(i) Under the same initial concentration of A, initial rate remains the same when concentration of B is doubled. \therefore order $W, E[[B]=0$
Under the same initial concentration of B, initial rate coubles when concentration of A is donbled. \therefore order w.r. $[\mathrm{A}]=1$
Rate equation: rate $=\mathrm{k}[\mathrm{A}]$
(ii)
$k=\frac{6.4 \times 10^{-5}}{4.0 \times 10^{-2}}=1.6 \times 10^{-3} \mathrm{~s}^{-1}$
(ii)
(iii) Possible cuergy profile:

reaction coordinate
1 mark for labelling the axes;
1 mark for showing a correct curve, rate determining step involyes only one molecule of A;
$1 / 2$ marks for labelling the reactants, products and intermediate.
AL00(1)_076
Kecping the initial concentratiens of the reactants unchanged, carry out the experiment [I] at different temperatures and determine the corresponding fate constant (k).

Pfot a graph $\ln k$ against $1 / \mathrm{T}$, slope of the graph $=-\mathrm{E}_{\mathrm{a}} / \mathrm{R}$

AL00 (II) 03b
(i) Rate $=k\left[\mathrm{CH}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right.$
$8.23 \times 10^{-5} \mathrm{~mol} \mathrm{dn}^{-3} \mathrm{~s}^{-1}=k \times 0.05 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.20 \mathrm{nol} \mathrm{dm}^{-3}$
$k=8.23 \times 10^{-3} \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
graph of $\ln k$ against $\frac{1}{T}$

T / K	293	308	323	333
$\frac{1}{\mathrm{~T}} / \mathrm{K}^{-1}$	3.413×10^{-3}	3.247×10^{-3}	3.096×10^{-3}	3.003×10^{-3}
lnk	-9.162	-7.394	-5.786	-4.800

$$
\begin{equation*}
\text { slope }=-\frac{E_{a}}{R}=-10648 \tag{1}
\end{equation*}
$$

$\mathbb{R}_{\mathrm{a}}=+88.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ (Range: $86-95$)

AL01(I)_03
(a) For the same initial conc of Ar(g), initias rate increases by 4 times when the initial conc of $\mathrm{I}(\mathrm{g})$ is doubled \therefore order w.r.t. $[\mathrm{I}(\mathrm{g})]=2$[1]

For the same initial conc of $I(\mathrm{~g})$, initial rate doubles when the initial conc of $\operatorname{Ar}(\mathrm{g})$ is doubled : order w.r.t. $[\operatorname{Ar}(\mathrm{g})]=$
Rate equation $=k\left[[(\mathrm{~g})]^{2}[\operatorname{Ar}(g)]\right.$
[1]
(b) rate constant $=\frac{8.70 \times 10^{-4}}{\left(1.0 \times 10^{-5}\right)^{2}\left(1.0 \times 10^{-3}\right)}=8.7 \times 10^{9} \mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
(c) Mechanism: two stage mechanism

$$
\mathrm{I}(\mathrm{~g})+\mathrm{Ar}(\mathrm{~g}) \longrightarrow \mathrm{I}-\mathrm{Ar}(\mathrm{~g}) \quad \text { fast }
$$

$\mathrm{I}(\mathrm{g})+\mathrm{I}-\mathrm{Ar}(\mathrm{g}) \longrightarrow \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Ar}(\mathrm{g})$ slow
Role of Arfg): homogeneous catalyst

reaction coordinate

ASL02(I) 02
(a) $\operatorname{Rate}=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right]^{\chi}[\mathrm{Br}(\mathrm{aq})]^{Y}\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}$

Keeping the initial concentrations of $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$ unchanged, doubling Bre $(a q)$ has no effect on the initial rate, $\therefore y=0$
The reaction is zeroth order w.r.t. $\left[\mathrm{Br}_{2}(\mathrm{aq})\right]$
Keeping the initial concentrations of $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})$ unchanged, doubling $\mathrm{H}^{+}(\mathrm{aq})$ causes the initial rate to increase by 2 times $\therefore \mathrm{z}=1$
Keeping the initial concentrations of $\mathrm{H}^{+}(\mathrm{aq})$ unchanged, increasing the initial concentration of $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})$ by 1.3 times causes the initial rate to increase by 1.3 times. $\therefore \mathrm{x}=1$
(b) \qquad
$k=\frac{\text { rate }}{\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right]\left[\mathrm{H}^{+}\right]}$
Substitule a set of data (e.g. the firsi set)
$k=\frac{5.7 \times 10^{-5}}{0.30 \times 0.050}=3.8 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
(Also accept $3.875 \times 10^{-3} .3 \mathrm{ml} 4.00 \times 10^{-3}$)
(1 mark for method; 1 mark for answer + correct units)

AL03(I)_02b
(i) $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[[(\mathrm{g})]^{2}\right.}{\left[\mathrm{I}_{2}(\mathrm{~g})\right]}$
(ii) From (i), $[1(\mathrm{~g})]^{2}=\mathrm{K}_{6}\left[\mathrm{l}_{2}(\mathrm{~g})\right]$ [1]

Since Step 2 is the rate determining step,
Rate of overall reaction $=k\left[\mathrm{H}_{2}(\mathrm{~g})\left[[(\mathrm{g})]^{2}=\hbar \mathrm{K}_{\mathrm{c}}\left[\mathrm{I}_{2}(\mathrm{~g})\right]\left[\mathrm{H}_{2}(\mathrm{~g})\right]\right.\right.$
The reaction is first order w.r.t. $\mathrm{H}_{2}(\mathrm{~g})$ and to $\mathrm{l}_{2}(\mathrm{~g})$.

ASL03() 04
(a) (i) Homogeneous catalyst becattse $\mathrm{O}_{3}, \mathrm{O}$ and Cl are in the gaseous plase.
(ii)

Uncatalyzed reaction
Catalyzed reaction

(b) The depletion of ozone is a chain reaction.

As the Cle radieal is regenerated, one Cle radical can cause the two renctions, which [i] lead to ozone depletion, to repeat thousands of times.

AL04(I) 03a

(i) forward rate $=k_{1}[\mathrm{E}(\mathrm{g})[\mathrm{F}(\mathrm{g})]$
[1/2]
backward rate $=k-[\mathrm{G}(\mathrm{g})]^{2}$
(ii) Energy profile

1 mark for an energy profile for an exothermic renction
1 mark for labeling the axes
(iii) $k-1$ will increase to a great extent.
$k=A e^{-\frac{E_{q}}{R T}} \quad$ or $\quad \mathrm{n} k=\mathrm{C}-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}$
E_{0} for the backward reaction is greater than E_{a} for the forward reaction,
$\therefore k-1$ will increases to a greater extent when T increases.
AL04(I)_03a
(i) Monitor the pressure of the system because both $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{2} are soluble in
$O R$, $\quad \mathrm{CCH}_{4}$ white O_{2} is insoluble.
OR, Measure the valume of gas e
CCl4 while O_{2} is insoluble.
(ii)
$\ln \frac{k_{2}}{k_{1}}=-\frac{E_{2}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \frac{5}{1}=-\frac{\mathbb{E}_{2}}{8.314}\left(\frac{1}{332}-\frac{1}{318}\right)$
$E_{a}=+100.9 \mathrm{k}_{\mathrm{k}}^{\mathrm{mol}}{ }^{-1}$
AL05(I)_02a
(i)

(ii) $\mathrm{NO}:+2$
$\begin{array}{lll} & \text { FNO: }+3 & {[1 / 2]}\end{array}$
$\mathrm{NO}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{FNO}(\mathrm{g})+\bullet \mathrm{F}(\mathrm{g}) \quad$ r.d.s.

ASLOG(1)_10a
(i) rate of consumption of $\mathrm{O}_{2}=\frac{5}{4} \times 1,24 \times 10^{-4}$
$=1.55 \times 10^{-4} \mathrm{inol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$
(ii) Catalyst is a substance which can change the rate of reaction but itself renains [1] chemically unchanged after the reaction.
(iii) Nitric acid / nitrogenous fertilizers

ASLog(II) 100
(i)

In the presence of a (positive) catalyst, the reaction proceeds through another path with a lower activation energy E_{2}.
(ii) Number of molecules with energy not less than the activation energy is greater than hat without catalyst at the sanne temperature.
There is an increase in effective collision frequency.
ASL07(II)_02
(a) Colorimerry

Bra(aq) has a brown color. When the reaction proceeds, the brown color of the reaction mixture becomes less intense.
Concentration of $\mathrm{Br}_{2}(\mathrm{aq}) \propto$ absorbance of reaction mixture
(b) Plot a graph of absorbance again time.

Slope of curve at $t=0$ represents the initial rate.
(c) $\mathrm{Rate}=\mathrm{K}\left[\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})\right]^{2}[\mathrm{Br} 2(\mathrm{aq})]^{Y} \quad$ [I]

When $\left[\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})\right] \gg\left[\mathrm{Br}_{2}(\mathrm{aq})\right]$, the rate equation becomes
Rate $=k^{\top}\left[\mathrm{Br}_{2}(\mathrm{aq})\right)^{\gamma}$, where $\mathrm{k}^{\prime}=\mathrm{k}\left[\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})\right]^{x}$
$\left[\mathrm{Br}_{2}(\mathrm{aq})\right]^{\mathrm{Y}}$ is the only factor which affects the reaction rate.
(d) The initial eate doubles when $\left[\mathrm{Br}_{2}(\mathrm{aq})\right]$ is doubled.

\therefore order w.r.t. $\mathrm{Br}(\mathrm{ag})$ is I

(e) Repeat the experiment using the same reagents, kecping the volume of Br_{2} (an) used [1] constant, and vary the volume of $\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})$ used. Measure the initial mie in each case.
Compare the initial rates to obtain the order w.r.t. $\mathrm{HCO}_{z} \mathrm{H}(\mathrm{aq})$.
ASL07(II)_03
(a)

reaction coordinate
(b) For the first step, the equilibriun
$K=\frac{\left[\mathrm{XH}^{+}\right]}{[\mathrm{X}]\left[\mathrm{H}^{+}\right]}$
For the second step,
Rate $=k\left[\mathrm{XH}^{+}\right][\mathrm{Y}]$
$=k \mathrm{~K}[\mathrm{X}][\mathrm{Y}]\left[\mathrm{H}^{+}\right]$
AL08(1) 03a
(iii) C

ASL08(I)_03

(a) Monitor the pressure of the reaction system.

Explanation: 4 moles of gases react to give 3 moles of gases.
$\therefore\left(\mathrm{P}_{0}-\mathrm{P}_{1}\right) \propto$ no. of moles of N_{2} formed.
(b) Keeping [NO] constant and doubling [H_{2}], the initial rate increases 2 times.
\therefore order with respect to $\mathrm{H}_{2}(\mathrm{~g})=1$
Keeping $\left[\mathrm{H}_{2}\right]$ constant and doubling [NO], the initial rate increases 4 times.
\therefore order with respect to $\mathrm{NO}(\mathrm{g})=2$
Rate equation:
Rate $=k[\mathrm{NO}(\mathrm{g})]^{2}\left[\mathrm{H}_{2}(\mathrm{~g})\right]$
$0.5=k(0.025)^{2}(0.01)$
$k=8 \times 10^{4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{-2} \mathrm{~s}^{-1}$
(c) The reaction is not an elementary reaction.

Explanation (any ONE of the following):

- The order of reaction is different from its molecularily
- The chance for four molecules to collides and react is very low.

ASL09(I)_05

(a) As the reaction is catalyzed by $\mathrm{H}^{+}(\mathrm{aq})$, treating the reaction mixture with
$\mathrm{NaHCO}_{3}($ aq) can help remove the acid so as to quench the reaction.
(b) The rate equation should be in the form of

Rate $=k\left[h_{2}(\mathrm{aq})\right]^{x}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right]^{4}\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}$
The reaction is catalyzed by $\mathrm{H}^{+}(\mathrm{aq})$. $\mathrm{H}^{+}(\mathrm{aq})$ is in large excess and is not consumed.

$\therefore\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ is constant.

In each run, $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right] \gg\left[\mathrm{I}_{2}(a q)\right],\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right]$ can be considered as constant.
Therefore, the rate equation can be simplified as rate $\left.=k^{\prime}\left[\mathrm{I}_{2}(\mathrm{aq})\right]\right]^{x}$
The titre decreases with time linearly, the rate of reaction is independent of $\left[\mathrm{I}_{k}(\mathrm{aq})\right]$
Thes, the rate reactions order w.r.t. to I_{2} is 0 .
(c) For each run, the slope of the line represents the rate of reaction.

Plotting a graph of (-slope) against volume of $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})$ used can help

determine y in the rate equation.	1	2	3	4
Run	1	$\mathrm{~cm}^{3} \mathrm{~min}^{-1}$	0.05	0.10
- slope	0.15	0.20		

A straight line pass through the origin is obtained
The reaction is first order w.r.t. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(d) Repeat the experiment by using different volume of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{nq})$ and $\mathrm{H}_{2} \mathrm{O}(1)$ while keeping all other variables constant.
Plot a graph of \log (rate of reaction) against \log (volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq) used)
The slope of the graph obtained is the reaction order writ. $\mathrm{H}^{+}(\mathrm{aq})$.

ALIO()_01
(b) Accept both 'yes' and 'no' answer, Marks will be awarded only to the elaboration.

The rate of reaction depends on the collision frequency of the reactant moleculcs.
Only those colliding molecules with KE greater than activation energy, E_{2}, of the reaction can react.
When temperature increases, average $K E$ of molecules increases.
Chance of collision between molecules increase and, more importantly, a greater
percentage of coiliding molecules has $K E>E_{\alpha}$.

ASL10(II)_08
(a) The $\mathrm{SO}_{3}{ }^{2-(a q)} / \mathrm{HSO}_{3}-(\mathrm{aq})$ buffer system mainains the reaction mixture at acidic
pH , at which phenolphthafein is colorless, (at the beginning) vin the equilibrium

$$
\mathrm{HSO}_{3}^{-}(\mathrm{aq}) \Longrightarrow \mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

When $\mathrm{SO}_{3}{ }^{2-}(\mathrm{ag})$ is consumed in the reaction, the equilibrium position shifts to the right to counteract the change.
When nearly all of the $\mathrm{HSO}_{3}^{-}(\mathrm{aq})$ and $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$ ions are reacted, there is excess $\mathrm{OH}^{-}(\mathrm{aq})$ ions, the pH of the solution rises mpidy and phenolphthalein will tom pink.
(b) This is to ensure that $\mathrm{HCHO}(\mathrm{aq})$ is in large excess and the initial rate $1 / \mathrm{t}$ measured in each run of the experiment refers to the consumption of the same amount of HCHO .
(c) Reciprocal of time for the first appearance of pink color) is close to the initiat rate

Volume of $\mathrm{HCHO}(\mathrm{aq})$ used $/ \mathrm{cm}^{3}$	5.0	7.5	10.0	12.5	15.0
$\frac{1}{\mathrm{t}} / \mathrm{s}^{-1}$	0.0280	0.0429	0.0559	0.0709	0.0833

The rate of reaction varies as the concentration of $\mathrm{HCHO}(\mathrm{aq})$. \therefore It is first order w.ri. HCHO
(d) Measuring the time for the appearance of the pink colar / detecting the color change

by eyes.

(e) No, methyl otange changes color at low pH . The pH of the $\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq}) / \mathrm{SO}_{3}{ }^{2}$-(㿟) system is hightr than the pH at which of methyl orange changes color, a methyl orange will remain yellow throughout the experiment.

ASL11(I)_03
B

ASLIi(II)_01
(a) rate $=[\mathrm{O}(\mathrm{g})]\left[\mathrm{O}_{3}(\mathrm{~g})\right] \quad k$ can be replaced by $2.6 \times 10^{5} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
(b) $\quad \ln k=\ln A-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}$
$E_{a}=\operatorname{RTn} \frac{A}{k}=8.31(210) \mathrm{Mn} \frac{4.8 \times 10^{9}}{2.6 \times 10^{5}}$
$=+17.1(4) \mathrm{kJ} \mathrm{mol}^{-1}$ unit must be present before award mark for the answer
(c) (i) Mechanism

$$
\begin{array}{ll}
\mathrm{O}_{3}(\mathrm{~g})+\cdot \mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+\bullet \mathrm{OCl}(\mathrm{~g}) & \text { slow } \tag{1}\\
& \mathrm{OCl}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+
\end{array}
$$

Overall: $\mathrm{O}_{3}(\mathrm{~g})+\mathrm{O}_{(\mathrm{g})} \longrightarrow 2 \mathrm{O}_{2}(\mathrm{~g})$
1 mark for having the mechandsm agreeing with the rate equation
1 uark for adding all the equations to get the overall equation.
Explanation:
[1]
Adding tie two mechanistic steps gives the overall equation. The proposed rate deterniniug step: $\mathrm{O}_{3}(\mathrm{~g})+\cdot \mathrm{Cl}(\mathrm{g}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+\cdot \mathrm{OCl}_{(\mathrm{g})}$ suggests the rate equation is rate $=k\left[\mathrm{O}_{3}(\mathrm{~g})\right][\cdot \mathrm{Cl}(\mathrm{g})]$.
Mechanism agrees with rate equation.
(ii) Energy profites

reaction coordinate
(2 marks for the two curves: I mark for the fabels)
I mark for showing the two curves
I mark for showing P.E. (with unit or unit indicated by energy values) / Energy/H AND reaction coordinate / reaction path AND all chemical species in reactants and products [nay include $\cdot \mathrm{Cl}(\mathrm{g})$] and to be balanced
1 mark for labelling $392\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) /-392$ [BUT NOT $\triangle \mathrm{H}=+392$] AND either 0.44 or labeling catalyzed and uncatalyzed renctions.

ASLI2(IT)_04
(a)
$\frac{1}{2} \times 3.24 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}=1.62 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
(b) From results of trial $1 \& 2$, doubling [$\left.\mathrm{Br}_{2}\right]$ o while kecping $[\mathrm{NO}(\mathrm{g})] 0$ constant causes the initial rate to increase by 2 times. \therefore order of reaction wr.t. $\left[\mathrm{Br}_{2}\right]$ is 1 . From results of trini $1 \& 3$, doubling $[\mathrm{NO}(\mathrm{g})] 0$ while decreasitug $[\mathrm{Br}(\mathrm{g})] 0$ by one-hatf causes the initial rate to increase by 2 times. 2 order of renction w.r.t. [$\mathrm{NO}[\mathrm{g})]$ is 2 . Rate equation: rate $=\mathrm{k}[\mathrm{NO}(\mathrm{g})]^{2}[\mathrm{Br}(\mathrm{g})]$
Trial 1; $k=\frac{3.24 \times 10^{-4}}{(0.016)^{2}(0.012)}=105.5 \mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1} \quad$ (Range: 103 to 106) (if candidates used $1.62 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$ as the initial rate, the acceptable range will be from 51.5 to $53 \mathrm{~mol}^{-2} \mathrm{dml}^{6} \mathrm{~s}^{-1}$)
(c) (i) For the rate equation: rate $=k[N O(g)]^{2}\left[\operatorname{Br}_{2}(\mathrm{~g})\right]$, the order wr.t. cach reactant matches with the coefficient of the corresponding species in the chemical equation of the elementary reaction.
(ii) The chance for three molectiles (two NO and one Br_{2}) to collide at the some time is very small.

ASL13(II)_05 (modified)
(a) The time taken for the red color to disappear will be close to the initial rate of [1] reaction.
(b) initial rate $=\frac{1}{\text { time for the red color to disappear }}$

From trials 1 \& 2 , when $\left[\mathrm{Br}^{-}(\mathrm{aq})\right]$ is donbled, the rate of reaction increases by 2 times. \therefore Order of reaction w.r.t. Br -(aq) ions $=1$
From trials $1 \& 3$, when $\left[\mathrm{BrO}_{3}\right.$ (aq)] is tripled, the rate of reaction increases by 3
times. \therefore Order of reaction wr.t. Br ${ }^{-}$(aq) ions $=1$
From trials 2 \& 4 , when $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ is increased by 4 times, the rate of reaction increasts by 16 times. \therefore Order of reaction w.r.t. $\mathrm{H}^{+}(a q)$ ions $=2$
(Accept other correct method)
(c) $\quad k=A e^{-\frac{E_{a}}{R T}} \quad$ OR $\quad \ln \frac{k_{2}}{k_{1}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \frac{1026}{145}=-\frac{E_{a}}{R}\left(\frac{1}{323}-\frac{1}{298}\right)$
$E_{a}=+62.6 \mathrm{k} \mathrm{mol}^{-1}$

- Br_{2} is volatile. The Br_{2} formed will vaporizes and will not react with phenol.
- Phenol is volatile. The amount of phenol in the reaction mixture will decrease.
- The rate of reaction is too fast to be determined using this method.

ASL13(II)_05
(a)
 molecular. Kinetic energy
(b) In order for a gas-phase elementary reaction to occur, the colliding mofecules should have kinetic energy greater than the activation energy E_{a} of the reaction. From the graph, the area under the curve for K.E. greater a certain amount increases with temperature.
\therefore rate of reaction increases with temperature.
(i) $\mathrm{ClO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Cl}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})-3 \mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(ii) $\left.\operatorname{Ratc}=k\left[\mathrm{ClO}_{3}^{-}(\mathrm{aq})\right]^{\mathrm{x}}\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]\right]^{\mathrm{Y}}\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}$
$\frac{1.0 \times 10^{-5}}{(0.08)^{x}(0.15)^{y}(0.2)^{z}}$
$\frac{1.0 \times 10^{-5}}{4.0 \times 10^{-5}}=\frac{(0.08)^{x}(0.15)^{y}(0.2)}{(0.08)^{x}(0.15)^{y}(0.4)^{z}}$
$\mathrm{z}=2$

$$
\begin{equation*}
\text { similarly, } x=1 \text { and } y=1 \tag{2}
\end{equation*}
$$

(iii) Rate $=k\left[\mathrm{ClO}_{3}-(\mathrm{aq})\right]\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}$
$k=\frac{1.0 \times 10^{-5}}{(0.08)(0.15)(0.2)^{2}}$
$k=\frac{1}{(0.08)(0.15)(0.2)^{2}}$
$=2.08 \times 10^{-2} \mathrm{~mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1}$
(iv) Arthenius equation:
$\ln \frac{k_{1}}{k_{2}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
$\ln 2=-\frac{E_{\mathrm{E}}}{R}\left(\frac{1}{298+10}-\frac{1}{298}\right)$
$E_{a}=+52894 \mathrm{~J} \mathrm{~mol}^{-1}=+52.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$

DSE12PP_O1b

(i) Any ONE of the following:

- The rate of reaction is proportional to the concentration of the reactant.
- The halflife of the reaction is constan.
(ii)
$\ln k=$ constant $-\frac{E_{a}}{R T}$

T / K	313	323	333	343
$k / 10^{-3} \mathrm{hi}^{-1}$	27.0	35.4	50.4	65.4
$1 / T$	3.195×10^{-3}	3.096×10^{-3}	3.003×10^{-3}	2.915×10^{-3}
$\ln k$	-3.612	-3.341	-2.988	-2.727

Graph of lak against $\frac{1}{T}$

(l mark for the graph, 1 mark for the labels)
Slope $=-3227=-\frac{E_{a}}{R}$
\qquad

DSE12_01c

(i) Intial rate is used because the initial concentrations of reactants are known.
(ii) Compare experiments $2 \& 3,\left[\mathrm{H}_{2}\right]$ remains the same but [NO I is halved, rate is decreased by a factor of 4 . Therefore reaction order with respect to $\mathbb{N O} \mathrm{O}]$ is two.
Compare experiments $1 \& 2,[\mathrm{NO}]$ remains the same but $\left[\mathrm{H}_{2}\right]$ is doubled, rate is
also doubled. Therefore reaction order with respect to $\left[\mathrm{H}_{2}\right]$ is one.
(Deduction must be slrown. Accept other means to solve the problem, e.g. mathematical approacla)
(iii) rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]\right.$

With data from experiment 1 ,
$1.20 \times 10^{-6}=k\left[2.50 \times 10^{-2}\right]^{2}\left[5.00 \times 10^{-2}\right]$
$\therefore k=0.384 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
DSE13_01a
(i) (1) x-(molecular kinetic) energy/KE
y-fraction/percentage / number / amount of molecules / particles [1]
(2) (From the sketch), an increase in temperature (from T_{1} to T_{2}) with increase the (average kinetic) energy of the molecules.
This will increase the amount of collisions / increase the collision frequency / result in greater effective collisions.
(From the skefch), there is a larger portion of molecules will have kinetic energy greater than E_{3}.
(ii) $\quad \log k=$ constant $-\frac{E_{a}}{2.3 \mathrm{RT}} \quad$ oR $\quad \ln k=$ constant $-\frac{E_{a}}{\mathrm{RT}}$

Slope of the curve $=-\frac{E_{a}}{2.3 R T}=-1.73 \times 10^{3} \quad$ (Range: -1.67 to-2.05)

$$
\begin{equation*}
E_{n}=1.73 \times 10^{3} \times 8.31 \times 2.3=+33.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad\left(\text { Range: } 32 \text { to } 39 \mathrm{kj} \mathrm{~mol}^{-1}\right) \tag{1}
\end{equation*}
$$

DSE14_01a
(i) 'Activation energy' refers to the mininume energy possessed by the colliding reactant particles in order that a reaction can oscur.
(ii) Yeast provides enzyme / catalyat.

At high temperature, the enzyme (yeast) is denatured / destroyed so that it camnot [1] function as a calalyst.

DSE14_016
(i) Initial rate is the instantaneous rate at the start of the reaction
(ii) Follow the color intensity of the solution / by colorimetry

The solution change from colorless to brown/yellow.
OR Titrate with standard $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ soletion.
Quenching. Add starch indieator. End point: blue to colorless
(iii) The initial rate is directly proportional to [BrO_{3}^{-}(aq)]. / The graph is linear / a straight line $/$ rate $\propto\left[\mathrm{BrO}_{3}^{-}(\mathrm{aq})\right]$
Therefore, the order of reaction with respect to $\mathrm{BrO}_{3}^{-}(\mathrm{aq})=1$
(iv) (1) $\mathrm{Rate}=k\left[\mathrm{BrO}_{3}^{-}(\mathrm{aq})\right][\mathrm{F}(\mathrm{aq})]\left[\mathrm{H}^{+}(\mathrm{aq})\right]$
$\frac{\text { initial rate } 1}{\text { initial rate } 2}=\frac{(0.17)(015)}{(0.17)(0.30)}\left(\frac{0.10}{0.20}\right)^{y}=\frac{2,30 \times 10^{-3}}{1.84 \times 10^{-2}}$
$y=2$
Reaction is second order with respect to $\mathrm{H}^{+}(\mathrm{nq})$.
(Accept other explanation.)
When initial Ir-(aq)] increases by a factor of $0.3010 .15=21$ doubles and inithal $\left[H^{+}(\right.$aq $\left.)\right]$increases by a facior of $0.20 \% .10=2 /$ double while keeping inital $\left[\mathrm{BrO}_{3}^{-}(\mathrm{aq})\right]$ constant, the intlal rate increates by a factor of $1.84 \times$ $10^{-2} / 2.30 \times 10^{-3}=8$. Since the rate of reaction is first order with respect to I^{\prime}, the initial rate increased by fou times when the initial $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ is dowbled.
(2) Rate of consumption of $\mathrm{BrO}_{3}-(\mathrm{aq})=1 / 3 \times$ rate of fomation of I_{2}

The initial rate with respect to BrO_{3}^{-}(ag) in Trial
$=-2.30 \times 10^{-3} \times \frac{1}{3}$
$=-7.67 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
Remark: negathe sign is needed as the initial rate of formation is defnerd as positue value.

DSE15 01a

(i) (1) No effect / the reaction rate is independent of the change in [$[2$ (aq)] . (2) Rate $\left.=K_{[2} \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]$
(ii) $\log \frac{k_{z}}{k_{1}}=-\frac{k_{n}}{2.3 R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)=\log 2=-\frac{E_{a}}{2.3 R}\left(\frac{1}{308}-\frac{1}{298}\right)$
$E_{\mathrm{a}}=+52.8 \mathrm{kl} \mathrm{mol}^{-1} \quad$ (Range: $52.3-53.3$)

(1 mark for each of the energy profiles - total 2 marks: Accept exothermic / endothermic; one peak or multiple peaks)
1 mark for the labels: Accept potential energy / enthalpy but NOT kinetic energy / energy level)
(2) Catalyst can be poisoned. / Their active sites can be occupied by ather chemicals making them inactiye.

DSE16_01a
(ii) Total number of particles / total number of molecules

DSE16 010

(i) (i) Compare experiments $1 \& 3$, ([sucrose] remains the same) but [HCl] is three times, zate is also three times. Therefore reaction order with respect to HCl is one.
Compare experiments $1 \& 2$, [sticrose] and [HCl] are dombled, the rate is [1] quadrupled. Therefore reaction order with respect to stacrose is one.
OR \quad rate $=k\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{\mathrm{H}}(\mathrm{qq)}]^{m}[\mathrm{HCl}(\mathrm{nq})]^{\text {n }}\right.$
$\begin{array}{ll}\text { From Trial } 1 & 6.0 \times 10^{-7}=k(0.010)^{m}\left\{(0.10)^{n}\right. \\ \text { From Trial } 2 & 2.4 \times 10^{-6}=k(0.020)^{m}(0.20)^{n} \\ \text { From Trial } 3 & 1.8 \times 10^{-6}=k(0.010)^{m}(0.30)^{n}\end{array}$
(3) \div (1) $n=1$ and (2) \div (1) $m=1$
(2) (inital) rate $=k\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{\mathrm{L}}(\mathrm{aq})\right][\mathrm{HCl}(\mathrm{aq})]$

OR (initial) rate $=k[$ sucrose $]\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{t})\right]^{0}$
(3) With data from Trial 1,
$6.0 \times 10^{-2}=k(0.010)(0.10)$
$k=6.0 \times 10^{-4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} / 6 \times 10^{-4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} / 0.0006 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
ii) Acts as a catalyst. / Increase the rate of hydrolysis / provide another reaction path of [1] lower E_{3}.
(iii) Any 2 reasons of the above, with comparative sense 1 matk each

- Need not to separate fructose from the mixture after hydrolysis of starch but the one with stecrose requires.
- Higher atom conomy as glucose is the only product from the enzymatic

DSE18_01a
hydrolysis of starch. / atom economy of hydrolysis of starch is 100% while that of sucrose is 50% / less than 100%

- Harmfiul / corrasive / irriating $\mathrm{HCl}(\mathrm{aq})$ is used in hydrolysis of sucrose while hydrolysis of starch involves enzyme which is biodegradable and less harmful

DSE17_01a
(ii) The order of reaction with respect to A is zero, $0 /$ rate $=k[A]^{0}$.

From the graph, rate of change of $[A]$ is independent to $[A] / a$ constant.
[Accept: A straight line is obtained. / [A] and time has a liner relationship / The slope of the line is a constant.
NOT accept: [A] is directly proportional to time.
DSE17_01b
(i)

I mark for exothermic; i.e. energy of product is lower than that of reactants \& E_{a} of the catalyzed reaction is lower.
1 mark for two steps for the one with catalyst (i.e. two peaks) \& one/multiple steps for the energy profile withont catalyst
I mark for the labels of $\mathrm{SO}_{2} \& \mathrm{O}_{2}$ and SO_{3} [Not accept; reactants \& products]
(ii) (1) Impuritics in the reaction mixture may poison the catalyst.
[Accept: Adsorb/The active sites of the catalyst are occupied by impurities. NOT accept: the catalyst is poisoned by the reactants]

DSE17.01c
(iii) Let rate $=k[\mathrm{CO}]^{m}\left[\mathrm{Cl}_{2}\right]^{n}$

From doubling [CO] while keeping [Cl_{2}] unclanged,
$2.83=2^{\pi}$
$m=1.5$ [accept $1.5,1.501$]
(ii) x -bxis: (molecular) kinetic chergy / KE / velocity of molecules y-axis: fraction/ percentage / number of molecules

DSE18_01c
(1) Order of reaction is not affected by temperature change.
$O R$, The order teaction is the same.
(ii) From line f_{1} on the grapl
slope $=\frac{(-1.4)-(-2)}{0-(-0.6)}=1$
It is the first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$
(iii) $\log k=-2$
$k=0.01 \mathrm{~s}^{-1}$
(iv) The y-intercepts of ℓ_{1} and ℓ_{2} are -1.4 and -2 respectively. Siace the y -intercept $=\log \mathrm{k}$
$\log k_{2}-\log k_{1}=-\frac{E_{a}}{2.3 R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$(-2)-(-1.4)=-\frac{E_{a}}{2.3 \times 8.31}\left(\frac{1}{345}-\frac{1}{360}\right)$
$E_{a}=+94.95 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ [Range: 92-98]

DSE19 1a

1. (a) (i) The Haber process produces ammonia / NH_{3} which can make fertilisers to increase crop yield.
(ii) (I) $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$
(2) It is because biomass is a renewable energy resource. 1
(iii) - Comparing Trial 3 with Trial 2 (both same in [B(aq)], doubling the [A(aq)] leads to a double of the initial rate. Hence, the order of reaction with respect to $\mathrm{A}(\mathrm{aq})=1$ Comparing Trial I with Trial 2 (both same in $[A(a q)]$, doubling the $[\mathrm{B}(\mathrm{aq})]$ leads to
four times of the initial rate. Hence, the order of reaction with respect to $B(\mathrm{aq})=2$.
```1
```

DSE19_1c
(c) (i) limestone / marble
(ii) Carbon bums in air to produce heat. 1
(iii) : High operation pressure needs high construction cost. High operation pressure needs high construction cost.
High operation pressure shifts the equilibrium position to the loft, decreasing the $\quad 1$
yield.
(iv) $\log \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{o}}{2.3 R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
$\log \left(\frac{k_{2}}{k_{1}}\right)=\frac{160 \times 10^{3}}{2.3 \times 8.31}\left(\frac{1}{1200}-\frac{1}{1500}\right)$
$\frac{k_{2}}{k_{1}}=24.8$
(v) Higher temperature shifts the equilibrium position to the right, increasing the yield. I
(c) (i) The absorbance is directly proportional to the concentration of $\mathrm{I}_{2}(\mathrm{aq})$ as) I_{2} (aq) is purple) 1 brown tealoured while the other species are colourless.
(ii) - The absorbance decreases with time linearly /is directly proportional to the Ime, /so 1 the rate is independent of $\left[L_{2}(a q)\right]$.

- The order of reaction with respect to $h_{2}(a q)=w=0$
(iii) Trial 2: slope of the plot $=-0.7 \div 8=-0.0875$ Trial I: slope of the plot $=-0.7 \div 16=-0.04375$ $(-0.0875) \div(-0.04375)=(2.0 / 1.0)^{x}$
Order of reaction with respect to propanone $=x=1$
(iv) $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}$

DSE20_1c

(c) (i) (The absorbance is directly proportional to the concentration of $\left.\mathrm{I}_{2}(\mathrm{aq}) \mathrm{as}\right) \mathrm{I}_{2}(\mathrm{aq})$ is purple) brown feoloured while the other species are colourless.
(ii) - The absorbance decreases with time linearly fis difectiy proportional to the tine, 部 1 the rate is independent of $[\mathrm{Iz}(\mathrm{aq})]$.

- The order of reaction with respect to $\mathrm{I}_{2}(\mathrm{aq})=\mathrm{w}=0$
(iii) Trial 2: slope of the plot $=-0.7 \div 8=-0.0875$ Trial 1: slope of the plot $=-0.7 \div 16=-0.04375$ $(-0.0875) \div(-0.04375)=(2.0 / 1.0)^{x}$
Order of reaction with respect to propanone $=x=1$
(iv) $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \quad 1$

1. (c) (v) \uparrow y-axis: P.E. / Energy 2

(1 mark for labels of axes und
1 mark for 2 peaks $+1^{\text {II }}$ one higher than the $2^{\text {ad }}$ one + exothermic)

Industrial Process

AL96(I) 02 za
State the method by which sodium hydroxide is produced industriatly. Give TWO other products obtained by this industrial process.

AL97(II)_086

The synthesis of ammonia using the Hober Process involves the following

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(i) State the effect of a change in temperature on the reaction at equilibrium.
(ii) Name a catalyst for the process and state the effect of the catalyst on the reaction
(iii) State how ammonia is isolated from unreacted nitrogen and lyydragen in the process.
(iv) Give TWO major uses of ammonia in industry.

AL00(11)_02e
(i) Outline the synilhesis of nitric(V) aeid from ammonia. Illustrate your answer with balanced equations.
(ii) A sample of nitric(V) acid contains 68.0% of HNO_{3} by mass and has a density of $1.42 \mathrm{~g} \mathrm{~cm}^{-3}$, Calculate the concentration, in mol dm^{-3}, of HNO_{3} ia the sample.
(iii) (2 marks) ation of aquecus ammonia with nitric((V) acid. Suggest how you would obtain crystalline ammonium nitrate(V) from the solution.
(2 marks)
(iv) Dinitrogen oxide ($\mathrm{N}_{2} \mathrm{O}$), an angesthetic can be prepared by heating a mixture of ammonium chloride and potassium nitrate(V). Write a balanced equation for the reaction involved.

AL03(II) 02d
 With the help of equations, outline the manufacture of sodium hydroxide.

AL04(I)_03d

Chile saltpetre is a mineral with a high sodium nitrate(V) conten
(i) Chile satpetre was widsly used as a nitrogenous fertilizer in early 1900 s ptior to the invention of the Haber process.
Suggest two reasons why the use of Chile saltpetre as fertilizer has been phased out atter the invention of the Haber process.

AL06(1)_09
In 1918, Fritz Haber was awarded the Nobel Prize in Chemistry for his work on the synthesis of ammonia from its clements. Write an articte on tho Haber process and its impottance to sociely.
(20 marks)

AL06(15)_Ofc (modifed)
Hydrogen is manufactured by steam reforming of natutal gas, which involves the following reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})-\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\ominus}=+210 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(i) Suggest one way to increase the yield of H_{2} (g).
(1 mark)
(ii) Additional $\mathrm{H}_{2}(\mathrm{~g})$ can be obtained by the action of steam on the $\mathrm{CO}(\mathrm{g})$ produced. Write the chemical equation for this reaction.
(1 nark)
(iii) Give two advantages of using $\mathrm{H}_{2}(\mathrm{~g})$ as a source of energy

ALI0(II)_03a

Ammonia is manufactured by Haber process;

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{dH}<0
$$

Suggest TWO ways to increases the yied of ammonia when the protess is put into industrial practice.

AL12(D)_06

Read the passage below and answer the questions that follow.

Converting Nitrogen to Nitrogen Componnds

Nitrogen $\left(N_{2}\right)$ constitutes 78% of the amosphere and is very unreactive. The conversion of nitrogen to nitrogen compounds has posed a challenge to chemists. Traditionally, the Haber process provides a successtul means for large scale conversion of nitrogen to anmonia for manufaturing itrogenous fertilizers such as anmonium sulphate(VI).

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \frac{\mathrm{Fe}(\mathrm{~s})}{200 \mathrm{~atm} ; 450^{\circ} \mathrm{C}} 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

In recent years, chemists have discovered a means to combine $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{CO}(\mathrm{g})$ to give organio nitrogen compounds such as oxamide ($\mathrm{CONH} \mathrm{H}_{2}$), Oxamide is a slow-release nitrogenous fertilizer. The discovered reaction process involves treating a hafinium $\left(\mathrm{H}_{f}\right)$ complex L firstly with $\mathrm{N}_{2}(\mathrm{~g})$ and then with $\mathrm{CO}(\mathrm{g})$, at ambient temperature and pressure, to give an intermediate M . M, when treated with excess HCl , gives oxamide and anther hafium complex \mathbf{Q}.

excess HCl
 $\frac{(2) \mathrm{CO}(\mathrm{g})}{(2)}$
A
Q

Despite the stortcoming of the above reaction process being stoichiomettic rather than catalytic, chemists still consider the discovery to be of great research value as it is a dream reaction'. (a) Explain why nitrogen is very unreactive.
(1 mark)
(b) The manufacture of ammonia by the Haver process is considered as an example of green chemistry, Suggest TWO reason why,
(c) Both hafnium and bariun are metals in Period 6 of the Periodic Table. Suggest why hafnium forms more complexes than barium does.
(d) Suggest TWO reasons why oxamide is considered as a better nitrogenous fertilizer that ammonium sulphate(VI).
(e) As compared with the Haber process, suggest TWO advantages of using the discovered means to convert nitrogen to nitrogen compounds.
(2 marks)
(f) Explain why the above reaction process being stoichiomefric rather than catalytic is its shortcoming.
(1 mark)
DSE1ISP_01b
For the industrial preparation of nitric acid from nitrogen, give the chemical reactions and the conditions under which they take place.
(6 marks)

DSE12PR_01a

L-Ascorbic acid, also known as vilamin C, is synthesized by the Reisehstein process as shown below.

$$
D \text {-sorbitol }
$$

D-glucose

(i) $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{HCl}$
(ii) $\mathrm{CH}_{3} \mathrm{ONa}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(i) State ONE importance of the Reichstein process.
(ii) The reagents used in Step 1 are $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{Ni}(\mathrm{s})$. Name the type of reaction involved.
(1 mark)
(iii) Step 2 is an oxidation with the use of an enzyme, sorbitol dehydrogenase. This siep is carried out at pH 4 to 6 , and at about $30^{\circ} \mathrm{C}$.
(1) Explain why this step is NOT carried out with commonly used oxidizing agents.

(1 mark)

(II) Suggest why this step is carried out at pH 4 to 6 .
(iv) A method, with the use of a lactonase enzyme such as gluconolactonase, has been adopted for the conversion of KGA to L-ascorbic acid.

$$
\text { KGA } \xrightarrow{\text { gluconolactonase }} L \text {-ascorbic acid }
$$

Suggest TWO reasons why this meshod is considered greener than the corresponding one in the above-shown Reichstein process.

DSE12PP_01c
The diagram below shows a membrane cell used in chloroalkali industry for the production of hydrogen, chlorine and concentrated sodium hydroxide.

(i) With the aid of chemical equations, account for the formation of hydrogen, chiorine and concenirated sodium hydroxide in the membrane cell.
(5 ntarks)
(ii) Chlorine bleach can be nade by treating chlorine with dilute sodium hydroxide solution at room temperature. Write the chemical equation of the reaction involved.

A student learnt that sodium chloride is higlly abuan
and hatrogen is a non-polluting fuel. The student made the following remark
'Electrolysis of brine can be used in large scale manufacture of hydrogen to help reduce air pollution problems.'
Do you agree with the student? Explain

DSE12_01a

Ammonia can be produced by the Haber process through the reaction of nitrogen and hydrogen at about $500^{\circ} \mathrm{C}$ and 200 atm in the presence of a catalyst. The chemical equation for the reaction is shown below:
(i) (1) What is the catalyst used in the Haber process?
(2) Explain the effect of a calalyst on a chemical reaction.

Suggest how hydrogen an be obtined for the tha involved.
(iii) You are given that for the formation of $\mathrm{NH}_{3}(\mathrm{~g})$ from $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ at $300^{\circ} \mathrm{C}$ and 1000 atan , the yield of $\mathrm{NH}_{3}(\mathrm{~g})$ at equilibritum is ahout 98%. However, the operation conditions of the Haber process in industry are set at about $500^{\circ} \mathrm{C}$ and 200 atm with the yield of $\mathrm{NH}_{3}(\mathrm{~g})$ at equilibrium of about 20%. With reference to the given information, explain why suel operation conditions are chosen in industry.
(2 marks)
(iv) In the Haber process, the product mixture is removed from the reaction chamber before reaching the yield of about 20%. Explain why this is so.

DSEI2_01b

Methanol is an important compound in the chemical industry. Methanol can be produced from syngas made from methane.
(i) Why is methanol an important compound in the chemical indusiry?
(1 mark)
(i) Write the chemical equation for the reaction in the production of methanol from syngas, and state the conditions required.
(3 narks)
(iii) State an advancement of the methanol production technology. Explain why it is considered as an advancement.

DSE13_01b

Eugenol benzoate is a commonly used food tlavoring agent. Eugenol benzoate can be synthesized from the reation of eugenol with benzoic acid in the presence of sulphuric acid as a homogenous catalyst.

(i) Suggest why a catalyst cant speed up a reaction.
(ii) For the above reaction, would the use of concentrated suiphuric acid or that of dilute sulphuric acid give a better yield of eugenol benzoate? Explain your answer.
(iii) Eugenol benzoate can also be syntlesized from the reaction of eugenol with benzoic acid in the presence of solid acid as a heterogeneous catalyst. With reference to the synthesis of eugenol benzoate, state ONE advantage of using a homogenons catalyst and ONE advantage of using heterogenoous catalyst.

DSE13_01c

Propylene oxide ($\mathrm{H}_{3} \mathrm{C}-\mathrm{O}$) is a chemical commonly used in the plastic industry. Two methods for producing propylene oxide are shown below:
Method I
$\mathrm{CH}_{3} \mathrm{CH}^{2}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}} \mathrm{H}_{3} \mathrm{C}^{\mathrm{OH}} \xrightarrow{\mathrm{NH} \mathrm{Cl}} \mathrm{H}_{3} \mathrm{C}-<\mathrm{O}$
Method 2

(i) The Cl_{2} and NaOH used in Method I are products of the chloroatkali industry. Briefly describe how these tivo chemicals are produced.

DSE14_01a
(iii) Vitanin C can be obtained from fruits, Explain why it is stiln necessary to synthesize vitamin C industrially.
(iv) Give TWO important chemicals manufactured in chloroalkali indtustry.

DSE14_01c

Read the following passage regarding the Haber process and answer the questions that follow.
Haber process is an important industrial process. It needs natural gas and air as raw materials. In order to speed up the reaction involved in Haber process, iron catalyst in highly porous form is used for increasing the efficiency of the catalyst. Haber process also needs suitable reaction temperature and pressure. Moreover; two factors related to chemistry have been cousidered before setting the optimal reaction conditions at about $500^{\circ} \mathrm{C}$ and 200 atm . Under these conditions, the reaction yield at equilibrium is about 20%. Through some designs, without changing the optimal reaction conditions, the overall conversion percentage of nitrogen in the process can be increased significantly.
(i) Explain why the Haber process is an important industrial process.
(ii) Why does the Haber process need natural gas as a raw material? (I mark)
(iii) Explain why making the catalyst in highty porous form can inceease the efficiency of the catalyst.
(iv) State Two dactors methed to ehemstry tiat have becn consitered before setting the optimal reaction temperature and pressure.
(v) Suggest one design so that the overall conversion percentage of nitrogen in the process can be increased significantly without changing the optimal reaction conditions.
(vi) The South American country Chile has a lot of natural nitrate mines. History teits us that the success of the Haber process had led to some impacts on the society of Chile. Suggest one of these impacts.
(1 mark)
DSE15_01a
(ii) Write a chemical equation for the reaction in forming ammonia in the Haber process.
(1 mark)
DSEIS_01c
Chlorine is one of the products manufactured in the chloroakail industry. The electrolysis involved in the chloroalkali industry can be preformed in a mercury clectrolytic cell, a diaphragm ciectrolytic celf OUT or a membrane electrolytic cell.
(i) State the raw material used in the chloroalkali industry.
(1 mark)
(ii) Suggest a criterion in choosing a site for building the chemical plant for a chloroalkali industry. OUT
(1 mark)
(iii) Write an overall equation for the electrolysis involved in the chloroalkali industry
(1 mark)
(iv) Explain why a mercury electrolytic cell is NOT considered to be environmentally friendly.
(v) What is the advantage of a membranc electrolytic cell over a diaphragm electrolytic cell? OUT
(1 mark)
(vi) The chloroatkali industry can also manufacture chiorine bleach and hydrochlorie acid. Explain, will the aid of chemical cquation, why chlorine bleach should not be stord together with hydrocliloric acid.
(2) Suggest one important ehemical that can be made directly from syngas through catalytic process.

DSE16 016

Consider the manufacture of ammonia by the Haber process in a chenical plant.
(i) Suggest how nitrogen gas can be obtained in industry.
(ii) Explain why there is a need to install a heat exchnnger in the chemical plant.
(iii) If 420 kg of nitrogen and 96 kg of hydrogen are introduced into the reaction chamber, mod with the yield of ammonia of 15%, calculate the mass of anmonia produced.
(3 marks)
(iv) Nitric acid can also be produced in the chemical plant. Firstly, ammania is oxidized to give nitrogen monoxide, and nitrogen mboxids is further oxidized to nitrogen dioxide. Finally, oxidation of nitrogen dioxide gives nitric acid. Write the chemical equation for each of the following reactions:
(1) Oxidizing ammonia to give uitrogen monoxide.
(2) Oxidizing nitrogen dioxide to give nitric acid.

DSE17 01a
(i) Consider the Haber process:
(1) Write a chemical equation for the reaction.
(2) Suggest how ammonia can be separated from the reaction mixture obtained.
iii) Suggest a potential hazard for the storing methanol in a chemical plant.

DSE16 01a
(i) Consider the following reaction for the production of ethatol by using a certain catalyst in industry:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{~g}) \quad \Delta \mathrm{H}=-45 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Justify, under a pressure of 65 atm, why the operation temperature is set at $300^{\circ} \mathrm{C}$ with reference to equilibrium position and reaction rate.
(iii) Syngas is an important starting material in many industrial processes. (2 marks)
(1) State the TWO major constituent gases in syngas.

DSE17_01b
The manufacture of sulphuric acid involves the following conversion of $\mathrm{SO}_{2}(\mathrm{~g})$ to $\mathrm{SO}_{3}(\mathrm{~g})$; $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-197 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(i) Nitrogen oxides (NO and NO_{2}) were once used as catalysts for the conversion, and the catalytic process is considered to consist of the following two steps:

$$
\begin{aligned}
& \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})=\mathrm{SO}_{3}(\mathrm{~g}) \div \mathrm{NO}(\mathrm{~g}) \\
& 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g})
\end{aligned}
$$

Draw , in the same sketch, TWO labelled energy profiles (x -axis: reaction coordinate; y -axis: potential cucrgy) for the above conversion: one withnitrogen oxides as the catalysis (using dotted line "-- -'); the other one without catalysi (using solid line -).

(3 marks)

(ii) Nowadays in industry, a solid catalyst vanadium(V) oxide is used for the conversion of $\mathrm{SO}_{2}(\mathrm{~g})$ to $\mathrm{SO}_{3}(\mathrm{~g})$.
(1) The reactants need to be purified before passing into the reaction chamber containing the catalyst. Why?
(1 mark)
(2) The operation conditions are set at $450^{\circ} \mathrm{C}$ and 1 atm to achieve a 96% conversion. Suggest why it is NOT preferable to further increase the conversion percentage by each of the following methods:
(I) Lowering the temperatire of the reaction sysiem
(II) Increasing the pressure of the reaction system
(1 mark)
(1 mark)
(3) In order to increase the conversion percentage, one of the reactants used is in slight excess. From the perspective of feedstock, which of $\mathrm{SO}_{2}(\mathrm{~g})$ or $\mathrm{O}_{2}(\mathrm{~g})$ would be in slight excess? Explain your answer.
(1 mark)
DSE17_01c
Phosgene $\left(\mathrm{COCl}_{2}\right)$ is an important chemical. It can be produced from the reaction of $\mathrm{CO}(\mathrm{g})$ with $\mathrm{Cl}_{2}(\mathrm{~g})$:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})-\mathrm{COCl}_{2}(\mathrm{~g})
$$

(i) Write a chemical equation to show how $\mathrm{CO}(\mathrm{g})$ can be obtained from matural gas.
(ii) Chlorine can be produced by the flowing mercury cell process.
(1) Write the haff equation for the change occurring at the anode.
(1 matk)
(2) Write the half equation for the clange occuring at the cathode.
(3) Explain why the following mercury cell process has been gradually phased out.
(1 mark)
(iii) At a cerfain temperature, if the concentration of $\mathrm{CO}(\mathrm{g})$ is doubled while the concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ is kept mehanged, the new rate of reaction will become 2.83 times the origimal rate. Deduce the order of reaction with respect to $\mathrm{CO}(\mathrm{g})$.
(Note: The order of a reaction may NOT be an integer.)
(2 marks)
DSE18_01a
(i) Write TWO half equations for the electrolysis of brine using membrane electrolytic cell in chloroakali industry.
(2 marks)
(iii) Which one of the following species can be a raw material for manufacturing vilamin C in industry?

Acetic acid, acetone, formaldehyde, glucose
(1 mark)
DSE18_01b
Reaction (1) below shows a process of producing methanol using catalyst at 100 atm and $250^{\circ} \mathrm{C}$ in industry:

Reaction (I): $\quad \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(i) (1) Suggess a suitable catalyst for the reaction.
(2) Suggest why the reaction would proceed slowly in the absence of a catalyst.
(mark)
(3) Explain why the operation pressure in industry for the reaction is set at 100 atm but not at atmospheric pressure. (2 marks)
(ii) Methanol can also be produced from carbon dioxide, a side product of some industrial processes, using another catalyst as stown in Reaction (II) below:

$$
\text { Reaction (I): } \quad \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Based on the given information:
(I) Suggest one reason why Reaction (II) ean be considered as greencr than Reaction (I).
(1 mark)
(2) Suggest a pofential benefit of Reaction (II) to the enviromment.
(1 mark)
(iii) One of the industrial applications of methanol is to produce ethanoie acid. Write a chemical equation for the reaction inyolved.

DSE19 01ai ii

1. (a) Answer the following short questions
(i) Explain why the Haber process significantly contributes to crop yield increase.
(ii) (1) Write the chemical equation for the formation of syngas from methane.
(2) Syngas can be obtained from the conversion of biomass. Suggest why it is considered
(2 marks)
DSE19_01bi ii
(b) A chlorcalkaline clemical plant uses membrane electrolytic celis to produce hydrogen, chlorine and sodium hydroxide.
(i) With the help of chemical equations, briefly describe how hydrogen, chlorine and sodium hydroxide are produced in a membrane electrolytic cell. (4 marks)
(ii) Sodium hypochlorite (NaOCl) can be made from the products obtained in the membrane electrolytic cell. Write a chemical equation for its formation.

DSE20_01a

1. (a) Answer the following short questions
(i) Give TWO advantages of a membrane electrolytic cell over a flowing meercury cell in chloraakali industry. (2 marks)
(ii) State the catalyst used in the Haber process.
(iii) Sketch TWO Maxwell-Boltzmann distribution curves for a gaseous sample, one a temperature T_{1}, and the other at a lower temperature T_{2} (y-axis : number of molecules; x-axis : kinetic energy).

DSE21_01)b)(i)-(iii)

(b) The diagram below shows how liquid ammonia is produced by the Haber process.
$\mathrm{N}_{2}(\mathrm{~g}) \longrightarrow$ purifier

(i) Explain why $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ need to be purified before going into the reaction chamber.
(ii) Explain why the unreccted $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are passed again to the reaction chamber.
(iii) Why does ammonia, but not the other gases, become a liquid in the condenser ?

DSE21_01(C)

1. (c) Methanol is an important chemical in industry and can be produced form methane. The production
(i) Slate one potential hazard of methanol.
(ii) Other than natural gas, suggest one source of methane. (1 mark)
(iii) In the first stage, $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ to form $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$, and equilibrium would be atained. The graphs below show the percentage conversion of $\mathrm{CH}_{4}(\mathrm{~g})$ at equilibrium under different conditions.

Graph 1

Graph 2
(1) With reference to Graph 1, explain whether the forward reaction is endothermic or exothermic.
(2) With reference to Graph 2, explain, with the aid of a chemical equation, the effect of pressure on the percenrage conversion of $\mathrm{CH}_{4}(\mathrm{~g})$
(iv) In the second stage, $\mathrm{CO}(\mathrm{g})$ reacts with $\mathrm{H}_{2}(\mathrm{~g})$ to form methanol. Write a chemical equation for the reaction

Marking Scheme

AL96(I) 02a
$\mathrm{NaOH}(a q)$ is produced by electrolysis of thine / concentration $\mathrm{NaCl}(\mathrm{aq})$.
Other product: $\mathrm{H}_{2} / \mathrm{Cl}_{2} / \mathrm{NaOCl}$ solution (bleach solution) (any TWO)

AL97(ID) 08b

(i) Increase in temperature causes the equilibrium position to shift to the leff, lowering the yield of ammania.
Increase in temperature increase the rate of formation of ammonia. [1]
(ii) Iron / iron(III) oxide []

It can increase the rate of the reaction but has no effect on the yield of the [1] reaction.
(iii) Condense NH_{3} to give a liquid / liquify NH_{3}

(iv) Any TWO of the following[1]

Manufacture of N -fertilizers, e.g. urea, ammoniun sulphate(VI), ammonium nitrate(V), ammonium phosphate(V) etc.
Manufacture of nitric(V) acid
Manufacture of polymers, e.g, nylon, melamine, acrilan etc.
(Accept other correct uses of ammonia, e.g. as reffigerant, as coolant etc.)

ALOO(II)_02e

(i) Step 1:

Pass a mixture of NH_{3} and air over $\mathrm{Pt} / \mathrm{Rh} / \mathrm{Cu}$ catalyst al about $600^{\circ} \mathrm{C} / \mathrm{high}$
tenperature.
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Step 2:
NO is allowed to undergo oxidation at a low temperature (about $50^{\circ} \mathrm{C}$)
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
Step 3:
NO_{2} produced is absorbed by water
$4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})$
Unreacted NO is allowed to go through steps 2 and 3 again.
(ii) Mass of HNO_{3} in $\mathrm{dm}^{3}=1.42 \times 1000 \times 68 \%=965,6$

Concentration of the acid $=\frac{965.6}{1+14+16 \times 3}=15.3 \mathrm{~mol} \mathrm{dm}^{-3}$
Accept answer from 15.0 to $15.6 \mathrm{~mol} \mathrm{dm}^{-3}$
1 mark for method; I mark for answer
(iii) Evaporate / beat / warne the solution to obtain a saturated / concentration solation of $\mathrm{NH}_{4} \mathrm{NO}_{3}$.
Allow the solution to cool / use an ice bath to obtain $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$.
(iv) $\begin{aligned} & \text { Scparate crystal by filtration. } \\ & \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})+\mathrm{KNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{KCl}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\end{aligned}$

AL03(II)_02d

Electrolysis of brine using steel as cathode and carbon as anode. (Membrane cell)
At callode: $\mathrm{H}^{+}(\mathrm{nq})$ is discharged to give hydrogen gas
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$
At anode: $\mathrm{Cl}^{-}(\mathrm{aq})$ is ciischarged to give chlorine gas

$$
2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}
$$

The $\mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ ions remaining in the solution constitute a $\mathrm{NaOH}(\mathrm{aq})$.
OR Electrolysis of brine using mercury as cathode and carbon as anode.
At catiode: $\mathrm{Na}^{+}(\mathrm{aq})$ is discharged to give sodim (analgam).
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-}+\mathrm{Hg}(\mathrm{l}) \longrightarrow \mathrm{Na} / \mathrm{Hg}(1)$
Treating the sodium amalgan with water gives sodium hydroxide.
$2 \mathrm{Na} / \mathrm{Hg}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}(1) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Hg}(\mathrm{l})$
(For each method, award 1 mark for the electrolysis invoived; 1 mark for the equation(s) of the electrolytic processes involved; 1 mark for the formation of $\mathrm{NaOH}(\mathrm{aq})$.)

AL04(II)_03d
(i) Any TWO of the following:

There is a limited reserve of Chite saltpetre and the supply of the mineral is not inexhaustible/ the supply of N_{2} and H_{2} (from water) is unlinited.

- The cost of transportation of Chile salteetre is high
- The mapid growth in world population leads to hage demand of fertilizers / lots of Chile saltpetre were uscd to make explosives.

ALO6(1) 09
A. Introduction

With rapid increase in world population, the demand for food increases. Plants utilize N to build up proteins, The demand for N -fertilizers increased rapidly in fate 1800 s.

- Prior to the invention of Haber process, minerals which contairs nitrates (like Chite saltpetre) were main sources of N -fertilizers.
The uneven distribution of Chile saltpetre, the transportation cost and other poltical reasons made the price of N -fertilizers to fluctuate.
- N is highly abundant in the atmosphere, but it is very unreactive. The success to convert N_{2} to N -fertiilizers can help provide more food.
B. The Process
- The conversion of N_{2} to NH_{3} invoives the reaction; $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
- Reaction conditions: Pressure: 25 to 150 atm Temperature: $650-720 \mathrm{~K}$ Catalyst: Fe containng KOH as promoter
- The yield of ammonia can be increased by increasing the pressure + elaboration.

The cost is expensive if the process is operated under very high pressure.
Operating the process at high temperature can increase the rate of reaction However, the yield of ammonia decreases with increase in temperature + elaboration. Thus the process is operated at moderate temperature
The reaction has a very high activation energy due to the strength of the $\mathrm{N} \equiv \mathrm{N}$ bond. The use of a calalyst can provide a reaction pathway with lower activation energy. Fe catalyst is therefore used.

- NH_{3} formed is condensed by refrigeration. Unreacted $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are recycled into the reaction chamber for further reaction.
C. Raw materials for the proces

Raw materials for H_{2} : natural gas, coal or naphtha

- Steam reforming

Pass $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ over a suitable catalyst (NiO) at about 1000 K and 30 atm
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Longrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
After steam reforming, a gaseous mixture containing $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{N}_{2}(\mathrm{~g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ is obtained.
Shift reaction: to convert $\mathrm{CO}(\mathrm{g})$ in the gas mixture to $\mathrm{CO}_{2}(\mathrm{~g})$
Pass the gas with $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ over a catalyst (iron oxide) at about 600 K
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{CO}_{2}(\mathrm{~g})$ formed is removed by scrubing. The synthesis gas contains about 74%
$\mathrm{H}_{3}(\mathrm{~g}), 25 \% \mathrm{~N}_{2}(\mathrm{~g})$ and $1 \% \mathrm{CH}_{4}(\mathrm{~g})$.
H_{2} can also be obtained from cracking of heavy oil / naphtha
D. Imporiance of the Process

- Conversion to nitric(V) acid
- The reactions:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 4 \mathrm{NO}(\mathrm{g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Conditions: $0-13$ atm, excess air, Pd/Pt as catalyst, about $1175 \mathrm{~K}, \%$ conversion is about 96%
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Longrightarrow 2 \mathrm{HNO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
Unreacted $\mathrm{NO}(\mathrm{g})$ is recycled.
Most HNO_{3} formed $\left(>80 \%\right.$) is used to produce $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ which is used as a fertilizer.
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$
- Ammonia can be used to produce urca which is used as a fertilizer

The ferilizers produced can be used for plant growth and help solve the starvation problem.
HNO_{3} can be used to make explosives, e.g. TNT, trinitroglyceride etc.

- Ohier uses of ammonia: refrigerant, window cleaner, making smelling salt, etc.

AL06(II)_04c (modifted)
(i) Any ONE of the following:

Increase the temperature
Decrease the pressure
(ii) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
(iii) The combustion of $\mathrm{H}_{2}(\mathrm{~g})$ gives only water which will not cause pollution to our [environment.
Hydrogen has a small molar mass. The ratio of energy outper per unit mass of H_{2} (g) is higher than that of other fuels.

ALIO(II) 03 a
Increase the pressure of the system to about 200 atm (or, to a vatue which can be wilhstood by the reaction chamber).
Remove ammonia by fiquefaction and pass the unreaced $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ back into the reaction chamber.

AL12() 06
(a) $\mathrm{N} \equiv \mathrm{N}$ triple bond is strong ($946 \mathrm{~kJ} \mathrm{~mol}^{-1}$).
(b) Any TWO or the following:

- The reaction in Haber process has very high atom economy (100%)

The reactants (N_{2} and H_{2}) are non-toxic and will pose no ham to the environment.

- The reaction takes place in gas plase. No solvent is required.
- The raw material $\left(\mathrm{N}_{2}\right)$ is available in larger amount in the atmosphere. Depletion is not a problem.
- The reaction does not require the use of any derivatives.
- A catalyst (Fe) is used.
(c) Hf is a transition metal / d-block etemen, while Ba is a Group II element.

Hf atom has low lying vacant electron shells for dative bond formation, while this is
not the case in Ba.
(d) Any TwO of the following:

- $\left(\mathrm{CONH}_{2}\right)_{2}$ has higher percentage by mass of nitrogen than $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.
- Being fess soluble than $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ in water, $\left(\mathrm{CONH}_{2}\right)_{2}$ fertilizer is less readily leached into lakes and ponds leading to eutrophication.
- $\left(\mathrm{CONH}_{2}\right)_{2}$ is a slow-release fertifzer. A much smafler amount of (CONH $)_{2}$ z with be washed away by rain water.
- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ can make the soil acidic while $\left(\mathrm{CONH}_{2}\right)_{2}$ will not.
(c) The conversion of CO and N_{2} to $\left.\mathrm{CONH}_{2}\right)_{2}$ take place at ambient temperature $/$
ambient pressure. There is less demand for fossil fuel. / It is not necessary to build raction chamber which can willstand high pressures.
The discovered means gives organic nitrogen compounds, i.e. compounds with
organic functional groups. Thay can be used as starting materials for the synthesis of useful products such as pharmaceuticals.
(Accept other reasomable answers.)
(f) 2 moles of tho Hf complex are required for each mole of oxamide formed. The conversion ean be very costly
OR, The Hf complex L cannot be regencrated in the reaction process.
DSELISP_016
Purified N_{2} and H_{2} (ratio $1: 3$) are passed over iron catalysi at $450^{\circ} \mathrm{C}$ and 200 atm prossure:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})$
Ammonia is mixed with O_{2} (excess aix) and passed over a platinum catalyst nt $400^{\circ} \mathrm{C}$.
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
Resulting gaseous mixture is passed through water:
$4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})$
DSE12PP_01a
(i) Any ONE of the following;
- Reichstein process is used for syathesizing vitamin C , which is in great demand as it cannot be synthesized in human body.
- Rechlstein process provides a synthetic route to convert D-Glucose, a sugar which is highly abundant and cheap, to L-ascorbic acid.
- The enzymatic reaction in Reichstein process inverts the sugars from D - to L isomer.
(ii) Refuetion/calalytic hydrogenation
(iii) (I) Commonly used oxidizing agents will also oxidize the other hydroxyl groups in D-sorbitol/are not selective as compared will the enzyme.
$O R$, The enzyme can selectively oxidize the second - OH group in D-sorbitol to give L-sorbose.
(II) At $\mathrm{pH}<4$ or $\mathrm{pH}>6$, the enzyme will undergo denaturation $/$ the (tertingysecondary) structure of the enzyme will change leading to loss of catalytic activity.
(iv) This method uses a catalyst (the enzyme) instead of stochiometric reagents.

It uses less hazardous chemicals (e.g. MeOH/acid).
DSE12PP_01c
(i) At the cathode, $\mathrm{H}^{+}(a g)$ is preferentially discharged because $\mathrm{H}+$ occuples a lower
position than Na^{+}in the electrochemieal series. $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$
At the anode, $\mathrm{Cl}^{-}(\mathrm{aq})$ is preferentially discharged because its concentration is high. $2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$
The membrane only allows cations to pass through it.
As there is a higher concentration of cations in the anode comparment (because anions are removed), there will be a net flow of $\mathrm{Na}^{+}(\mathrm{aq})$ ions from the anode compartment to the cathode compartnent, and concentrated $\mathrm{NaOH}(\mathrm{ag})$ is formed.
(ii) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{NaOCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ $\mathrm{OR} \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-(\mathrm{aq})} \longrightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{OCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(iii) Accept both 'Yes' and 'No' answers.

For ' No ' answers,

- The production of H_{2} in chloroaikali industry reguires the use of electricity, which is commonly generated by burning fossil fiel (a major source of air pollutants).
- $\mathrm{Cl}_{2}(\mathrm{~g})$ is the main product of the chloroalkali industry. Large scale production of $\mathrm{H}_{2}(\mathrm{~g})$ will yield surpius $\mathrm{Cl}_{2}(\mathrm{~g})$. The disposal of the unused $\mathrm{Cl}_{2}(\mathrm{~g})$ is costly and will cause air pollution problens.
For 'Yes' answers,
- Burning of $\mathrm{H}_{2}(\mathrm{~g})$ gives water only
- If there is a clicap) source of electricity (e.g. photovoliaic cell), production of $\mathrm{H}_{2}(\mathrm{~g})$ by electrolysis of brine can be a means of reducing air pollution problems. (Accept other reasonable answers.)

DSE12_01a
(i) (1) Finely divided iron/iron oxide / $\mathrm{FCO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{3} \mathrm{O}_{4}$
(2) It can increase / decrease/alter/change the rate of a reaction by providing an [1] alternative pathway that requires lower/higher / different activation energy. [1]
(ii) Steam reforming of natural gas / metlane $/ \mathrm{CH}_{4}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
(iii) The higher temperature is used to speed up the reaction.

The lower pressure is dictated by limits of mechanical design /safety
(Lawering construction / maintenance costs of the plant / lower risk)
(iv) It takes a long time for the equilbrimn (that the $\mathrm{NH}_{3}(\mathrm{~g})$ is of highest yield) to be attained.
It can iaterease the lotal amount of $\mathrm{NH}_{3}(\mathrm{~g})$ produced per wnit time

DSEI2 01 b

(i) Methanol is important because it is a 1-carbon conspound and acts as a starting material to make organic compounds with larger carlon numbers/methanal/ formaldehyde / ethanoic acid / acetic acid / ether (dimelhyl cther, MTBE) / as a solvent.
(Do not accept methanol as fuel, to produce "vinegar", or it is used to produce hydrogen / ethene)
(ii) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad$ (accept irreversible sign) \quad [1] Any TWO of the following:
Catalyst: $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$
Temperature: $200-300^{\circ} \mathrm{C}$
Pressure: $50-100 \mathrm{~atm}$
(iii) Direct conversion of methane to methanol with the use of a metal oxide cafalyst at high temperature and atmospheric pressure. The cenversion uses a catalytic reagent /high atom cconomy.
$O R$, Oxidation of methane to methanol by microbial reactions. The oxidation has higher energy efficiency.
OR, Conversion of blomass to syngas/biogas for metranol production. The conversion uses renewable feed stocks.
Carbon dioxide in flue gas can be converted to form methanol. The conversion heips to redure the release of carbon dioxide to the almosphere.
$O R$ Unconsumed hydragen from chemical industries is allowed to react with carbon monoxide to form methanol. The conversion uses up the unconsumed raw materials (hydrogen)

DSE13 0lb
i) A catalyst provides an alternative pathway with lower activation energy.
(ii) Concentrated $\mathrm{H}_{2} \mathrm{SO}_{1}$

Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains a lot of $\mathrm{H}_{2} \mathrm{O}$. Water can slift the equilibrium position to
the left / reactant side / cause hydrolysis of ester, and thus lowers the yield of the product.
Also accept: conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a dehydrating agent / removes water from the product
side of the reaction and will shift the equilibrium position to the right froduct side.
(iii) Homogeneous catalyst $-\mathrm{H}_{2} \mathrm{SO}_{4}$ is readily available / commonly found

Heterogeneous catalyst - can be reused / easily regenerated / cen be separated easily.

DSE13_01c
(i) Chlorine can be produced industrially by electrolysis of brine / concentrated
sodium chloride solution using flowing mercury cell/membrane cell.
$\mathrm{Cl}^{-}(\mathrm{aq})$ ions are discharged at the anode to give $\mathrm{Cl}_{2}(\mathrm{~g})$.
Anode: $2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$
Membrane cell
$\mathrm{H}^{+}(\mathrm{aq})$ ions are discharged at the cathode. With the removal of $\mathrm{Cl}^{-}(\mathrm{aq})$ ions and $\mathrm{H}^{+}(\mathrm{aq})$ ions, the resultant electrolytic solution contains $\mathrm{NaOH}(\mathrm{aq})$ in high

Overall reaction: $2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2}+2 \mathrm{NaOH}$ Flowing nercury cell
Sodium amalgam produced at cathode reacts with water forming $\mathrm{NBOH}(\mathrm{aq})$
[(iv)

DSE14_01a
(iii) It is to solve the problems of inadequate or shinking supply of vitamin C .
(iv) Any TWO: chlorine, hydrogen, sodium hydroxide, $\mathrm{NaOCl}, \mathrm{HCl}^{2}, \mathrm{NaClO}_{3}, \mathrm{ClO}^{-}$. [1] ClO_{3}^{-}, bleaching solution.

DSE14_01c
(i) Haber process produces ammonia which can be used to manufacture fertilizers $/$ explosives, e.t.e. ($\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NO}_{3}^{-}$/ refrigerant)
(ii) Natural gas remains the more convenient / ehenp way to provide hydrogen as feedstock for production of ammonia in the Haber process.
(iii) Provides a larger surface area that makes the catalyst more effective
(iv) Equalibrium position / yicld
Reaction rate / effective collision
(v) Any unreacted reactants are reused / recyeled and are allowed to reatt agaib.

OR, Renoving anmonia / lifueiying ammonia from the product nixture so as to shift the equilibrium position to the produce side.
OR, Furfher H_{2} addition
(vi) As the demand for mining the natural nitrate to produce fertilizers drops drastically, the mintug work was no longer profitable / mining work night be closed / a nigh unemployment rate.

DSE15_01a
(ii) $3 \mathrm{H}_{2}+\mathrm{N}_{2} \longrightarrow 2 \mathrm{NH}$

DSE15_01e
(i) Concentrated/saturated soditm chloride (NaCl) solution / brise
(i) Concentrated/saturated sodilim chloride (NaCl) somiton brise
(ii) Site should be near the sen (because easy to get the raw materials.) / Easy transporlation / Not too near residential places.
(iii) $2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2}+2 \mathrm{NaOH}$
(iv) Mercury is poisonous
(iv) Mercury is poisonous but in diaphragm cell/Less energy is required for membrane cell.
(vi) Chlorine bleach can react with hydrochlorie aeid to give poisonous chlorine gas. $2 \mathrm{H}^{+}+\mathrm{ClO}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{H}_{2}+\mathrm{Cl}^{-}$

DSE16_01a

But the (forward) reaction is exothermic, increasing the temperature will shiff the equilibrium position to left / reactant side. / reaction has a lower yield / favors the backward reaction.
Therefore, the operating teniperature is set at $300^{\circ} \mathrm{C}$.[1]

OR As the (forward) reaction is exothermic, decreasing the temperature will slift tiee equilibrium position to right / product side / reaction has a higher yiald. / lower semperature favours the reaction
(iii) (l) carbon monoxids / CO and hydrogen/ H_{2}
(2) Methanol/ $\mathrm{CH}_{3} \mathrm{OH}$

DSE16 01b
(i) Fractional distillation of liquefted air
(ii) The hot gas from reaction chamber can help heat up the hydrogen and nitrogen / incoming gases / reactants / seactants mixture / cool down the product mixture It is to save energy. / to save fuel / conserve (recycle / reuse) energy / heal / reduce
(iii)
mole ratio of $\mathrm{N}_{2}(\mathrm{~g})$ to $\mathrm{H}_{2}(\mathrm{~g})=\frac{420000}{28} ; \frac{96000}{2}=1: 3.2$
$\mathrm{N}_{2}(\mathrm{~g})$ is limiting reagent.
mass of $\mathrm{NH}_{3}(\mathrm{~g})$ produced $=\frac{420000}{28} \times 2 \times 17 \times 15 \%$
$=76.5 \mathrm{~kg} / 77 \mathrm{~kg} / 76500 \mathrm{~g} / 77000 \mathrm{~g}$
($76 \mathrm{~kg} / 77.0 \mathrm{~kg} / 76.5 \mathrm{~g}: 0 \mathrm{mark}$)
(iv) (1) $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
(2) $4 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{HNO}_{3}$

DSE17_01a
(i) (1) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Longrightarrow 2 \mathrm{NH}_{3}$
(2) The reaction mixture is cooled to condense ammonia to liquid.

OR, The reaction mixture is condensed / is cooled to liquid.
(iii) Flammable / inflammalle / toxic / poisonous NOT nccept harmful

DSE17_01b
(i)

1 mark for exothermic; i.c. energy of product is lower than that of reactants \& E_{x} of the catalyzed reaction is lower.
I mark for two steps for the one with catalyst (i.e. two peaks) \& one/multiple steps for the energy profile without catalyst
1 mark for the labels of SO_{2} \& O_{2} and SO_{3} [Not accept: reactants \& products]
(1) Impurities in the reaction mixture may poison the calalyst.
[Accept: Adsorb/The active sites of the catalyst are occupied by impurities. NOT accept: the catalyst is poisoned by the reactants]
(2) (1) Lowering the temperaure makes the reaction proceed at a slower rate. [NOT accept lower filel cost]
(II) The percentage conversion is already very high. / mereasing the pressure can only lead to a very small increase in the percentage conversion but very high cost is needed.
[Require to mention percentage conversion \& cost.]
(3) Oxygen is used in a shight excess because it is more cost-effective / cheaper to obtain / casicr to obtain.
[Requires a comparative sense.]
DSE17.01c
(i) $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}+3 \mathrm{H}_{2}$ [i]
(ii) (i) $2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{3}+2 \mathrm{e}^{-}$
(2) $\mathrm{Na}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Na}$ [1]
$O R \quad \mathrm{Na}^{+}+\mathrm{Hg}+\mathrm{e}^{-} \longrightarrow \mathrm{Na} / \mathrm{Hg}$
(3) Mercury is poisonous
(iii) Let rate $=k\left[\mathrm{CO}^{n}\left[\mathrm{Cl}_{2}\right]\right.$

From doubling [CO] while keeping $\left[\mathrm{Cl}_{2}\right]$ unchanged, $2.83=2^{\text {m }}$
$\mathrm{m}=1.5 \quad$ [aceept 1.5, 1.501]
DSE18_01a
(i) Cathode / negative electrode: $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$ $O R \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{HH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ Anode/positive electrode $2 \mathrm{Cl}(\mathrm{aq}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{c}^{-}$
(iii) Glucose

DSEI8_01b
(i) (I) $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}$ [Mark the first one] [1]
(2) May be due to higher activation energy / energy barrier. [1]
(3) Number of moles of gaseous product is less than that of gaseous reactants.

$$
\begin{aligned}
& \text { Increasing the pressure will shift the equilibrium position to the right. } \\
& \text { [1] }
\end{aligned}
$$

OR, increase in collision frequency / cffective collision
Make the reaction faster to reach equilibrium.
(ii) (1) This reaction does not involve poisonous reagent / CO but the original one involves poisonous CO .
(2) It reduces the amount of atmospheric carbon dioxide and hence may alleviate global warning / greenhouse effect.
(iii) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{g})$

DSE19_01a

1. (a) (i) The Haber process produces ammonia / NH_{3} which can make fertilisers to increase crop yield.
(ii) (1) $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$
(2) It is because biomass is a renewable energy resource.
(iii) - Comparing Trial 3 with Trial 2 (both same in $[B(a q)]$, doubling the $[A(a q)]$ leads to a $\quad 1$ double of the initial rate. Hence, the order of reaction with respect to $\mathrm{A}(\mathrm{aq})=1$. four times of the initial rate. Hence, the order of reaction with respect to $\mathbf{B}(\mathrm{aq})=2$

DSE19_01b

(b) (i) - Use concentrated sodium chloride solution / brine as electrolyte.

- Anode: $\left.2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{\mathrm{I}_{2}(\mathrm{~g})}\right)+2 \mathrm{e}^{-}$
- Cathode : $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
- The membrane is permeable to cations but not anions.
(ii) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaOCl}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(iii) Atom economy for Reaction (i) $=32 / 108.5=29.5 \%$

Atom economy for Reaction (II) $=32 / 68=47.1 \%$
Reaction (II) is greener as it has a higher atom economy.

DSE20_01a

1. (a) (i) - No toxic mercury will be produced by) membrane cell but toxic mercury gnay leak 1 out from) flowing mercury cell
Less energy is required.

- Less maintenatiee is required
(ii) Iron / iron(III) oxide tiron oxide /oxides of imon
(iiii) Number of
Molecules

Kinetic
Energy
(1 mark for Tz higher than T:
1 mark for stating at zero and tail: $T_{1}>T_{2} \quad$ Okay if nol labelling the axes.

Green Chemistry
AL07(I) 08
14.6 g of benzoin was obtained by heating 15.9 g of benzaldehyde with potassium cyanide in a solvent-free condition.

benzoin (nLp. $137^{\circ} \mathrm{C}$)
(a) Calculate the percentage yield of benzoin from benzaldetyde.
(b) What is the finction of potassium cyanide in this conversion?
(c) Is this conversion an example of green chemistry? Explain.

AL08(I)_10
Write an essay on the spplication of the principles of green chemistry in industry.

ASLO9(II)_OS

Compound B (m.p. $39^{\circ} \mathrm{C}$) and compound $\mathrm{D}\left(\mathrm{m} . \mathrm{p}\right.$. of $42^{\circ} \mathrm{C}$) react in the presence of a small amount of $\mathrm{NsOH}(s)$ to give compound E . The E obtained can be purified by recrystalization from 90% ethanol.

B
D
E
(a) Given that the relative molecular masses of B and D are 132.0 and 166.0 respectively, calculate the atom economy of the reaction.
(b) In a typical experiment, 2.64 g of B and 3.32 g of D yieided 4.40 g of E. Calculate the percentage yield of E.
(c) Give FOUR reasons wivy this reaction is considered as an example of green chemistry.
(2 marks)

AL. 12 (I)_06
(b) The manufacture of ammonia by the Hober process is considered as an example of green chemistry. Suggest TWO reason why.

L13(II)_11 (modified)

Phenol can be synthesized from benzene via the following sulphenation ronte:

Nowadays, phenol is commonly synthesized from benzene via the cumene route as show below:

(i) Suggest TWO reasons why the cumene route is considered greener than the sulphonation routc.
) Suggest ONE industrial application of the $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ formed in the cumene route.
(1 mark)

DSE11SP_01c
The reaction for the production of metliypropene from 2 -bromo-2-meliylpropanc is represented by the following equation:

(i) With reference to green chemistry, calculate the atom economy of the reaction.
(ii) Apart from atom economy, suggest TWO other factors that scientists should consider in order to conduct a green production process.

DSE12PP_01a

(iv) A method, with the use of a lactonase enzyme such as gluconolactonase, has been adopted for the conversion of KGA to L-ascorbic acid,

$$
\mathrm{KGA} \xrightarrow{\text { gluconolactonase }} L \text {-ascorbic acid }
$$

Suggest TWO reasons why this nethod is considered greener than the corresponding one in the above-shown Reichstein process.

DSE12_02a
(ii) Compound \mathbf{A} is one of the monomers for making nylon-6,6 in industry. The following equations show two reactions that can produce A :

$$
\begin{aligned}
& \text { (}{ }^{\mathrm{H}_{2} \mathrm{O}_{2} \text {, catalyst }} \mathrm{A}+\mathrm{H}_{2} \mathrm{O} \quad \text { Reaction (1) } \\
& \square=\mathrm{Conc} \mathrm{HNO}_{3} \\
& \mathrm{~A}+\mathrm{N}_{2} \mathrm{O} \\
& \text { Reaction (2) }
\end{aligned}
$$

(1) Reaction (1) is considered to be greener than Reaction (2). Suggest THREE reasons.
(2) In what aspect are both reactions considered as NOT green?

DSE13_01c
Propylane oxtde ($\mathrm{H}_{3} \mathrm{C}-\mathrm{V}^{\mathrm{O}}$) is a chemical commenly used in the plastic industry. Two methods for producing propylene oxide are shown below:

(ii) The atom economy of Method I is 29.7%. Calculate the atom cconomy of Method 2 .
(iii) Discuss, from TWO different perspectives, whether Mefleod 1 or Method 2 is greener
(2 marks)
(iv) Comment on the following statenzent and explain your answer.
'A reaclion with a high atom ecomomy should also have a high yield.'
(2 marks)
DSE14_02c
(iv) Some people suggest, from the perspective of envirommental protection, switching from using polyethene (PE) and poly(ethylene terephthalate) (PET) to using polylactide (PLA) in making plastic bottles. The repeating unit of PLA is shown below:

$$
\left[\begin{array}{c}
\mathrm{CH}_{3} \mathrm{O} \\
\mathrm{O} \\
\mathrm{O}-\mathrm{H} \\
1 \\
\mathrm{H}
\end{array}\right]
$$

(1) It is known that PLA can be produced from the polymerization of lactic acid through esterification. Give the structure of lactic.
(2) Explain why the switching might be environmentally friendly.
(3) Suggest a potential problem of widely replacing PE and PET by PLA.

DSE15 016

Ethanoic acid san be produced by two routes as listed feiow:
Route (1)
sugar solution $\xrightarrow{\text { yeast }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{aq}) \xrightarrow[\text { catalyst }]{\mathrm{O}_{2}} \mathrm{CH}_{3} \mathrm{COOH}$ (aq)
Route (2)
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{CO}(\mathrm{g}) \xrightarrow[\text { catalyst }]{180^{\circ} \mathrm{C} ; 30 \text { atm }} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})$
(i) The reactions in both Routes (1) and (2) require the use of catalysts.
(1) Draw, the same sketch, TWO labelled energy profiles for a reaction, one with a catalyst and the other one willout catalyst.
(2) Theoretically, catalysts are not consumed in reactions. Suggest why it is still necessary to replace the used catalyst from tine to time in industrial processes.
(ii) Suggest TWO reactions why Rolle (1) is considered as a green process.
(2 marks)
(iii) Suggest TWO reasons why ethanoic acid used in the plastic industry is manufactured by Route (2) instead of Route (1).

DSE15 028
(iii) One of the monomers for making nylon- 6,6 is $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$. Traditionally, it can be prepared by the following reaction path:

DSE16_01c
The hydrolysis of sucrose can be represented by the following equation:

(iii) Enzymatic hydrolysis of starch eventually gives glucose as the only product. According to the priuciples of green chemistry, suggest TWO reasons why starch is considexed to be more suitable than sucrose as a source of a cose.

DSE16_02a
(i) Cellulose is a naturai polymer and its strueture is shown below:

Explain why cellulose is considered to be environmentally friendly.

DSEI7_Olc
Phosgene $\left(\mathrm{COCl}_{2}\right)$ is an important chemical. It can be produced from the reaction of $\mathrm{CO}(\mathrm{g})$ with $\mathrm{Cl}_{2}(\mathrm{~g}):$

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})-\mathrm{COCl}_{2}(\mathrm{~g})
$$

(iv) Explain separately why the above process of producing $\mathrm{COCl}_{2}(\mathrm{~g})$ can be consider
(1) green, or
(2) not greet.

DSE17_02c
(iii) The diagram below shows the structure of polyhydroxybutyrate (PHB):

(1) PHB is a thermoplastic polymeric biomaterial.

Based on the fact that PHB is a polyneric biomaterial, explain separately why it can be considered envirommentally friendly in its protuction and disposal,

DSE19_1biii

(2) PHB can be classified as polyester

Based on the fact that PHB contains ester linkages, explain why it can be considered environmentally friendly in its disposal.
(1 mark)

DSEI8_016

Reaction (I) below shows a process of producing methanol using catalyst at 100 atm and $250^{\circ} \mathrm{C}$ in industry:
Reaction (I): $\quad \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(i) (I) Suggest a suituble catalyst for the reaction.
(1 mark)
(2) Suggest why the reaction would proceed slowly in the absence of a catalyst.
(1 mark)
(3) Explain why the operation gressure in indestry for the reaction is set at 100 atm but not at atmospheric pressure.
(2 marks)
(ii) Methanol can also be produced from carbon dioxide, a side product of some industrial processes, using another catalyst as shown in Reaction (II) below:
Reaction (II): $\quad \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Based on the given information:
(1) Suggest one reason why Reaction (II) can be considered as greener than Reaction (I).
(1 mark)
(2) Suggest a petential benefit of Reaction (ID) to the cnviromment.
(1 mark)
(iii) One of the industrial applications of methanol is to produce ethanoic acid. Write a chemical equation for the reaction involved.

DSE18_02a
(i) The following chemical equation shows how vinyl acetate can be obtained.

$$
2 \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{PO}} 2 \mathrm{CH}_{3} \mathrm{COOCH}=\mathrm{CH}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$ vinyl acetate

Give TWO reasons why this reaction can be considered as green.
(iii) By using NaOCl , this chemical plant can produce hydrazine $\left(\mathrm{H}_{2} \mathrm{NNH}_{2}\right)$, a propellant used in space vehicles:

$$
\mathrm{NaOCl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NNH}_{2}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \quad \text { Reaction (1) }
$$

However, instead of using $\mathrm{NaOCl}, \mathrm{H}_{2} \mathrm{O}_{2}$ can also be used to produce hydrazine :

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NNH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \text { Reaction (H) }
$$

By calculating the respective atom economy of Reaction (I) and Reaction (II), compare which of them can be considered as greencr.
(Formula masses : $\mathrm{NaOCl}=74.5, \mathrm{NH}_{3}=17.0, \mathrm{H}_{2} \mathrm{O}_{2}=34.0, \mathrm{H}_{2} \mathrm{NNH}_{2}=32.0, \mathrm{NaCl}=58.5$, $\left.\mathrm{H}_{2} \mathrm{O}=18.0\right)$

DSE20_1b

(b) The two reactions below can produce N-hexylbenzamide:

Reaction (I) :

Reaction (II) :

(i) Based on the above information, suggest one reason for each of the following:
(1) Reaction (I) can be considered as greener than Reaction (II).
(2) Reaction (II) can be considered as greener than Reaction (I).
(ii) In Reaction (II), 3.00 g of methyl benzoate reacts with 2.23 g of hexan-1-amine to give (Relative moleculiar masses: methyl benzoate $=136$, hexan- 1 -amine $=101$,

N -hexylbenzamide $=205$)
(2 marks)
(iii) The methanol produced in Reaction (II) can be used to manufacture ethanoic acid in industry by the following reaction :
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{O})+\mathrm{CO}(\mathrm{g}) \xlongequal[\text { catalyst }]{\frac{180^{\circ} \mathrm{C}, 30 \mathrm{arm}}{} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l}) \quad \Delta \mathrm{H}<0 \mathrm{O}}$
(1) According to chemical equilibriumt, explain why the operation pressure in industry for the reaction is set at 30 atm but not at atmospheric pressure.
(2) Explain why the optimal operation conditions are set at $180^{\circ} \mathrm{C}$ and 30 atm .
(3 marks)

Marking Scheme

ALO7(I)_08
(a) $\%$ yield $=\frac{14.6}{15,9} \times 100 \%=91.8 \%$
(b) Catalyst
(c) Open-end questions:

Yes. Any ONE of the followings:

1. The reaction does not involve the use of solvents
2. The reaction has a high atom economy
3. A catalyst is used.
4. No side product
5. One step reaction

No. The reaction requires the use of KCN which is highly toxic.

AL08(I) 10

Candidates are expected to discuss the application of at least four of the principles of green chemistry in indusiry
(1) Atom cconomy: synthetic metrod should be designed to maximize the incorporation of all materials used in the process into the final product.
Atom economy industry process:

- Manufacture of nylon-6 by Beckmann rearrangement

$$
\int^{\mathrm{O}} \xrightarrow{\mathrm{NH}_{2} \mathrm{OH}}
$$

- Addition reactions, e.g. obaiting saturated fats by catalytic hydrogeration
- Haber process in the manufacture of anmonia
(2) Less hazardous chemical synthesis: wherever practicable, synthetic method should be design to use and generate substances that possesses litte or no toxicity to human health and the environment.
- Use of supercritical CO_{2} in decaffeinating coffee and in dry cleaning: replacing harmful arganic soivents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzene by non-polluting supercritical CO_{2}.
(3) Safe solvents and auxiliaries: the use of auxiliary stibstance (e,g, solvents, separating agents) should be made umecessary wherever possible and innoctous when used.
- Solvent free syntheses: e.g. mantafacture of PMMA by grinding monomers with a catalyst.
(4) Catalysis: catalytic reagents (as selective as possible) are superior to stoichiometric reagents.
- Haber process in the manufacture of ammonia
- Biocatalysis and asymmetric catalysts.
(5) Design for energy efficiency: energy requirements of chemical process should be recognized for their environmental and economic inpacts, and should be minimized. If possible synthetic melhods should be conducted at ambient temperature and

pressure.

- Use of fuel cells.
- Replacing AlCls by partially dealuminated zeolite Y catalyst.

ASLO9(II_05
(a) Atom economy $=\frac{\text { Relative molecular mass of desired products }}{\text { Relative molecular }}$
$=\frac{132,0+166,0-18}{132,0+166.0}=94.0 \%$
no. of moles of B used $=\frac{2.64}{132.0}=0.02$
no. of moles of D used $=\frac{3.32}{166.0}=0.02$
no. of moles of E obtatned $=\frac{4.40}{280,0}=0.0157$
$\%$ yield of reaction $=\frac{0.0157}{0.02}=78.5 \%$
(c) Any FOUR of the following:

- The renction las high atom econony
- The reaction has a high yield
- The reaction does not require the use of solvent
- A catalyst, $\mathrm{NaOH}(\mathrm{s})$, is used
- The other product, $\mathrm{H}_{2} \mathrm{O}$, is non-toxic

ÁL12 (I) 06
(b) Any TWO of the following:

- The reaction in Haber process has very high atom economy (100%)
-The reactants $\left(\mathrm{N}_{2}\right.$ and $\left.\mathrm{H}_{2}\right)$ are non-toxic and will pose no harm to the environment.
The reaction takes place in gas phase. No solvent is required.
- The raw material $\left(\mathrm{N}_{2}\right)$ is available in latger amount in the atmosphere. Depletion is not a problem.
- The reaction does not require the use of any derivalives.

A catalyst (Fe) is used.

AL13(II)_11 (modified)
(i) Any TWO of the following:

- The cumene route does not involve the use of corrosive acids (conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$)/ alkalis (NaOH)
- A catalyst (zcolite) is used in the cumene route.
- The cuncue route has a higher alons economy
(ii) Propanone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$, can be used as a solvent / to manufncture plastics, e.g. [I] PMMA.

DSE1ISP_OIC

(i) Atom economy
$=\frac{\text { molar mass of desirable product }}{\text { sum of malar masses of all products }}$
sum of molar masses of all products
molar mass of methylpropene
$=\overline{\text { molar mass of methylpropene }+ \text { ethanol }+ \text { sodim bromide }}$
$=\frac{56}{56+46+1029} \times 100 \%$
$=27.3 \%$
(ii) Examples of other factors (Any TWO)

- Waste minimization at Source
- Use of catalysts in place of reagents
- Use of non-toxic reagents
- Use of renewable resources
- Use of solvent free or recyclable environnentally benign solvent system.

DSE12PP_01a
(iv) This method uses a catalyst (the enzyme) instead of stoichiometric reagents. [1]

It uses less hazardous chemicals (e.g. MeOH / acid).
DSE12_02a
(ii) (1) - The hydrogen peroxide used in Reaction (1) is less corrosive / hazardous whan compared with the concentrated nitric acid used in Reaction (2).

- The by-product $\mathrm{H}_{2} \mathrm{O}$ produeed in the Reaction (1) is less harmful/ environmentally friendly when compared with he by-product $\mathrm{N}_{2} \mathrm{O}$ produced in Reaction (2), which is an air pollutant.
- A catalyst is used in Reaction (1) but not in Reaction (2).
[Must be in comparison style]
(2) Both reactions consume starting materials that possibly obtained from is a not-renewable resource / petroleum.

DSE13_01c
(ii) Method 2:

Atom econamy $=\frac{58}{76}=76,32 \%$
(iii) Method 2 is greener.

Any TWO of the following:

- It has a higher atom economy
- It produces less rate (less side products) and less treatment is required / requires less steps.
- Less hazardous chemicals are used such as method 1 uses (more) toxic Cl_{2} /

Method 1 uses more corrosive $\mathrm{NaOH} /$ Method 1 use more foxic Cl_{2}.
(Accept any reatonable answer and note for comparative sense.)
(iv) The calculation of atom economy is based on a 100% completed reaction / complete conversion of reactants to products.
Most reactions do not go to completion/There is loss during handing / The yield is
related to extent of reaction (percentnge conversion).
Thus a reaction with high atom economy does not necessarily have a high yield.

DSE14_020
(iv) (I)

PLA is made from renowable resources, while PE and PET are made from non-renewable pelroleum products.
$O R, \quad$ PLA is blodegradable, while PET and PET are non-biodegradable.
(3) PLA is made from agricultural products. Massive production of PLA may affect the supply of food.

DSE15_016
(i) (1)

(I mark for each of the energy profiles - total 2 marks: Accept exothernic / endofhermic; one peak or multiple peaks)
mark for the labels: Accept potential energy / enthalyy but NOT kinetic energy / energy level)
(2) Calalyst can be poisoned. / Their active sites can be occipied by other chemicals making them irtactive.
(ii) Any TWO of the following:

- A (biological) catalyst / enzyme is used.
- The reagent $\left(\mathrm{O}_{2}\right)$ used in non-toxic
- The reactions take place in aqueons phase. (No organic solvents are used.)
- The feedstock (sugars) is renewable.
- The wastes formed are biodegradable.
- The reaction is carried out at room temperature / pressure / requires less energy.
(iii) Any TWO of the following:
- The reactions in route (1) are carried out in dilufe / aqueous solution white route 2 is not. / The ethanoic acid produced in route (1) is in form of dillue / aqueous solutions while route (2) is not. / In route (2), the ethanoic acid produced is puror / concentrated. / The recovery of the ethanoic acid from these solutions in route (1) requires much more energy than route (2). / The amoment of ethanoic acid produced by the fermentation route / route (1) cannot meet the Jarge demand of ethanoic acid but route (2) can.
- The rate of fermentation / aerial oxidation in route (1) is slower.
- Route (2) does not consume food but route (1) does.

DSE15_02a

(iii) Conc. HNO_{3} is corrosive.
NO_{2} is poisonous / irrifant.

DSE16_01c
(iii) Any 2 reasons of the above, with comparative sense 1 mark each

- Need not to separate frictose from the mixture after hydrolysis of starcli but the one wilh sterose requires
- Higher atom economy as glucose is the only product from the enzymatic hydrolysis of starcl. / atom economy of hydrolysis of starch is 100% while that of sucrose is 50% / less than 100%
- Harmful / corrosive / irritating $\mathrm{HCl}(\mathrm{aq})$ is used in hydrolysis of sucrose while hydrolysis of starch involves enzyme which is biodegradable and less larmful

DSE16 02a
(i) Cellulose is biodegradable / tiodegradable / degrade readily by bacteria / enzymes /
can undergo hydrolysis
DSE17_010
(iv) (1) The atom economy is 100% in the reaction. / No solvent is required in the reaction.
[Accepl; The atom econonay is high]
(2) The reactant/ $\mathrm{CO} / \mathrm{Cl}_{2}$ are poisonous/toxic. NOT accept harmful.

DSE17 02c
(iii) (1) Production: Biomass is raw material/ renewable resources
(2) Disposal: PHB undergoes hydrolysis / decomposition in the presence of acids [1]

DSE18_01b
(i) (1) $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}$ [Mark the first one]
(2) May be due to higher activation energy/ energy barrier.
(3) Number of moles of gasenus product is less than that of gascous reactants. Increasing the pressure will shift the equilibrium position to the right.
$O R$, increase in collision frequency / effective collision Make the reaction faster to reach equilibrium.
(ii) (1) This reaction does not involve poisonous reagent / CO but the originat one [1] involves poisonous CO .
(2) It reduces the amount of amospheric carbon dioxide and hence may alleviate
(iii) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{g})$

DSE18_02a
(i) Any Two of the following:

- Catalyst is used.
- High atom economy / atom economy $=172 \div 208=82.3 \%$
- Water gencrated possesses little or no texicity to luman heallh and the environment.

DSE19_1b

(b) (i) - Use concentated sodium chloride solution/brine as electrolyte.

- Anode: $2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$
- Cathode : $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
- The membrane is permeable to cations but not anions.
(ii) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaOCl}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)$
(iii) Atom economy for Reaction (I) $=32 / 108.5=29.5 \%$

Atom economy for Reaction $(1)=32 / 108.5=29.5$
Atom economy for Reaction (II) $=52 / 68=47.1 \%$
Reaction (II) is greener as it has a higher atom economy.

DSE20_1b
(b) (i) (1) No solvent will be emitted to the environment for Reaction (I) but Reaction (II) will. The side product, ethanol, of Reaction (I) is less toxic. No toxic methanol will be praduced In Reaction () but Reaction (i) will A comparative sense)
(2) Lower temperature is needed. / Higher atom economy. (less eniergy is not accepted) A comparative sense
(ii) $3.00 \div 136=0.022 \mathrm{~mol}$
$2.23 \div 101=0.022 \mathrm{~mol}$
$(3.89 \div 205) \div 0.022 \times 100 \%$
$=86 \%$
$(2-4$ sign figs rauge: $85.8-86.3)$
$(2-4$ sign igg range $85.8-863)$
(1 mark for steps and 1 mark for fanswer)
(iii) (1) Because increasing the bighes pressure can shitt the equilibrium position to the right 1 Because increas
/hister yiveld.
(2) - Higher temperature will have a higher rate of reaction. But the forward reaction is exothermic, increasing the temperature will shift the equilibrium position to the leff tower yeled.

- Higher pressure (will shift the equilibrium position to the right but) extra cost is needed.

[^0]: (i) Deternine the activation encrgy for the reaction by ploting an appropriate graph.

